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Abstract—In this paper, we compare two trajectory-centered Air 

Traffic Flow Management (ATFM) architectures that assign a 

trajectory and a departure time slot to each flight. The main 

feature of these architectures is the use of trajectories that are 

feasible from the operational point of view and are aligned as 

much as possible with airspace users’ preferences. The first 

architecture is inspired by the first-come-first-served principle 

and can be seen as a proxy of the approach currently used in 

practice. The second one—herein named “preference-aware 

ATFM architecture”—considers alternative trajectory options 

and explicitly takes the related preference scores into account: its 

main objective is to provide better trade-offs between user-

preferred trajectories and system efficiency. The analysis herein 

carried out highlights the benefits of the latter architecture in 

terms of both system efficiency and satisfaction of airspace users’ 

preferences, thus paving the way to its potential use as a tool for 

the ATFM collaborative decision-making process. 

Keywords- ATFM; preference scores; trade-off analysis 

I.  INTRODUCTION 

The main objective of ATFM is to prevent local demand-

capacity imbalances by adjusting the flows of aircraft on a 

national or regional basis. This function is carried out by the 

aviation authority (e.g., the Network Manager in Europe or the 

Air Traffic Control System Command Center in the US) in 

collaboration with the relevant stakeholders, including airspace 

users. Dedicated tools, mostly based on the First Come First 

Served (FCFS) rule (also known as the ration-by-schedule 

principle), are used to support the decision process within the 

ATFM function. However, due to the “local” nature of the rules 

underpinning most of these tools, the ATFM solutions 

implemented to mitigate air traffic system constraints and/or 

impacting events are often largely suboptimal (e.g., see Ruiz et 

al. [1]). To overcome this issue, several mathematical models 

have been developed to identify better and possibly optimal 

control strategies. These models are designed to provide a 

holistic view of the whole air traffic system, i.e., at the 

continental level in Europe and the national level in the US. To 

tame the related computational challenges, these models are 

often “macroscopic”, see [2] and references therein cited. That 

is, they do not capture all the tactical details of conditions in 

every part of the airspace during the day. In the last decade, 

attention has been progressively turned towards models that are 

suitable for trajectory-based operations. One of the early models 

that explicitly considered 4D trajectories for each flight is the 

model proposed by Sherali et al. [3].  More recently, Dal Sasso 

et al. [4, 5] explicitly modelled flight-level information in a 

compact formulation.  However, these models have to deal with 

two major challenges related to the output trajectory. First, it has 

to be “feasible”, i.e., viable from the operational standpoint. 

Second, it should reflect the airspace user’s desiderata, i.e., it 

should align with the airspace user’s business model. 

To address these challenges, in this paper, we first review an 

architecture to compute trajectory options that are acceptable 

from the airspace users’ perspective, meaning both viable and in 

line with their business model. This architecture includes two 

main machine-learning modules: one to extract typical 

trajectory models, i.e., trajectories that are usually flown by 

airspace users; and the second one to compute the preference 

score for each trajectory model based on key features of the 

flight and the airspace user. The architecture is completed by a 

trajectory-centered optimization model that selects a route for 

each flight, taking explicitly into account the computed 

preference scores. 

The paper analyzes and compares the results of this 

preference-aware ATFM architecture with an alternative one, 

whose main engine adopts a FCFS discipline. This second 

architecture, which can be conceived as a proxy of the tool 

currently used in practice, resolves air traffic congestion by 

assigning delays to user-requested trajectories. The solutions 

proposed by the two architectures are compared to each other in 

terms of system efficiency, measured by total delay and traffic-
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capacity balance, and adherence to user preferences. The 

analysis shows the benefits of the preference-aware ATFM, in 

terms of both efficiency and airspace users’ preference 

satisfaction. Indeed, this architecture allows computing 

solutions that are reasonably close to the best one in terms of 

system efficiency without degrading the user’s preference 

satisfaction. On the other hand, our analysis shows the FCFS 

strategy may be largely inefficient. As a by-product, we also 

evaluate the effectiveness of solutions that minimize delays 

regardless of preference scores. Although these solutions are, by 

design, the most efficient, they may suggest trajectories that are 

far from users’ requests and therefore far from being acceptable. 

The identification of ATFM solutions that can significantly 

improve the system’s efficiency while preserving users’ 

operability is more likely to obtain the consensus of all the 

stakeholders involved. This promises to facilitate the 

collaborative decision-making process that leads to agreed flight 

plans at the pre-tactical stage, somewhat in the same spirit as Xu 

et al. [6].  

The paper is organized as follows. In Section II, we review 

the analyzed architectures for trajectory-centered. Section III 

presents the comparative analysis of the solutions output by the 

two architectures and the potential benefits of the preference-

aware ATFM approach. Finally, Section IV draws some 

conclusions and future research directions. 

II. TRAJECTORY-CENTERED  ATFM ARCHITECTURES 

We here describe the two ATFM architectures that are the object 

of our comparative study. The key and elementary components 

of these models are the feasible trajectories, possibly many for 

each flight. The goal is to assign a trajectory of the given set to 

each flight and in some cases a delay to meet the airspace 

capacities. The advantage of using trajectory-centered models—

compared to models that generate trajectories by suitably 

combining network segments—is that they are suitable for 

reckoning preference scores within the models, since the 

preference of airspace users for a trajectory is determined by its 

overall features, which cannot be always decomposed by its 

segments. 

A. First Come First Served ATFM (Ration-by-schedule) 

The first architecture is inspired by the FCFS rule, which 

currently underpins all the major ATFM tools and initiatives in 

Europe and the US (see, e.g., [7]): It prioritizes users’ 

preferences so that one trajectory per flight is considered, 

corresponding to the requested one, even at the cost of larger 

delays. The architecture assigns the requested trajectory (RT) 

to each flight and follows an FCFS rule to balance demand and 

airspace capacity (blue blocks of Fig. 1). Flights are processed 

in order of their scheduled time of departure. The estimated 

departure time is the result of the minimum delay that is needed 

to avoid any excess of demand—generated by all the flights that 

have been already served—with respect to the available 

capacity at any airport and en-route sector. 

B. ATFM with Preference Scores 

The second approach aims at providing better trade-offs 

between user-preferred trajectories and system efficiency at the 

early stage of the collaborative decision-making process, as it 

selects a feasible trajectory among the ones in a predefined 

bucket, taking both into account a measure of preference from 

the airspace user’s perspective, and overall requirements on 

system performance. The preference-aware ATFM architecture 

is composed of three main components (green blocks of Fig. 1), 

which are described in the following subsections. Interested 

readers can find a thorough technical discussion—including a 

  
Figure 1. Two trajectory-centered architectures for ATFM. 



ICRAT 2024 Nanyang Technological University, Singapore 

 

3 

 

full description of the Mathematical Optimization module—in 

[8]. 

1) Extraction and Classification of Trajectories 

To obtain, for each flight, a set of trajectories that airspace users 

are willing to consistently fly, a dataset is extracted from the data 

repositories (DRs), containing all the stored 4D flight 

trajectories. Ideally, DRs collect information on the requested 

trajectories for all flights during a relevant time period. The 

dataset is then cleaned of outliers, i.e., trajectories that are not 

consistently flown by airspace users. This can be thought of as 

trajectories determined by unusual factors (peculiar weather 

conditions, strikes, airspace closures etc.) and, hence, not likely 

to be accepted by airspace users in typical situations. To this end, 

the “Clustering” module of Fig. 1 adopts a density-based 

technique, namely DBSCAN: based on a measure of the 

“distance” between trajectories, it clusters together similar 

trajectories, and it detects outliers by identifying trajectories that 

are remarkably far from any other trajectory. The clustering step 

not only allows us to remove outliers but also classifies 

trajectories into groups of 4D trajectories that are similar to each 

other in terms of shape (crossed waypoints and related flight 

levels) and operational speed. An illustrative example of the 

Rome-Paris origin-destination pair is shown in Fig. 2. We thus 

associate clusters with distinct trajectory models, in other words, 

we consider that the elements of a cluster are variants of an 

underlying trajectory model. We assume that the airspace users’ 

choice depends, at the pre-tactical stage, on the trajectory model, 

rather than on the specific trajectory. Hence, given a flight, the 

airspace user assigns the same preference score to all the 

trajectories of the same cluster.   

2) Preference Scores’ Computation 

The “Preference extrapolation” module (see Fig. 1) computes 

the preference scores, i.e., a measure of how much a flight is 

willing to fly a trajectory option. Preferences are determined by 

several factors related to both trajectories’ and airspace users’ 

features, as well as, possibly, environmental factors (see, e.g., 

[6]): trajectory length, duration, shape, operational speed, fuel 

costs, en-route charges, weather conditions, airlines’ business 

model (e.g., legacy air carriers may prefer short routes, whereas 

some low-cost carriers may lean toward longer routes to avoid 

high en-route charges) among others. Such determinants, in 

particular the ones depending on the airspace users, are often 

only partially known, or even unknown, because of the lack of 

data sharing, frequently involving confidential business 

information. However, our purpose is obtaining parameters 

representing the preference score, i.e., to measure how each 

flight matches a trajectory as a whole, rather than determining 

the individual impact of each determinant on preference. 

Moreover, as observed above, we associate preference scores 

with the cluster, hence the trajectory model. We thus use cluster 

membership to approximate the role of all the features 

depending on the trajectory and their impact on (unknown) 

airspace users’ determinants. This leads to a data-driven 

approach to preference scoring. As depicted in Fig. 1, the 

“Preference extrapolation” module receives information on 

flight features, extracted from DRs, and on trajectory cluster 

membership. A supervised machine learning classification tool 

is proposed to discover how flight features are related to cluster 

membership. In particular, a random forest is trained on the 

selected features to learn, given a flight, the cluster the trajectory 

requested for that flight belongs to. A random forest combines 

different binary tree classifiers in an ensemble (an illustrative 

example of a binary tree is reported in Fig. 3). Relevant to 

 

Figure 3. An illustrative binary tree classifier [10]. 

 

Figure 2. An illustrative example of trajectory-clustering output [10]. 
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preference scoring are the figures between 0 and 1 reported in 

each leaf and representing the association to each cluster. A leaf 

corresponds to a combination of flight feature values. The 

association measures the fraction of flights falling in that leaf, 

and requesting a trajectory in that cluster. We thus use the 

associations as a measure of the preference assigned by flights 

to trajectory models. For example, with reference to Fig. 3, 86% 

of flights that fall in the highlighted leave have requested a 

trajectory of cluster 0, 11% of flights refer to cluster 1 and the 

3% to cluster 3; according to the tree, flights falling in the 

analyzed leaf will thus have a preference score of 0.86, 0.11 and 

0.03 for trajectories of clusters 0, 1 and 3, respectively, and a 

preference score of 0 for remaining clusters. For each flight, the 

final preference scores are computed by averaging the 

associations of the leaves reached in the diverse trees of the 

random forest.  

3) Optimized Assignment of Trajectory and Time Slot 

The assignment of trajectories and departure time slots to flights 

is obtained by solving a mathematical optimization model, 

which is at the core of the architecture. The model selects a 

trajectory within a given set of options, together with possibly a 

departure delay to satisfy air system capacities. It is formulated 

by means of binary decision variables. More specifically, a 

binary decision variable 𝑥𝑝,𝑑
𝑓

 is defined for each flight 𝑓 ∈ 𝐹 

(the set of flights), trajectory 𝑝 ∈ 𝑃𝑓  (the predefined set of 4D 

trajectory options for flight f output by the trajectory 

extrapolation module), and departure delay 𝑑 ∈ 𝐷𝑓  (the set of 

possible delays associated with the time slots available for flight 

f). The variable takes value one if 𝑓 flies 𝑝 with a delay 𝑑, 0 

otherwise. The objective function maximizes the total 

preference score, obtained by summing up the preference scores 

associated with each flight f and the selected trajectory p, 

denoted by 𝐺𝑝
𝑓
. In formula, 

𝑀𝑎𝑥𝑥∈𝑋 ∑ 𝐺𝑝
𝑓

∙ 𝑥𝑝,𝑑
𝑓

𝑓∈𝐹,𝑝∈𝑃𝑓,𝑑∈𝐷𝑓

(1) 

In the model, an ATFM strategy is represented by a vector 

of decision variables. The set X of feasible solutions includes a 

number of constraints that guarantee the satisfaction of the 

following conditions: (i) one trajectory and one (possibly null) 

ground delay is assigned to each flight; (ii) system capacities are 

satisfied for all the elements of the air traffic system (i.e., 

airports and en-route sectors) and at any period of time; and (iii) 

the total amount of arrival delays is below a given threshold. It 

is important to clarify that the total delay is the delay observed 

at the arrival, so in addition to the ground delay associated with 

the assigned time slot, it also accounts for either possible delay 

reduction due to air schedule padding or additional delay 

incurred during the cruising phase due to flying longer routes. 

Constraints (iii) follow from the existing trade-off between total 

delay and total preference scores, which makes the proposed 

model bi-objective. However, in this work, we do not have an 

interest in investigating this trade-off, i.e., computing the Pareto 

frontier, but rather computing a Pareto efficient solution to the 

problem, i.e., a solution maximizes the total preference scores 

given a certain threshold on the maximum total arrival delay that 

can be assigned. This threshold is established by ATFM 

authority in collaboration with the relevant stakeholders. The 

described model, which is a very large-scale optimization 

problem, is solved using a custom decomposition method, 

which can compute near-optimal solutions in short 

computational times (i.e., order of minutes). 

III. TRADE-OFFS’ ANALYSIS 

We present an analysis of the trade-offs between the delay and 

the preference score that can be achieved by the proposed 

ATFM architectures. We consider the following settings: 

• Nominal: the RT is assigned to each flight with no departure 
delay. Even if the resulting ATFM solution normally 
exceeds the airspace capacities, we use it as a baseline for 
comparison; 

• FCFS: the RT and departure slot are assigned to each flight 
by the FCFS architecture. Using RTs, this setting provides, 
by definition, a solution with the best possible overall 
preference score;  

• Min Delay: a variant of the mathematical optimization 
model is solved, where preference scores are neglected, and 
the objective function is turned into total delay 
minimization. This setting determines, for the set of 
trajectory options output by the “Clustering” module, the 
smallest possible total delay; 

• Max Pref 100: the optimization model maximizes the total 
preference scores under a delay budget equal to the smallest 
possible total delay. It computes a “preference-efficient” 
solution that minimizes the total delay; 

• Max Pref 110: same as Max Pref 100 but considering an 
additional 10% delay budget. It represents one possible 
trade-off between total preference score and delay. 

These settings have been evaluated on 10 instances of the 

ATFM problem extracted from the Eurocontrol Demand Data 

Repository DDR2. Instances correspond to the busiest days (i.e., 

with the largest number of flights) during Summer 2016, with at 

least one instance per day of the week. Each instance represents 

a whole day of operations in the European airspace, and the 

number of flights ranges from 28,508 to 32,128. Data from 

DDR2 include airspace configurations and capacities, flights 

and related trajectories. More specifically, for each flight, DDR2 

stores, among others, a 4D description of the last Filed Tactical 
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Flight Model (FTFM, also called “Initial” or “Model 1”). We 

remark that FTFM may not correspond to the RT, however, we 

used this model for preference extrapolation since it is the best 

approximation of airspace users’ choices available to us from 

DDR2. The random forest has been trained on the following 

flight features: day of the week, week number (to account for 

seasonal effects), anonymized airline code, airline type (“legacy” 

or “low cost”) and aircraft model (see [8] for details).  

In the FCFS setting, to obtain a solution with best possible 

preference score, we use a trajectory with shortest flight time 

among the ones with largest preference score for each flight. For 

the departure slot allocation, the ‘24-hours’ time horizon has 

been discretized in 288 5-minute time intervals. The same 

discretization is used to check airspace capacity constraints. The 

FCFS setting is intended to approximate the more complex 

procedures (and tools) used by network managers to allocate 

slots, e.g., the Computer Aided Slot Allocation tool [7], which 

is not available to us. 

In the following analysis, we focus on the main features of 

the proposed solutions while avoiding an excessive level of 

detail. Therefore, we report the average value of the displayed 

statistics, computed over the set of instances herein considered, 

unless otherwise specified. Moreover, we may jointly refer to 

Min Delay, Max Pref and Max Pref 110 as optimization 

approaches or simply optimization.  

A. Analysis of Delays 

The bar chart in Fig. 4 displays the average total delay of FCFS, 

Max Pref 100, Max Pref 110 and Min Delay settings. We 

observe that the optimization approach, whether the preference 

scores are considered (Max Pref settings) or not (Min Delay), 

allows for reducing the total arrival delay substantially. On 

average, the optimization method reduces the total delay by 66% 

compared to FCFS. Indeed, the average value of the total arrival 

delay drops from almost 1700 hours to 500 hours. It is evident 

that the optimization approach is able to exploit the schedule 

padding associated with some of the available trajectories to 

provide better punctuality performances. It assigns departure 

delays—which is in any case 15% smaller than the one assigned 

by FCFS—to flights that have more buffer to recover departure 

delays. The observed values of total delay are not abnormal (see 

also Ruiz et al. [1]), and they are obtained with a moderate level 

of congestion of the European airspace. As an example, the 

heatmap of Fig. 5 highlights the Nominal level of congestion for 

each sector (on the y-axis) and period of the day (on the x-axis) 

for the August 28, 2016 instance. Approximately, 10% (91/920) 

of the en-route sectors faced congestion, with air traffic demand 

exceeding capacity by 10% or more. Congestion is happening 

mostly in the time window between 6 and 10 am (GMT).  

The system delay reduction obtained by the optimized 

approaches compared to FCFS is due to a judicious assignment 

of delay as well as some fine-tuned re-routing of flights. Fig. 6 

illustrates both these aspects for sector LECPGXX—which is in 

the Balearic airspace—. More specifically, Fig. 6 depicts the 

Nominal air traffic demand (orange line), the FCFS (blue line) 

Figure 4. Total average delay comparison. Figure 6. Sectors’ occupation rate for the August 28, 2016 instance. 

 

Figure 5. Sectors’ occupation rate for the August 28, 2016 instance. 
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and the Min Delay (red line) solution demand for the considered 

sector between 6 am and 1 pm (GMT) on August 28, 2016. We 

observe that the Nominal sector demand exceeds the capacity 

limit for an extended period of time. The Min Delay solution 

does not delay any flight in the time periods before the 

occurrence of congestion. In the time periods of congestion, the 

number of flights scheduled to fly in the sector is very close to 

the available capacity. Some flights—originally scheduled to 

cross the en-route sector during the period of congestion—are 

rerouted to reduce the (nominal) demand and consequently the 

amount of assigned delays. On the other hand, FCFS shows 

some perverse behavior. Due to the presence of other congested 

sectors, some of the demand is delayed even before the 

congestion takes place. Moreover, during the period of 

congestion, not all the available capacity is fully exploited thus 

exacerbating the congestion phenomenon and increasing 

substantially the amount of delay assigned. 

B. Analysis of preferences 

A key aspect of the proposed approach is the inclusion of 

airspace users’ preferences. We here show their implications 

and impact on the ATFM solutions. The stacked bar chart of 

Fig. 7 describes the distribution of preference levels of the 

assigned routes for each of the proposed solutions. The stacked 

bar of the FCFS solution represents the distribution of the 

preference level of the most preferred route. The majority of 

flights (67.2%) have a preferred route with a preference level 

greater than 0.8. Only a relatively small percentage of flights 

(i.e., 6.5%) have a preferred route with a preference level in the 

interval [0.2, 0.4]. The Min Delay stacked bar provides the 

distribution of the preference level for the routes assigned by 

optimization model that minimizes the total delay. Comparing 

the FCFS and the Min Delay stacked bars, we observe that 

about 10% of the flights fly a route that is not the preferred one. 

This corresponds to the amount of rerouting which is needed to 

minimize the total delay. However, not all the rerouting 

suggested by the optimal solution is necessary. Indeed, for each 

instance, there are several and possibly many optimal solutions 

—all with the same amount of total delay but with a different 

level of rerouting—. Indeed, the efficient solution denoted as 

Max Pref 100 has almost half of the rerouting with respect to 

the Min Delay solution. The result has been obtained without 

assigning any additional delay. If we accept an increment of the 

total delay equal to 10%, the amount of rerouting of the 

corresponding solution (Max Pref 110) is further reduced. In 

this scenario, the number of rerouted flights is 3.3% of the total.  

In Fig. 8, we give a more accurate account of the preference 

level difference between the preferred route and the assigned 

one for each of the following solutions: Min Delay, Max Pref 

100 and Max Pref 110. For the FCFS solution, there is no such 

difference because all the flights fly the most preferred route. 

For each flight, the preference level difference (%) is computed   

using the following formula:  

𝑃𝑓
∗ − 𝑃𝑓

𝑃𝑓
∗  ∙  100 (2) 

where 𝑃𝑓
∗ is the value of flight f’s maximum preference, and 𝑃𝑓

  

is the preference of the trajectory assigned to flight f. From the 

stacked bar chart in Fig. 8, we observe that the majority of 

rerouted flights in the Min Delay solution are assigned to a route 

with a preference level that is at least 80% smaller than the 

maximum preference level (i.e., the preference level of the most 

preferred route). This percentage of flights drastically reduces 

for the Max Pref solutions. Indeed, for the Max Pref 110, the 

percentage of flights that are assigned to a route with a sensibly 

reduced preference level is slightly higher than 2%.  

C. Analysis by Airports and Airlines 

We now analyze the distribution of delays across airports and 

airlines. The objective is to verify if the better performances of 

the proposed preference-aware architecture are achieved at cost 

of an unfair distribution of delays, meaning that the proposed 

Figure 7. Distribution of the preference levels. 

     
   Figure 8.    Distribution of the preference level difference (%) 

between the preferred and the assigned route. 
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solutions end up in consistently discriminating against certain 

airlines and/or flights originating from or terminating in certain 

airports. For the sake of readability of the charts, we display 

statistics for only three of the settings herein analyzed, i.e., 

FCFS, Min Delay and Max Pref 110.  

In Fig. 9, we display the average arrival delay distribution 

across airports. Each bar of the chart represents the number of 

airports with an average arrival delay (measure in minutes) 

equal to zero, or in one of the following intervals (0, 5], (1, 15], 

(15, 30], and greater than 30 minutes.  We can observe that the 

FCFS distribution has a fatter tail, with a larger number of 

airports showing larger average arrival delays.  

Fig. 10 shows the average arrival delay per flight at the ten 

busiest airports: the boxplots display the distribution among 

instances. For all the considered airports, Max Pref 110 and 

Mind Delay show very similar values. The FCFS average arrival 

delay is larger—and in some cases at a significant level—than 

the one assigned with Max Pref 110 and Min Delay, with the 

only exception of Airport 2. At Airport 2, the average arrival 

delay is similar in all three settings here considered, even though 

in some instances FCFS shows better punctuality performance. 

In Fig. 11, we report the percentage of delayed flights at each of 

the 10 busiest airports. We use a stacked bar to highlight both 

the fractions of flights with small (up to 15 minutes, in blue) and 

large (greater than 15 minutes, in orange) delays. With the only 

exception of Airport 2, the optimization approaches provide a 

smaller percentage of delayed flights, especially in the Min 

Delay setting. Moreover, it is important to observe that the 

optimization approach consistently reduces the number of 

flights with large delays, even for Airport 2. Both Fig. 10 and 

Fig.11 show that, overall, optimization smooths differences 

between airports and improves fairness compared to FCFS. 

As far as the distribution across airlines, we observe similar 

trends. Fig. 12 reports the average arrival delay per flight for 

the 10 largest (in terms of number of movements recorded in 

our dataset) airlines. As expected, the optimization provides 

lower values of the average arrival delay than FCFS, and none 

of the airlines would be better off with the FCFS solution. 

Indeed, some airlines have a large improvement in their 

punctuality. Moreover, as depicted in Fig. 13—showing the 

percentage of (slightly and sensibly) delayed flights—the 

FCFS setting not only leads to a greater number of delayed 

flights, but also with larger delays. Indeed, the orange bars are 

uniformly and, in some cases, substantially bigger in the FCFS 

setting. Again, optimization seems to improve fairness with 

respect to FCFS, showing reduced differences between airlines. 

IV. CONCLUSIONS 

To improve the ATM system's performance, the importance of 

sharing and using trajectory preference information at an early 

stage of the decision process is widely recognized. This is seen 

as a key enabler for the full implementation of innovative ATM 

initiatives, like the TBO (trajectory-based operations) 

concept.  In this paper, we have shown the potential benefits of 

using such information, and we have analyzed the existing trade-

off between system efficiency and airspace users’ preferences.   

To overcome the information sharing issue, we have 

considered an ATFM architecture made of both machine-

learning and optimization modules. Machine learning is used to 

approximate the set of feasible trajectories and related airspace 

users’ preference scores. The optimization model aims at 

finding the overall best preferred ATFM decisions while 

guaranteeing a minimum system performance level.   

Our study, on a set of realistic instances, shows that the 

proposed architecture computes (delays) efficient solutions with 

just 6% of flights diverted from the most preferred trajectory. 

This fraction can be further reduced if some additional delay is 

allowed. Moreover, the performance of the preference-aware 

architecture compares very favorably with the two ends of the 

ATFM interventions spectrum, i.e., Min Delay and FCFS 

respectively. Indeed, the preference-aware ATFM solutions 

retain most of the system efficiency, i.e., with total delay at the 

level of the Min Delay solutions, and achieve large preference 

scores close to the FCFS architecture. Finally, a preliminary 

fairness analysis suggests that the optimization approach 

reduces bias in the computed solutions. From the practical point 

of view, this means that the preference-aware ATFM is able to 

satisfy the air traffic demand by assigning a moderate amount of 

delays and/or rerouting. In the case of rerouting, the aim is to 

assign a new route that is acceptable from the airspace user’s 

perspective. Therefore, the preference-aware ATFM 

architecture has the potential to facilitate the ATFM 

     
   Figure 9.   Average arrival delay (in minutes) distribution per airport. 
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collaborative decision-making process for the identification of 

agreed flight plans at the pre-tactical stage. 

As future research, further assessment of the proposed 

analysis may be achieved by additional experiments and 

comparison to the more complex tools currently used by 

network managers. Moreover, we plan to explore in more detail 

the equity/fairness aspects of the model’s solutions and 

potentially modify the model accordingly. 
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Figure 10.   Average arrival delay (in minutes) for the 10 busiest airports. 

        
Figure 12.   Average arrival delay (in minutes) for the 10 largest airlines. 

 

Figure 13.   Percentage of delayed flights of 10 largest airlines. 

 

 

Figure 11.   Percentage of delayed flights at the 10 busiest airports. 
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