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Abstract 
 

For nano- and molecular-scale applications, it is crucial to investigate and fully understand the 

electron transport properties of molecular junctions made up of a scattering region like a 

molecule coupled to metallic electrodes. The electrical properties of two different kinds of two 

terminal junctions are presented in the theoretical work contained in this thesis: one deals with 

gold electrodes, which form gold-molecule-gold structures and the other has single-layer 

graphene forming a gold-molecule-single-layer-graphene junction. In this thesis, the 

above investigations into the electrical and thermoelectric properties of molecular junctions 

utilize the theoretical techniques covered in chapters 2 and 3. Chapter 2 presents an 

introduction to the density functional theory (DFT). It is followed by an outline of transport 

theory in Chapter 3, based on Green’s function formalism. Chapter4 represents a study of the 

electron transport properties of the single-molecule/bilayer molecular junctions, formed from 

Zinc Tetraphenyl Porphyrin (ZnTPP), small graphene-like molecules (Gr), three derivatives 

with pyridine backbones, and three alkyl-chain backbones terminated with asymmetric anchor 

groups: amine (NH2 ), and a direct carbon (CH2 ) bond. Chapter5 studied the same core 

molecules, junctions with asymmetric electrodes which are gold and a single-layer graphene 

sheet (SLG). 
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Chapter 1  
 

1.1 Molecular Electronics and Thermopower 

 

In 1965, Gordon Moore predicted a historical trend that states the size of electronic components 

like semiconductors decrease exponentially over time. Numerous studies have been undertaken 

to find methods to keep up with this historical pattern and are now getting close to the nano- 

or molecular scale [1]. Molecular electronics (ME) is known as the field of science that studies 

the electrical and thermal transport characteristics of circuits that use single molecules (or 

groups of them) as their fundamental building blocks [2]. Nanoscale electronic devices have 

numerous potential applications such as transistors [3-4], rectifiers [5-6], sensors [7-8], and 

switches [9]. The concept behind single-molecule electronics is building and designing 

molecules to create more complicated structures, active components, and connecting wires. 

Due to its potential for sub-10nm electronic switches and rectifiers and its capacity to offer 

sensitive platforms for single-molecule detection, molecular electronics has a lot of potential 

uses in nanoscale electronics [10]. A further appealing feature is a possibility for nanoscale 

self-assembly to use intermolecular interactions, which could lead to low-cost production. In 

addition, the diversity of molecular structures that can be created by chemists allows for the 

logical and methodical modification of a variety of molecular characteristics. Additionally, 

molecular junctions are excellent research platforms for determining the basic principles of 

electron transport processes [11-12]. In 1974, Aviram and Ratner made the first hypothesis 

with the molecular current rectifier, while Polymeropoulos and Sagiv studied molecular-based 

tunnel junctions (resistors) 30 years earlier [13]. Aviram and Ratner proposed a single molecule 

with sections for electron donors and acceptors as a typical example and placed it between two 

metal conductors. They showed that in electronic devices, a molecule linked to the electrodes 

either serves as an electrical current conduit or controls the electrodes' charge transport 

https://www.britannica.com/biography/Gordon-Moore
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characteristics [14]. Binnig and Heinrich Rohrer in the 1980s invented the scanning tunneling 

microscope (STM) based on a phenomenon in quantum mechanics called tunnelling. In 1990, 

a group of researchers manipulated STM techniques whereas can be obtained the atomic and 

molecular properties. [15-16]. These methods have been used and developed for a simple 

electrode-molecule-electrode system, contacting single molecules, graphene-based junctions 

[17], and silicone-based junctions [18]. In the past few decades, improvements in 

nanofabrication techniques and the quantum theory of electronic transport have made it 

possible to investigate and comprehend the core features of electrical circuits, in which 

molecules are used as fundamental components to study their electronic transport properties 

[19-20-21].  

It is important to remember that developing single-molecule devices is not simple due to some 

difficulties and restrictions. A number of challenges that single-molecule electrical systems 

have to face are summed up as follows: 

• Because of the molecule's small size, it is frequently difficult to directly manipulate 

the molecule into the nanogap. Instead, a molecule cannot be positioned in the gap 

between electrodes without molecular interaction between it and the electrode. 

• It is more difficult to make sure that only one molecule is put inside each functional 

device because electrodes can often be significantly larger than the molecules. 

• stability, uniformity, and scalability are other challenges. 

Despite these difficulties and restrictions on theory and experiments, molecular electronics has 

made significant progress, offering a useful road plan for future electronics uses. This thesis 

discusses the basic ideas in the non-equilibrium Green's function formalism of transport theory, 

which is implemented in the Gollum code [22], and the density functional theory (DFT), which 

is implemented in the SIESTA code [23], in order to describe the fundamental properties of 

molecular junctions at the nanoscale.  Furthermore, a lot of progress has been made in the 
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understanding of the thermoelectrical characteristics of single-molecule junctions [24], which 

was made possible by findings such as high Seebeck coefficients of order 161 for PEDOT: PSS 

organic films [25]. I investigate the essential features of enhancing the thermopower properties 

of molecular junctions.  I will investigate the multicomponent graphene substrate via non-

covalent interaction have demonstrated higher thermoelectric behavior. I will present a multi-

component technique to create an aromatic molecular array on a graphene substrate. This 

technique split molecular backbones by big ZnTPP footprint, and it has demonstrated effective 

thermopower with a Seebeck value up to 51 uV/K. Also, it shall combine the links between 

theory and experimentation to produce and model (STM) devices. 

 

Porphyrin  

 

 

 

 

 

 

 

 

 

Porphyrins are an interesting class of organic compounds, which are desirable as molecular-

scale device building blocks, because they are conjugated, rigid, chemically stable, and 

coordinate a variety of metallic ions to produce metallo-porphyrins [26-27]. The  

metallo-porphyrin molecule has four pyrrole units with a metallic atom in the middle, as 

illustrated in Figure 1.1, whereas the porphyrin molecule has four pyrrole units (the inner ring 

a b 

Figure 1: (a and b) illustrate the chemical structure of a metal-free porphyrin 

and metallo-porphyrin molecules, respectively. X is the incorporated metal 

atom such as Zn, Co, Cu and Fe. 
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-system). Wires, switches, transistors, and photodiodes can all be made from porphyrin 

derivatives. [28-29]. 

The metal ions can be Zn, Fe, Ni, and Co [30-31]. In nature, metallo-porphyrins present in 

hemoglobin, myoglobin, chlorophyll, cytochromes, catalase, and peroxidases serve a number 

of significant biochemical functions [32]. Research on these compounds is not limited to the 

biological area, but also these substances are equally significant from a chemical, industrial, 

and technical point of view. Synthetic porphyrins have been extensively explored over the past 

three decades for a variety of uses in a wide range of chemical and biological fields [33].  
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1.2 Thesis Outline 

 

This thesis will present theoretical simulations of nanoscale electron transport and molecular 

electronics. Chapter 2 gives a brief summary of one of the fundamental theoretical methods 

employed in this thesis density functional theory (DFT) to study and understand the electronic 

properties of single-molecule junctions. The single-particle transport theory is described in 

Chapter 3. This chapter covers the Landauer formula, Green's functions for various transport 

regimes based on scattering theory, and some examples of how to compute the transmission 

coefficient for various systems using the Hamiltonian and Green's functions. 

 

After providing the fundamental background of nanoscale transport modelling techniques, I 

will describe theoretical studies of selected molecular junctions. In this work, I have two 

devoted chapters to investigate the electrical and thermal properties of the studied molecules. 

Chapter 4 focusses on the transport properties in gold- molecule-gold junctions, whereas 

chapter 5 studies the transport properties in gold-molecule- single-layer graphene (SLG) 

junctions. Chapter 6 presents some conclusions and suggestions for future work.  
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Chapter2 
 

 

 Density Functional Theory (DFT) 

 

The mathematical principles of DFT and the general concepts are employed in all the 

electronics structure’s calculations in this thesis. To predict electron transport properties of a 

molecular junction, I first extract the Hamiltonian of the isolated molecule and then link this 

isolated molecule to electrodes to calculate the transport properties of molecular junctions, as 

discussed in the following section. 

 

2.1 Introduction 

 

Density functional theory is a successful method to calculate electronic properties in various 

interaction structures, such as atoms, molecules, and crystal. For more than 30 years theoretical 

condensed matter physicists have used it widely. More recently, theoretical, and computational 

chemists have started to use it frequently [1-2]. The fundamental goal of density functional 

theory is to explain an interacting many-particle system in terms of its density. The history of 

the DFT began in 1920s, where Llewellyn Thomas and Enrico Fermi established the 

fundamental steps to achieve the density functionals for total energy using the wave function 

[1-3-4]. Dirac, Hartree, Slater, and Fock added additional improvements for Thomas’s work. 

Modern DFT is based on the Hohenberg-Kohn Theorem (1964) and the Kohn-Sham 

formulation. [3-4]. which calculates the ground state of organic molecules [1-6]. This 

introductory section provides a brief overview of the basic concepts of density functional 

theory. It begins with Schrödinger equation of a many-body system in three-dimensional space. 

It is then followed by the Born-Oppenheimer approximation of the nuclei, and the Hohenberg-

Kohn theorem, and then expands to the Kohn-Sham theorem, which has become a powerful 

and reliable approach to describing ground state properties of a quantum system. In addition, 

an implementation of DFT SIESTA code (Spanish Initiative for Electronic Simulations with 
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Thousands of Atoms) [7] has been introduced which is used as a theoretical tool to perform 

calculations on molecular systems which are the subject of this research work. 

2.2 The Schrödinger Equation and Variational Principle 

 

Any many -body systems can be described by non-relativistic Schrödinger equation.  

                        

H ψi(r⃗1 , r⃗2 , … , r⃗N , R⃗⃗⃗1 , R⃗⃗⃗2 , …… , R⃗⃗⃗M ) = Eiψi(r⃗1 , r⃗2 , … , r⃗N , R⃗⃗⃗1 , R⃗⃗⃗2 , …… , R⃗⃗⃗M )              (2.1) 

 

where  ψi is the wavefunction of the state of the system and Ei  is the numerical value of the 

energy of the ith represented by ψi. H represents the Hamiltonian operator of a system 

consisting of N-electrons and M-nuclei that contains the interaction of particles with each other. 

Generally, the Hamiltonian operator (H) is written as:  

 

H =  -
ℏ2

2me
∑  ∇i

2-
ℏ2

2mI
∑  ∇I

2 +I
1

8πεo
 ∑

e2

|ri-rj|
i≠ji + 

1

8πεo
 ∑

zIzJe
2

|RI-RJ|
I≠J  – 

1

4πεo
 ∑

zIe
2

|ri-RI|
iI              (2.2)                                                                                          

 

The Hamiltonian of the many-body system is divided into five terms:  the first two terms 

represent the kinetic energy of electrons and nuclei respectively. Additionally, the last three 

terms are the potential energy of electron and nuclei, which defines the attractive electrostatic 

interaction between electrons and nuclei in the system. Here, me and mI  are the mass of 

electron and nucleus, respectively, ri and RI represent the position of electrons and nuclei, 

respectively,e and zI denote the electron and nuclear charge, and i and j represent the N-

electrons while I and J represent a run over the M-nuclei in the system. However, the 

Schrodinger equation cannot be solved for many-body systems with a huge number of electrons 

thus, some approximations are employed to solve this issue such as those introduced by Max 

Born and J.Rober Oppenheimer in 1927 [8]. 
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2.3 Born- Oppenheimer Approximation 

 

The Born-Oppenheimer approximation is an approach typically used to reduce the problem of 

the Schrödinger equation (2.1), which cannot be solved for more than a few electrons. Because 

the mass of the nucleons is bigger than the electron mass [9-10] which lead significantly lower 

their velocities of motion, the kinetic energy of nuclei is neglected, and they are considered as 

a classical particle, which creates a fixed external potential. Therefore, we treat the electrons 

as quantum particles subject to this potential, with the assumption that the nucleon 

wavefunction is independent of the electron position. The electron degrees of freedom are 

obtained from this solution of the Schrödinger equation. Therefore, the Hamiltonian for the 

electron can be written as:  

                                                                   H = Te + Ve + ∑ Vext(ri)i                                        (2.3) 

   where, Te  =  -
ℏ2

2me
∑  ∇i

2
i   which is the kinetic energy of all electrons, Ve = 

1

8πεo
 ∑

e2

|ri-rj|
i≠j   

that represents the interaction between electrons ,and Vext  is s the external potential due to 

nuclei and electron interaction, in addition to any external field.  

Then the Schrödinger Equation can be written as: 

                                                 H ψi(r⃗1 , r⃗2 , … , r⃗i. . ) = Eiψi(r⃗1 , r⃗2 , … , r⃗i. . )                          (2.4) 

 

Even though this approximation has reduced the system's size, it is still challenging to solve 

the Schrodinger equation. Thus, density functional theory can resolve this issue by determining 

the physical quantities in terms of the ground-state density ρo(r⃑) [11]. The first approach would 

be the Hohenberg-Kohn theorem.  
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2.4 The Hohenberg- Kohn Theorem 

 

The Hohenberg-Kohn theorem was discovered in 1964 [12]. It’ is a backbone of DFT due to 

its capacity to determine properties of the ground-state density 𝜌(⃗𝑟⃗⃗⃗⃗) system. This can be used 

in many-electron system that interacts with an applied external potential V (r) and it 

corresponds to a minimum total energy functional where the density of the electron is 

considered as a ground state of the system. The HK theorem can best be proved using two 

powerful statements.  

 

1: For any interacting systems in external potential Vext(r⃑), This potential is only determined 

by the ground-state density [13-16].  

2: The total energy of the system is minimized to the correct ground-state energy, which is a 

function of the electron density in the ground state. 

The first theorem can be proved by assuming two different external potentialsVext(r⃑)) that have 

the same ground state density. These potentials have two distinct Hamiltonian s as well as 

different wave functions.  Therefore, we have  

 

Ĥ1 ψ1 = E1 ψ1  

Ĥ2 ψ2 = E2 ψ2  

where  ψ2  is not the ground state wavefunction of Ĥ1 

                                                            

 

                                                E1 = ⟨ψ1|Ĥ1|ψ1⟩ < ⟨ψ2|Ĥ1|ψ2⟩                                          (2.5) 

 

and similarly: 

                                                    E2 = ⟨ψ2|Ĥ2|ψ2⟩  < ⟨ψ1|Ĥ2|ψ1⟩                                            (2.6) 

 

Assuming non-degenerate [17-18] ground states, we can rewrite the equation (2.6)  
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                                                       ⟨ψ2|Ĥ1|ψ2⟩ = ⟨ψ2|Ĥ2|ψ2⟩ + ⟨ψ2|Ĥ1-Ĥ2|ψ2⟩ 

                                                       = E2 + ⟨ψ2|V1(r⃑)-V2(r⃑)|ψ2⟩ 

                                                   = E2 + ∫dr [V1(r⃑)-V2(r⃑)] ρo(r)                                              (2.7)  

       Additionally, assuming that |ψ1⟩ has the same density ρo(r) as |ψ2⟩  

                                ⟨ψ1|Ĥ2|ψ1⟩ = E1 + ∫dr [V2(r⃑)-V1(r⃑)] ρo(r)                                           (2.8) 

      Adding together the two equations (2.7) and (2.8) guide to a contradiction 

                                                         E1 + E2 < E1 + E2                                                                   (2.9) 

Thus, it follows that the two differing external potentials cannot yield the same ground state 

density.  

The second theorem is proved by minimization of the ground state functional which can be 

written as  

                                     E[ρ] = T[ρ] + Eint[ρ] + ∫dr Vext (r) ρ(r)                                  (2.10) 

 

The kinetic term T and internal interaction of the electrons Eint are rely on the charge density. 

Therefore, the exact ground state density ρo(r)is the density ρ(r) that minimizes the functional. 

 

2.5 The Kohn-Sham Theorem 

 

HK theorems present the ground state density by calculating the ground state energy. However, 

the kinetic energy term, and the internal energy of the interacting particles which is the exact 

form of the functional shown in Eq. 2.10 is not known and generally cannot be expressed as a 

functional of the density.  

In 1965 Kohn and Sham [19] has explored the solution by generating the same ground-state 

density for any given system of interacting particles as a self-consistent method [19-

20]. According to Kohn and Sham, one can replace the original Hamiltonian of the system with 

an effective Hamiltonian of the non-interacting system in an effective external potential which 

same ground state density as the initial system. It is considered as an ansatz while there is no 
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obvious mechanism for doing the calculations, but it is not difficult to solve the non-interacting 

problem. the form of the ground state functional of the Kohn -Sham ansatz can be as:  

                        EKS  (ρ) = TKS (ρ) + ∫ dr Vext (r) ρ(r) + EH (ρ) + Exc (ρ)                     (2.11) 

The terms for this equation are listed below. 

Tks  is the kinetic energy of the non-interacting system while T in Eq.2.10 is  

the kinetic energy for the interacting system.  

Additionally, the electron-electron interaction is represented by the Hartree functional, 

EH which has the following form using the Hatree-Fock method: 

                                                  EH [ρ(r)] =
1

2
∫
ρ(r) ρ(ŕ)

|r-ŕ|
 dr dŕ                                              (2.12) 

Exc exchange correlation functional which is referred to the differences between the exact and 

approximated solutions to both the kinetic energy term and the electron-electron interaction 

term it’s defined: 

                      Exc [ρ(r)] = (Eint (ρ)-EH (ρ)) + ( T (ρ)-TKS (ρ))                                       (2.13)                      

A single particle Hamiltonian can be given by the effective single particle potential  Veffwhich 

is described by taking the functional derivatives of the last three terms of equation (2.11) as: 

                          Veff (r) = Vext (r) + 
∂

∂ρ
 (EH [ρ(r)] + Exc [ρ(r)])                                           (2.14) 

Thus, the Hamiltonian can be written as: 

                                   HKS = Tks[ρ] + Veff                                                                                        (2.15) 

Then, Kohn-Sham equation can be introduced by applying the single Hamiltonian which is 

given by: 

                                          HKS  ψ
KS = E ψKS                                                                                         (2.16) 
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2.6 The Exchange Correlation Functional  
 
In the literature, several modifications to the exchange and correlation energy have 

been reported. One of the most used approximations in density functional theory are LDA and 

GGA. The simplest form that depends on the density is a local functional lead to the Local 

Density Approximation (LDA) [21-22]. A more complex form that includes also the derivative 

of the density semi-local and known as the Generalized Gradient Approximation (GGA) [23-

24].  

The Local Density Approximation and the Generalized Gradient Approximation will each be 

discussed briefly in the following sections.  

2.6.1 Local Density Approximation 

 

The Local Density Approximation (LDA) is one of the first and simplest approximation which 

depends on the local density. For systems where the local density is generally smooth, this 

approximation is expected to produce good results. It is known to be accurate for graphene and 

carbon nanotubes as well as other materials where the electron density is not changing quickly. 

Also, it does not work for systems with which they are largely dominated by electron-electron 

interactions. LDA is a simple but effective functional for many systems. 

2.6.2 Generalized Gradient Approximation 

 

Since the electron density changes rapidly at point in a real inhomogeneous system, the LDA 

approximation is invalid for heavier atoms. Thus, it is necessary finding a different 

approximation that more accurately for the gradient of the electron density which is generalized 

gradient approximation GGA. 

The GGA expands LDA by involving the density derivatives into the functional form of the 

exchange and correlation energies [25-26]. Even though the GGA approximation has a lack of 

a closed form for the exchange term of the functional it has been estimated along with the 

correlation contribution using numerical techniques. 
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2.7 SIESTA 

 

SIESTA (The Spanish Initiative for Electronic Simulations with Thousands of Atoms) is a 

DFT-based computer tool to perform electronic structure calculations and molecular dynamics 

simulations of molecules and solids [27]. The DFT implementation in the SIESTA code, which 

is used to demonstrate the electronic characteristics of the relaxed structures, was used for all 

calculations provided in this thesis. It is made to carry out effective computations on massive 

systems made up of thousands of atoms.  

2.7.1 The Pseudopotential Approximation 

 

As was pointed out in the previous section, the Kohn-Sham approach simplifyies the many 

bodies interacting problem to a huge effective non-interacting problem. However, 

complicated, and massive calculations occur with a numerous number of atoms that 

involved in the system therefore, pseudopotentials have been introduced by Fermi in 1934 [28-

29] to reduce the number of the core electrons in atoms. This method has evolved from creating 

not so realistic empirical pseudopotentials [30-31] to more realistic ab-initio pseudopotentials 

[32-33]. This approximate concept assumes that there are two different types of electrons in 

atoms, namely core and valence electrons, where core electrons exist in filled atomic shells and 

valence electrons existing in partially filled shells. When atoms are brought together, only 

valence electrons contribute to the formation of molecular orbitals due to the spatial 

localization of core electrons around the nucleus as well as the overlapping of the electronic 

states. As a result, pseudopotentials have been employed by replacing the electron’s core, while 

maintaining the valence electrons still feel the same screened nucleon charge as if the core 

electrons were still present. Thus, the total number of electrons in a system is substantially 

decreased, which minimizes the time and memory that needs for computing the properties of 

molecules with many electrons. 
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2.7.2 Basis Sets 

 

Basis sets are an important ingredient that SIESTA uses in the calculations. It is necessary to 

diagonalize the Hamiltonian in order to determine the wavefunctions. Generally, this process 

involves the inversion of a large matrix whose computational time increases as the number of 

non-zero elements increase. For this reason, it is crucial that the Hamiltonian be sparse with a 

large number of zeros to allow efficient calculations. SIESTA uses a linear combination of 

atomic orbitals (LCAOs) basis set, which are bound to be zero after some defined cut-off radius 

and are computed using the atom’s orbitals [34-35]. It follows that the form of the Hamiltonian 

is generated sparingly when the overlap of the basic functions decreases. Therefore, a 

minimum-sized basis set can generate properties that are close to those of the studied systems. 

The numerical radial and a spherical harmonic are used as a component in the construction of 

the basis functions.  which is followed by:  

                                             ψnlm(r) = ϕnl
1 (r) Ylm(φ, ϑ)                                                 (2.16)                                 

 

where ϕnl
1 (r) is the radial wavefunction and, Ylm(φ, ϑ) is a spherical harmonic wavefunction. 

Also, l is the orbital angular momentum, m is the magnetic quantum number, and  n indicates 

that the same angular momentum numbers might have many orbitals. However, the simplest 

form of the atomic basis set for an atom is the single - ζ which correspond to one basis function, 

per electron orbital. Another type of basis set which considered as a high accuracy basis set is 

multipl- ζ so that can be represented by adding another radial wavefunctions for each atomic 

orbital. Further accuracy ((multiple- ζ polarised) can be obtained by including wavefunctions 

with different angular momenta corresponding to orbitals which are unoccupied in the atom 

[36]. 
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2.7.3 Binding Energy Using the Counterpoise Method  

 

As mentioned above, the ground-state energy for different system configurations is calculated 

utilizing the DFT approach, which is also used to calculate the binding energy between 

different parts of a system. However, performing such these calculations would not yield an 

accurate result, due to the localized nature of the LCOA basis sets, which are centered on the 

nuclei. When atoms are sufficiently close to each other, their basis functions are going to 

overlap. This effect, which is called the basis set superposition error (BSSE), increases as the 

atoms orientate themselves closer, thereby creating an effectively varying basis set against the 

interatomic distance.  

One obvious solution to the BSSE is the use of extremely large basis sets. This is, however, 

hardly feasible for the of the chemically interesting systems. The second approach is termed 

the counterpoise correction (CP), which is an approximate method proposed by Boys and 

Bernardi [37]. Assuming two molecular systems are denoted A and B, the energy of the 

interaction can be expressed as:  

                                         ∆E(AB) =  EAB-(EA + EB)                                                (2.17) 

where EAB is the total energy for the dimer systems A and B, EA and EB are the energies of the 

isolated systems A and B. It is worth mentioning that to execute this correction in SIESTA, the 

ghost states (i.e., no nuclei and no electrons but empty basis set functions centered  

on them) have been used to evaluate the total energy of segregated systems A or B in dimer 

basis, with keeping the identical basis sets for three energies [38-39].  

                                       ∆E(AB) = EAB
AB-(EA

AB + EB
AB)                                            (2.18) 

where the superscript AB means the whole basis set is used, and the subscripts denote the 

geometry. EA
AB and EB

AB are the energies of systems A and B are evaluated in the basis of the 

dimer. This approach is an important method to eliminate the BSSE and provide reliable and 

realistic results for different systems [40]. 
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2.8 Conclusion  

 

 

The underlying concepts of density functional theory has been illustrated in this chapter. 

beginning with the Schrodinger equation, followed by the Hobenberg-Kohn theorems, and the 

Khan-Sham formalism. Additionally, the functional forms of the exchange and correlation 

energy in the local density approximation and the generalized gradient approximation has been 

discussed, along with their implementation within SIESTA.  
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Chapter 3 
 

 

 Transport Theory and Green's Function Methods 

 

3.1 Introduction  

 

A scattering theory and Green's function are techniques that can describe the electron transport 

and thermoelectric properties of organic molecule systems sandwiched between two gold 

electrodes. As explained earlier, the coupling strength between the leads and the molecule is 

usually small compared to the intra-electrode or intra-molecule bond strengths, which 

introduces a scattering process from the electrode to the molecule and from the molecule to the 

electrode. To describe these effects, Green's function and scattering theory are considered one 

of the greatest methods that are widely used in studying these systems. This thesis focuses 

mainly on Green's functions combined with the Landauer formalism, to describe electron 

transport properties and how they are related to the transmission coefficient for electrons 

moving between the two leads passing through the scattering region. The following section 

will discuss the scattering theory that calculates the transmission and reflection amplitudes. 

Afterwards, Green's functions are applied to different transport systems to compute the 

transmission coefficient T(E) of electrons of energy E passing through the molecule from one 

electrode to another. A brief overview of the thermoelectric coefficients, which describe the 

voltage difference Δ𝑉 generated due to the temperature difference Δ𝑇 of two electrodes, when 

they are connected to hot and cold reservoirs respectively will be presented in the last section 

of this chapter.  
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3.2 The Landauer Formula 

 

 

 

 

 

 

 

 

 

The Landauer formula [1-2-3] is a theoretical approach to investigate the transport properties 

in ballistic mesoscopic systems and it applies to phase-coherent systems, where the electrical 

flow can be described by a single wave function. It connects a mesoscopic sample's 

conductance to the electrons' transmission characteristics as they go through it. To clear that 

by supposing that we have a mesoscopic scatterer connected to two perfect ballistic leads that 

operate as electron reservoirs as shown in Figure 3.1. 

The current passing of the electrodes is given by   

             

                                                 I = 2e

h
∫ dE T(E)[fleft(E)-fright(E)]
∞

-∞
                                   (3.1) 

where: 

T(E) is the transmission of the electron passing from left to the right leads through the molecule, 

e is the electron charge and,  fleft(E) , fright(E) are Fermi-Dirac distribution functions of the left 

and right reservoirs which is given by: 

     fleft (E) = [e
(E-EF

left)

KBT + 1]

-1

,                fright (E) = [e
(E-EF

right
)

KBT + 1]

-1

                         (3.2) 

Here [T] is the temperature,[KB] is the Boltzmann constant, and [ Ef
left, Ef

right 
] are the Fermi 

energy [16] of the left and right reservoirs, respectively. The electrical conductance can be 

obtained in the limit of the zero voltage and a finite temperature, when the average of the T(E) 

Figure 3.1: A generic scattering region is connected to two ballistic leads with the chemical 

potentials μL and μR  respectively, where 𝒓 is the amplitude of the reflected wave due to an 

incoming wave from the left and 𝒕 is the amplitude of the transmitted wave. 
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over an energy window of width eV that is centered on the Fermi energy. The electrical 

conductance is (G= I
V
)  and at zero voltage and a finite temperature, takes the form:        

                             G = Go  ∫ dE T(E)(-df(E)
dE
)

∞

-∞
                                                                     (3.3) 

                                    

where Go is the quantum of conductance is equal to 2e
2

h
= 77 μs  

-
df(E)

dE
 is the probability distribution of width approximatelyKBT.                                          (3.4) 

The electrical conductance proportional to the transmission coefficient at the limit of zero 

voltage and zero temperature followed by               

                                                G = GoT(EF)                                                                                    (3.5) 

 

3.3 Scattering Matrix 

 

It is crucial to calculate the scattering matrix to understand the transmission coefficient 

appearing in the formulae above. It is defined as the relationship between the incoming waves 

and outgoing waves and how they depend on the energy E of the electron. To determine this, 

we look at the solution of the time-independent Schrödinger equation for an electron in the 

left and right electrodes in one dimension. 

The eigenstate of the electron in the left electrode can be written as: 

                                         ψj = 
A

√vl
eikj + 

B

√vl
Be-ikj                                                            (3.6) 

 

Here, 𝜐𝑙 is the group velocity in the left electrode and, 𝐴 and 𝐵 are the amplitudes of the 

ingoing and outgoing waves travelling from the left to the right, the current per unit energy of 

the eigenstate is as follows: 

                                            Ileft = |A
2|-|B2|                                                                    (3.7) 

 

Now, the same for the right electrode which the eigenstate of the electron in the right 

electrode can be written as:  
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                                        ψj = 
C

√vr
eikrj + 

D

√vr
Be-ikrj                                                      (3.8)                                     

And the current per unit energy is given by: 

                                            Iright = |C
2|-|D2|                                                                 (3.9)        

where C and D are the amplitudes of the two ingoing and outgoing waves travelling to the 

right and left, respectively. 

Since the currents satisfy the relationship between   Ileft = Iright  

                                                   |A|-|B| = |C|-|D|                                                           (3.10) 

Hence,  

                                                 |A2| + |B2| = |C2| + |D2|                                               (3.11)  

Due to the incoming current is equal to outgoing current, the wave functions for both 

electrodes respectively are related to each other. 

                                                    ψj = Ae
ikj + Be-ikj                                                       (3.12) 

                                                   ϕj = Ce
ikj + De-ikj                                                        (3.13) 

Since the scattering matrix can be defined as the relationship between the incoming waves 

and outgoing coefficients and satisfies 

                                           (
B
C
) (
     S11         S12 
   S21         S22

) (
A
D
)                                                      (3.14) 

                                                    

                                               B =  S11 A + S12D                                                               (3.15)      

 

                                               C =  S21 A + S22D                                                              (3.16) 

 

where B and C are the amplitudes of incoming plan waves that carry the electrons passing 

through the scatterer while A and D are the amplitudes of outgoing waves. To gain insight 

into the elements of scattering matrix, two cases would be considered. The first one is A=1 

and D=0, then B= r, and C=t where is the amplitude of the reflected wave due to an incoming 

wave from the left and 𝑡 is the amplitude of the transmitted wave hence, 

                                                           (
B
C
) (
  S11   
 S21   

)                                                            (3.17) 

where   S11and S21 are the reflection (𝑟⃗⃗) and the transmission (𝑡) respectively, associated with 

an incident wave from the left. And the second case is A=0 and D=1, then  
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                                                            (
B
C
) (
  S12   
 S22   

)                                                           (3.18)    

 where   S12and S22 are the reflection (𝑟⃗⃗) and the transmission (𝑡) respectively, associated 

with an incident wave from the right. To sum up, the transmission and reflection coefficients 

are represented as the scattering matrix which given by: 

                                                      𝑆 =(
rE       t

'
E

  tE        t
'
E       

)                                                      (3.19)        

Note that, the matrix S is a unitary matrix satisfying  

 

                                                         ss-1=  ssϯ = 1                                                            (3.20)                                                                             

  That means the current carried by incoming waves is equal to the current carried by 

outgoing waves. Following that  

, the sum of transmission and reflection probabilities is unity. 

|t|2 + |r|2 = 1 

                                                                                                                                           (3.21) 

                                                           T(E) + R(E) = 1 

 

where 𝑡 is the amplitude of transmitted wave functions, 𝑟⃗⃗ is amplitude of reflected waves, 

T(E) is the transmission coefficient and R(E) is the reflection coefficient.  
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3.4 Green’s Functions 

 

 Green's functions are a crucial tool for determining the transmission and reflection coefficients 

of various nanoscale structures. This section will provide a detailed explanation of the methods 

employed, beginning with Green's functions for various nanoscale systems. Thus, the form of 

the Green’s function for a simple one-dimensional discretised lattice will be discussed first and 

then, use Dyson’s equation to demonstrate how to connect Green's functions of these separable 

lattices to construct the Green's function of the entire system.  

 

3.4.1 Green’s Function of a Doubly Infinite Chain 

 

The form of the Green's function of a doubly infinite chain, with on-site energies εo and 

hopping parameters -γ is illustrated in Figure3.2. 

 

 

 

 

Figure 3.2: Representation of tight binding model of one-dimensional infinite chain with on-

site energies εo and couplings -γ. 

 

The Green’s function G(E) that described by the Hamiltonian H is:    

                                                     (EI-H)G(E) = I                                                              (3.22)        

Since  I is the unit matrix. For a finite system we can write the solution of equation (3.22) as  

                                                   G(E) =  (E-H)-1                                                               (3.23)           
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 where Gjpcan be chosen to be the retarded Green's function [4], which describes the system 

response at point 𝑗 to source p . It is useful to use the following notation to emphasise how 

Green's functions and wavefunctions (due to a source) relate to one another. 

                                                          Gjl = ψj
(p)

                                                                               (3.24) 

where Gjp is Green’s matrix element which belong to the pth column and jthrow, ψj
(p)

 is the 

amplitude of column vector ψ(p) on site  j . 

In general, equation (3.23) can be written as 

                                                            ∑ (EI-H)jlGjp(E) = δjp
∞
l                                        (3.25) 

  

or equivalently  

                                                        ∑  Hjl Gjp(E) = EGjp(E)-δjp
∞
l=-∞                              (3.26)                                        

where δjp is Kronecker delta which satisfies.  

                        δjl = 1 if j = p and δjp = 0 if  j ≠ p                                                        (3.27) 

Now, we can substitute equation (3.23) into equation (3.26) we get  

                                                   ∑  Hjl  ψl
(p)
= Eψj

(p)
-δjp

∞
l=-∞                                             (3.28)                                

 This is nearly similar to the Schrodinger equation with the exception of the Kronecker delta 

on the right side. Therefore, equation (3.28) can be written as: 

                                               εo ψj
(p)
-γψj-1

(p)
-γψj+1

(p)
= Eψj

(p)
-δjp                                      (3.29)                       

The solution of the equation (3.29) can be presented as: 

                                                ψj
  (p)

= ϕj = A e
ikj  for    j > p                                                (3.30) 

                                               ψj
(p)
= fj = B e

-ikj  for    j < p                                               (3.31)  

For j = p + 1, equations (3.29) and (3.30) yield 

                                        εo ϕp+1-γψp
(p)
-γϕp+2 = Eϕp+1                                                        (3.32)     
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Since  ϕj satisfies equation (3.28) for all values of  j, we can obtain                               

                                     εo ϕp+1-γ ϕp-γϕp+2 = Eϕp+1                                                      (3.33) 

By comparing equations (3.32) and (3.33), we get 

ψp
(p)
= ϕp                                                          (3.34) 

The same procedure is used for j = p-1, which results in  

ψp
(p)
= fp                                                                           (3.35) 

therefore, equations (3.34) and (3.35) yield the following: 

ψp
(p)
= ϕp = fp                                                                  (3.36)    

A eikp = B e-ikp where  A = C e-ikp and B = C eikp , hence  

ϕj = Ce
ik(j-p) and fj = Ce

-ik(j-p)                                   (3.37) 

where C is a constant. By combining these with equations (3.30) and (3.31) one obtains 

ψj
(p)
= Ceik|j-p|                                                                  (3.38) 

Where  C =
1

2iγ sink
=

1

iℏv(E)
                                                 (3.39) 

where v(E) is the group velocity. Thus, the retarded Green’s function, which describes the 

two outgoing waves from the source p, is given by:  

Gjp(E) = ψj
(p)
=
eik|j-p|

iℏv(E)
                                                      (3.40) 

Therefore, the most general solution is: 

Gjp(E) = ψj
(p)
=
eik|j-p|

iℏv(E)
+ Aeikj + Be-ikj                                 (3.41) 

where A and B are arbitrary constants, choosing A = -
eik(j-p)

iℏv
  and B = -

e-ik(j-p)

iℏv
 , the Green’s 

function is obtained, which is called advanced Green’s function (the complex conjugate of the 

retarded Green’s function). 

Gjp(E) = ψj
(p)
= -

e-ik(E)|j-p|

iℏv(E)
                                                 (3.42) 



35 

 

3.4.2 Green’s Functions of a Semi-Infinite Linear Chain 

 

 

 

 

 

 

Figure 3.3: Representation of tight binding model of semi-infinite linear chain with site 

energies εo and hopping elements -γ, which terminates at site j = l. 

 

Consider the semi-infinite chain with site energies εo and hopping elements -γ, as shown in 

Figure.3.3, in which the chain terminates at site j = l , where l ≥ p. This leads to the following 

boundary condition 

ψl+1
(p)
= 0                                                                  (3.43) 

Fig. 3.3 shows the reflected plane wave e-ikj will be created due to the hitting of the incoming 

plane wave eikj  to the end of the chain. Therefore, the reflected wave will be added to the 

retarded Green’s function 

                                                    Gjp(E) =
eik|j-p|

iℏv(E)
+ B e-ikj                                                  (3.44) 

where                                                      B = -
eik(2l+2-p)

iℏv(E)
 

Hence, the retarded Green’s function takes the form as follow: 

Gjp(E) = ψj
(p)
=
eik|j-p|-e-ik(j+p-2l-2)

iℏv(E)
                                         (3.45) 

On the other hand, if the chain terminates at site l ≤ p, the boundary condition becomes  

ψl-1
(p)
= 0 
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Thus, the Green’s function is: 

Gjp(E) = ψj
(p)
=
eik|j-p|-eik(j+p-2l+2)

iℏv(E)
                                      (3.46) 

The Green’s function on the terminal site j = l  due to the source at site p = l is: 

                                            Gll(E) = -
eik(E)

γ
                                                                       (3.47) 

which is called the surface Green’s function. 

 

3.5 Transport Through an Arbitrary Scattering Region 

 

 

 

 

 

Figure 3.4: Tight-binding representation of an arbitrary scattering region attached to (1-D) 

leads. 

 

To find the most general formula for the transmission coefficient of an arbitrary scattering 

region, I consider the structure shown in Fig. 3.4, which consists of two semi-infinite chains, 

in which the site energies and hopping elements in the left (right) lead are εl(εR) and -γl(-γR), 

respectively. The leads are connected to the scattering region at sites 1 and N by coupling 

-α and -β.  

Our aim is to solve the Schrodinger equation 

                    ∑ Hjlψl = Eψj
∞
l=-∞   

The eigenvector amplitudes  ψj for the left lead, ϕj for the right lead and fj for the scattering 

region, in which the plane waves are normalized to unit current: 



37 

 

ψj =
1

√vL
 [eikLj + re-ikLj ]                                                                      (3.48) 

ϕj =
1

√vR
 [teikRj ]                                                                                   (3.49) 

The Schrodinger equation takes the following form:  

εLψj-γLψj-1-γLψj+1 = Eψj                                     for j < 0                                      (3.50) 

εLψo-γLψ-1-αf1 = Eψo                                           for j = 0                                      (3.51) 

∑ Hjlfl-αψoδj1-βϕN+1δjN = E
N
l=1 fj                      for 1 ≤ j ≤ N                                (3.52)  

 εRϕN+1-γRϕN+2-βfN = EϕN+1                            for  j = N + 1                               (3.53)  

 εRϕj-γRϕj+1-γRϕj-1 = Eϕj                                 for j > N + 1                                 (3.54) 

 

Equation (3.52) could be re-written as: 

                                                                 |f⟩ = g|s⟩                                                                  (3.55) 

where, 

 g = (EI-H)-1 

g is the Green’s function of an isolated scatterer. |s⟩ is the source which is a zero vector with 

non-zero elements in the connection points only (at site j=1 and j = N).   

|f⟩ =

(

 
 

f1
f2
.
.
fN)

 
 

                                            |s⟩ =

(

 
 

-αψo
o
o
o

-βϕN+1)

 
 

 

For the junction shown in Fig. 3.4, |f⟩ has only two non-zero elements due to the source. 

Therefore, equation (3.55) can be written as:  

                                     (f1
fN
) = (

g11 g1N
gN1 gNN

) (
-αψo
-βϕN+1

)                                                       (3.56) 

                                                           g̃-1 (f1
fN
) = (

-αψo
-βϕN+1

)                                                     (3.57) 

where,  g̃-1 is the inverse of the 2 × 2  sub matrix of Green’s function.  
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By using the recurrence relation, we obtain the following: 

     γLψ1 = αf1 

 

      γRϕN = βfN 

From equations (3.48) and (3.49), we find  

                                                             ϕN+1 = ϕNe
ikR                                                   (3.58) 

                                              ψ1 =
1

√vL
[2i sin kL] + ψoe

-ikL                                                   (3.59) 

Hence, 

                                  (
-αψo
-βϕN+1

) = Σ (f1
fN
) + (

α eikL

√vL
[2i sinkL]

0
)                                                (3.60) 

where  

                                                           Σ =  (
ΣL O
O ΣR

)                                                                  

ΣL =
-α2eikL

γL
  ,  ΣR =

-β2eikR

γR
   are the self-energies associated with the left and right leads, 

respectively. Substituting equation (3.60) into equation (3.57) yields 

                                           ((g̃)-1-Σ ) (f1
fN
) = (

α eikL

√vL
[2i sinkL]

0
)                                                (3.61) 

Thus, 

                                                           (f1
fN
) = G(

α eikL

√vL
[2i sinkL]

0
)                                                (3.62) 

where  

                                         G = ((g̃)-1-Σ )-1=(
G11 G12
GN1 GNN

)                                                     (3.63) 

From equation (3.62), 

                 fN = GN1  
αeikL

√vL
 [2i sin kL] =

γR

β
 ϕN                                   (3.64) 

Since   ∅N =
1

√vR
 [teikRN ], ℏvR = 2γR sin kR and ℏvL = 2γL sin kL, I get the following: 
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                  t = iGN1α βe
ikL√

2sinkL

γL
   √

2 sinkR

γR
    e-ikR N                                                       (3.65)       

                T(E) = | t |2 = 4 [
α2 sinkL

γL
] [
β2 sinkR

γR
]  |GN1|

2                                                      (3.66)    

Since                                      |GN1|
2  = |

gN1

∆
|
2

    

where            ∆= 1-g11 ΣL- gNN ΣR + ΣL ΣR[g11  gNN-g1N gN1] 

Thus, the most general formula that used to calculate the transmission probability of any 

scattering region that is connected to different one-dimensional leads [4] as follow: 

 

                                      T(E) = | t |2 = 4 [
α2 sinkL

γL
] [
β2 sinkR

γR
]  |

gN1

∆
|
2

                                (3.67) 

 

3.6 Breit-Wigner Resonances  

 

Development of transport resonances and anti-resonances related to quantum interference [5-

6] is the primary characteristic of electron transport via single molecules and phase-coherent 

nanostructures. It will be helpful to discuss a Breit-Wigner resonance [4-7] to get a general 

knowledge of the features of these resonances. This illustrates how, transmission function 

resonances or anti-resonances are caused by quantum interference between several electron 

channels. The Breit-Wigner formula (the Lorentzian function), which can be used to express 

the constructive interference of electrons travelling through a single molecular orbital takes the 

form:  

 
 

                                                       T(E) =
4 ΓL ΓR

(E-εn)2+(ΓL+ΓR)2
                                                                      (3.68) 

 
 

where T(E) is the transmission coefficient of the electrons, ΓL and ΓR describe the coupling of 

the molecular orbital to the electrodes. It is essential to mention that Γ determines the resonance 
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width, therefore if the couplings to the electrodes α and β are weak, the resonance will become 

very narrow. 

 

 
 

 

 

 

 

 

Figure3.5: The transmission coefficient for a symmetric molecule attached symmetrically to 

identical leads (Γ1 = Γ2). 

 

 

As illustrated in Figure 3.5 the transmission coefficient T(E) reaches its greatest value  T(E) =1 

at E = εnwhen a symmetric molecule is symmetrically connected to identical electrodes ΓL =

ΓR. On the other hand, the transmission function has the value T(εn) =  
4ΓR

ΓL 
 when the junction 

is asymmetric and ΓL ≫ ΓR ). Therefore, asymmetric junctions have a lower on-resonance 

transmission coefficient than symmetric junctions. is important to note that this formula is valid 

when the electron's energy is close to an eigenvalue of the isolated molecule and when the 

molecule's energy level spacing is greater than the resonance's width [4]. 
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3 .5 Thermoelectric Coefficients  

 

The link between heat, current, temperature, and voltage was discovered by Seebeck, Peltier, 

and Thompson in the 19th century [4]. The Thompson and Peltier effects describe how a 

current-carrying conductor cools or heats as a consequence of a temperature difference, 

whereas the Seebeck effect explains how electrical voltage is produced as a result of a 

temperature difference. A more complex process that results in heat and charge variations is 

one where the system's theoretical value of ∆V drops and the difference in temperature is ∆T. 

The Landauer-Büttiker [8] formulas can be generalised to determine the thermoelectric 

coefficients of a device with two terminals. The system is made up of two leads and two 

electron reservoirs, as well as a scattering zone that is connected to each of them. These 

reservoirs are constructed using the chemical potentials μL and μR, temperatures TLand TR, and 

the Fermi distribution function [9]: 

                              fL(E) =  (1 + e
E-μi
KBTL)

-1

                                                                                (3.69) 

 

The number of electrons per unit length, the Fermi distribution, the group velocity, and the 

transmission coefficient of the scattering zone may all be used to represent the right moving 

charge current of a certain k-state issuing from the left reservoir. 

                                      Ik
+  =  neνᵍ (E(k))T(E(k))ƒL(E(k))                                                         (3.70) 

the total charge from right moving states can be found by adding up all positive k states and 

then integrating them into an integral form where 𝑛 = 1/𝐿 for the electron density and 
1

ȟ
 
dE(k)

dk
 

  

         Ik
+ = ∑ e 

1

L

1

ȟ
 
dE(k)

dkk  T(E(k))ƒL(E(k)) = ∫
2e 

ȟ

+∞

-∞
T(E)ƒL(E)dE                                         (3.71) 

Similar results are obtained for the left moving states as follows: 

                                      Ik
- = ∫

2e 

ȟ

+∞

-∞
T(E)ƒR(E)dE                                                                          (3.72)                         
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As a result, the whole right-moving current which is denoted by the Landauer-Bttiker formula. 

may be expressed as 

                 I = I+-  I- =
2e 

ȟ
∫ T
+∞

-∞
(E)ƒL(E)-ƒR(E)dE                                                           (3.73)  

                                    

By starting with the relation ǫ = Enνᵍ rather than = neνᵍ  an analogous derivation for the heat 

current (or energy current) of the same system may be supplied which is the result can be 

obtained as follows 

 

         ǫ = ǫ+-ǫ- =
2e 

ȟ
∫ T
+∞

-∞
(E) (E- μL)ƒL(E)-(E- μR)ƒR(E)dE                                           (3.74)  

 

In the linear response regime, Buttiker, Imry, Landauer, et al. [10–11] connect the electric 

current I and heat current (Q) passing through a system to the voltage difference and 

temperature difference. Thus, currents, temperature, and potential differences are all connected 

by the thermoelectric coefficients G, L,M, and K [4 and 12-13] 

                                                    ( I
Ǫ
) = (G

M
  L
K
)(∆V
∆T
)                                                          (3.75) 

 

The Onsager relation describes how the thermoelectric coefficientsL and M are related when 

there is no magnetic field. 

                                                       M = -L T                                                                      (3.76) 

 

where T is the temperature. Tthe current relations can be expressed in the rearranging of these 

equations using the measurable thermoelectric coefficients, electrical resistance R = 1/G 

,thermopower S = ∆V/∆T , Peltier coefficient, and the thermal constant which takes the 

following form: 
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                            (∆V
Ǫ̇
) = (

1

G
M

G

          -
K-

L

G
LM

G

) ( 1
∆T
) = (R  

Π 
  S
-K
)( 1
∆T
)                                          (3.77)  

The thermopower is defined as the potential reduction brought on by a temperature difference 

in the absence of an electrical current: 

                                    S = (-∆V
∆T
)
I=0
=

L

G`
                                                                           (3.78)          

The Peltier coefficient is defined as the heat transmitted entirely owing to the charge current in 

the absence of a temperature differential: 

                                     Π = (Ǫ̇
I
)
∆T=0

=
M

G
= -S T                                                            (3.79) 

Finally, thermal conductance k is defined as the heat current resulting from a temperature drop 

in the absence of an electric current: 

                                     k =  - ( Ǫ̇
∆T
)
I=0
= - (1 +

S2GT

k
)                                                      (3.80)  

Determining S or Π provides insight on how effectively the device will function as a current-

driven cooling or heat-driven current generator. 

Additionally, these measurable thermoelectric coefficients may be used to define the 

thermoelectric figure of merit ZT as follows: [14-15] 

                                                    ZT =  
S2GT

k
                                                                       (3.81)  

In classical electronics ZT can be presented by calculating the greatest induced temperature 

differential brought on by an electrical current when Joule heating is present, by taking a 

current-carrying conductor is positioned between two heat baths, TLand TR and two electrical 

potentials VL and VR respectively. 

The thermoelectric figure of merit can be computed by determining the conductor's highest 

induced temperature difference caused by an electrical current. By defining Ǫ̇ as the heat gain 

from the bath L to R, thus, we can get from equation (3.74) 

                                    Ǫ̇ = ΠI-k∆T                                                                                    (3.82)  
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As a result of this heat transfer, the right bath will heat up, while the left bath cools as well as 

∆T will be increasing. It is possible to determine the total amount of Joule heating by using the 

formula Ǫ̇
Ј
 =  RI2 which is proportional to electrical resistance and current squared. 

Additionally, this Joule heating influences the temperature differential produced by heat 

transfer thus, in the steady state case: 

                                      Π I-k∆T =
RI2

2
                                                                               (3.83) 

where 
R 

2
  is defined as the sum of two parallel resistances (internal and external resistance) 

hence, the temperature difference can be written as: 

                          ∆T =
1

k
 ( Π I-

RI2

2
    )                                                                                 (3.84) 

This formula demonstrates how the current affects the temperature difference. The derivative 

of equation (3.83) with respect to the electric current is used to determine the greatest 

temperature difference: 

                                        
∂∆T

∂I
=
Π-I R

k
= 0                                                                            (3.85)  

The maximum temperature difference is obtained by entering I =  Π /R and substituting 

equation (3.78) into (3.84) which is giving a dimensionless number that can be used to 

describe a molecular device's 'efficiency as follows:  

                                         (∆T)max =
Π2

2kR
=
S2T2 G

2k
                                                             (3.86) 

 

                                         
(∆T)max

T
=
S2T2 G

2k
=
1

2
z                                                                (3.87) 
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3.6 Conclusion    

                                                

In conclusion, a single particle transport theory was described, providing the primary numerical 

tool for researching charge transfer across molecules. There was a description of the theoretical 

foundations for computing electronic transport, including the investigation of one-dimensional 

scattering theory and Green's functions for various transport regimes. Additionally, a simple 

derivation of the Landauer formula was provided.  

It explained how to compute the transmission coefficient in a molecular junction for electrons 

moving between two electrodes. Finally, formulae for thermoelectric coefficients were 

presented.  
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Chapter 4 
 

 

Transport and Thermoelectric Properties of Multicomponent Single Molecules in Gold-

Gold Junctions 

 

 

 

This chapter provides in-depth theoretical analyses of several multicomponent single 

molecules using the theoretical techniques that are described in chapters 2 and 3. The aim of 

this chapter is to demonstrate a strategy for utilizing a multi-component method to fabricate a 

conjugated molecular backbone on gold and graphene substrates separated with equal distance, 

using ZnTPP as a footprint and compare it with the amine-based non-conjugated junctions with 

similar tunneling lengths. Additionally, this chapter examines the change in transport 

properties when a molecular monolayer or molecule/ZnTPP bilayer is inserted into gold-gold 

(Au-Au) and gold-graphene (Gr-Au) junctions for eight different mono or bilayers.   

The monolayer and bilayer molecules have different anchor groups including direct carbon 

contact (C) and a pyridyl (Py) contact.  To investigate these molecular systems, first I am going 

to explore their transport properties in Au-Au junctions and then in chapter 5, I shall repeat the 

same simulations in Au-Gr junctions and finally make a comparison between the two 

junctions.  

 

4.1 Introduction 

 

Molecular electronics, using molecules as building blocks in integrated circuits [1], promise to 

deliver new generation transistors [2-3], sensors [4], memories [5] and thermoelectric energy 

harvesters [6-7], due to their nanometre scale and special functionality. Electric and 

thermoelectric properties molecular junction, either in single molecules [8-9] or self-assembled 

monolayers (SAMs) scale [10-11], have been intensively studied in the past few years. Most 
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studies were performed on noble metallic substrates such as Au, Ag, Pt, … etc. Organic 

molecular backbones terminated with designed anchor groups, include thiolate [12-13], 

pyridine [14-15], fullerene [16], large π systems [17-18], etc. spontaneously form 

metal/molecule junctions on the substrate. The coupling strength between anchor groups and 

the substrate significantly determines the quantum transport property of the junction [6-11-

19]. Therefore, studies of heat and charge transfer in such single-molecule junctions are 

fundamentally very important, because they shed more light on the relationship between 

junction structure and their transport properties. It is important to note that single-molecule-

junction thermoelectric qualities can be adjusted by modifying their transport characteristics, 

such as lengthening the molecule [4-6] and modifying the molecule-electrode coupling shape. 

 

4.2 Studied Molecules. 

 

In this chapter, I will investigate 8 different molecules terminated with asymmetric anchor groups as 

shown in figure 4.1 and will consider both monolayer and bilayer junctions. For the monolayer junctions, 

I consider two cases.: Case-1 (panel a), which involves three alkyl chains terminated with asymmetric 

anchor groups: amine (NH2 ) , and direct carbon contact (CH2 ). These are molecule 1(C8  ), molecule 2 

(C12  ), and molecule 3 (C18 ) ,which are differentiated by their number of CH2 units. Case -2 (panel b) 

comprises a zinc tetraphenyl porphyrin (ZnTPP) molecule 4, a small graphene -like molecule (Gr) 5, and 

pyridine-terminated molecules 6, 7 and 8 (molecule 6 consists of 2 pyridine rings, molecule 7 contains 

two pyridine rings and one phenyl ring, and molecule 8 which has 2 phenyl rings and two pyridine rings).  

While for the bilayer junctions shown in Figure 4.3, I shall choose zinc tetraphenyl porphyrin (ZnTPP) 

combined with pyridyl backbone derivatives 6, 7, and 8 were attached to the ZnTPP layer via a zinc-

pyridine coordinative bond). The pyridyl-terminated backbones stand perpendicular to the plane of the 

ZnTPP and the substrate, because of the pyridyl lone pair coordinates with the Zn, as shown in Figure 4.3. 
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Figure 4.1: Chemical structures of studied monolayer molecules. (a): 1(C8 ), 2 ( C12  ), and 3  

(C18  ) are alkyl chains terminated with different anchor groups involving amine and direct 

carbon, while (b): 4 is a Zinc Tetraphenyl Porphyrin (ZnTPP), 5 is a graphene sheet-based 

molecule, and 6,7, and 8 are pyridine backbone with pyridine anchors from both ends (molecule 

6 which consists of 2 pyridine rings, molecule 7 contains pyridine rings and one benzene and 

molecule 8 has 2 benzene rings and two pyridine rings.  
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4.3 Optimised DFT Structures of Isolated Molecular-Scale Structures 

 

The optimised geometry and ground state Hamiltonian of each structure in this chapter were 

obtained using the density functional code SIESTA [21], which has been presented in detail in 

chapter 2. The optimum geometries of the isolated molecules 1-8 are shown in Figure 4.2 and 

bilayers 4/6, 4/7 and 4/8 are shown in Figure 4.3 and  were obtained by relaxing the molecules 

until all forces on the atoms were less than 0.01 eV / Å.[22-23] A double-zeta plus polarization 

orbital basis set, norm-conserving pseudopotentials, and an energy cut-off of 250 Rydbergs 

defining the real space grid were used and the generalised gradient approximation (GGA) [22-

24] was chosen as the exchange-correlation functional. 

 

4.3. Relaxed structures of isolated Molecules  
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Figure 4.2:  Fully relaxed isolated monolayer molecules. (a): 1-3 are monolayer molecules 

that consist of asymmetric alkyl chains of different lengths 8-18 carbon atoms with different 

anchor groups involving (NH2 ) and ( CH2 ). (b): 4 Zinc Tetraphenyl Porphyrin (ZnTPP), 5 

graphene sheet-based molecules (Gr), and 6,7, and 8 are pyridine backbones with pyridine 

anchors both end which are component bilayer.  
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4.3.2 Relaxed structures of bilayer Compounds 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: 4/6, 4/7, and 4/8 are molecular structures assembled by combining the ZnTPP with 

6, 7and 8 (Fig. 4.2 (b)), and then allowing the system to become fully relaxed to form bilayers.  

4.4 Frontier Molecular Orbitals 

 

As a first step of understanding the electronic properties of the structures shown in Figures 4.1 

and 4.2, the methods introduced in Chapter 2 have been employed. First, the frontier orbitals 

were investigated for all the gas-phase molecules.  Their highest occupied molecular orbitals 

(HOMO) and lowest unoccupied orbitals (LUMO), in addition to (HOMO+1), and (LUMO-

1), along with their energies are investigated. For the molecules 1-8 (see Figure 4.2) and the 

bilayers 4/6, 4/7, and 4/8 (see Figure 4.3) , these are shown in Figures 4.4-4.14, where blue and 

red colours represent the positive and negative orbital amplitudes. Note that, the alkane chains 

are localized on the amine anchor group as well as bilayers 4/6, 4/7, and 4/8 are localized on the 

(ZnTPP) core. A localized wave function means that the probability of finding the electron 

outside of that specific location or region of space is essentially zero. While the pyridine 

backbone molecule 8 is delocalized across the structure. A delocalized wave function means 

that there is a non-zero probability of finding the electron in a wide range of locations, rather 

than just in a single, well-defined location.  

 

 
4/7 4/6 4/5 



54 

 

 

 

4.4.1.1 Molecule 1 
 

 

 

 

 
 

 

        
 

                                                                               
 

 

 

 

 

 

 

Figure 4.4: Wave function for monolayer 1 (C8). Top panel: fully optimised geometry of 1. 

Lower panel: HOMO, LUMO, HOMO-1, LUMO+1 levels of monolayer 1, along with their 

energies. 
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4.4.1.2 Molecule 2 

 

 
 

 
 

 

 

 

 
       

 

  

 

 

 

 

Figure 4.5: Wave function for monolayer 2 (C12). Top panel: fully optimised geometry of 2. 

Lower panel: HOMO, LUMO, HOMO-1, LUMO+1 levels of monolayer 2, along with their 

energies. 
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4.4.1.3 Molecule 3 

 

 

 

 
 

 

 

Figure 4.6: Wave function for monolayer 3 (C18). Top panel: fully optimised geometry of 3. 

Lower panel: HOMO, LUMO, HOMO-1, LUMO+1 levels of monolayer 3, along with their 

energies.  
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4.4.1.4 Molecule 4 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Wave function for monolayer 4 (ZnTPP). Top panel: fully optimised geometry of 

4. Lower panel: HOMO, LUMO, HOMO-1, LUMO+1 levels of monolayer 4, along with their 

energies.  
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4.4.1.5 Molecule 5 

 

                 

 

 

 

 

 

 

 

 

 
        

                       

 

 

 

 

 

 
     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Wave function for monolayer 5. Top panel: fully optimised geometry of 5. Lower 

panel: HOMO, LUMO, HOMO-1, LUMO+1 levels of monolayer 5, along with their energies.  

 

 

 

 

 

 

 

 

 

HOMO-1=-4.30 eV 

LUMO=-2.83 eV HOMO=-4.63 eV 

LUMO+1=-2.60eV 

   EF=-3.22 eV 
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4.4.1.6 Molecule 6 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Wave function for monolayer 6. Top panel: fully optimised geometry of 6. Lower 

panel: HOMO, LUMO, HOMO-1, LUMO+1 levels of monolayer 6, along with their energies.  
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4.4.1.7 Molecule 7 

 

 

 
            

 

 
 

                      

 

 

 

 

 

 

 

 

 

Figure 4.10: Wave function for monolayer 7. Top panel: fully optimised geometry of 7. Lower 

panel: HOMO, LUMO, HOMO-1, LUMO+1 levels of monolayer 7, along with their energies. 
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4.4.1.8 Molecule 8 

 
    

                      

 

 

 

 

 

 

 

 

 

Figure 4.11: Wave function for monolayer 8. Top panel: fully optimised geometry of 8. 

Lower panel: HOMO, LUMO, HOMO-1, LUMO+1 levels of monolayer 8, along with their 

energies.  

 

4.4.2 Bilayer Compounds 

  

 

The next step is to calculate the wave functions of the bilayers, which are formed from two 

molecules, mainly ZnTTP (4) combined with 6, 7, and 8, as follows: 
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4.4.2.1 Bilayer 1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: Wave function for bilayer 4/6. Top panel: fully optimised geometry of 4/6. 

Lower panel: HOMO, LUMO, HOMO-1, LUMO+1 levels of bilayer 4/6, along with their 

energies.  
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4.4.2.2 Bilayer 2 

 

                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13: Wave function for bilayer 4/7. Top panel: fully optimised geometry of 4/7. 

Lower panel: HOMO, LUMO, HOMO-1, LUMO+1 levels of bilayer 4/7, along with their 

energies.   
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4.4.2.3 Bilayer 3 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14: Wave function for bilayer 4/8. Top panel: fully optimised geometry of 4/8. Lower 

panel: HOMO, LUMO, HOMO-1, LUMO+1 levels of bilayer 4/8, along with their energies.   
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4.5. Binding Energies using the Counterpoise Method 

 

As mentioned in chapter 2, when computing binding energies as a function of some parameter, 

such as the distance between two components of a junction, a major problem is the interaction 

energies in neighboring atoms due to the overlap of their basic functions. This effect, which is 

called the basis set superposition error (BSSE) [25-26], increases as the atoms orientate 

themselves closer, thereby creating an effectively varying basis set as the parameter changes. 

These errors can be removed by applying the counterpoise correction as it is described in 

section 2.7.3 of chapter 2. If A and B are two-components of a junction, their binding energy 

is described as follows, 

                                                             ∆𝐸(𝐴𝐵) =  𝐸𝐴𝐵 − (𝐸𝐴 + 𝐸𝐵)                                (4.1)            

 

where 𝐸𝐴𝐵is the total energy for the dimer systems A and B, 𝐸𝐴 and 𝐸𝐵 are the energies of 

the isolated systems A and B. To remove errors, the same total basis set is used in each of the 

three calculations by including ‘ghost’ states; (basis set functions that have no electrons or 

protons). The following equation captures this technique:      

 

                                                   ∆𝐸(𝐴𝐵) = 𝐸𝐴𝐵
𝐴𝐵 − (𝐸𝐴

𝐴𝐵 + 𝐸𝐵
𝐴𝐵)                              (4.2)     

 

Where 𝐸𝐴
𝐴𝐵 and 𝐸𝐵

𝐴𝐵 are the energies of systems 𝐴 and 𝐵 evaluated using the same basis of 

the dimer AB.  
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4.5.1 Binding Energies of Bilayer Compounds  

 

In this section, the binding energies of bilayer structures are computed to find the optimum 

distance between the molecular components. Figure 4.15 shows the binding energy of the 

bilayer molecule ZnTTP (Py -ZnTPP), as a function of the separation between the two 

molecular components. The optimum distance corresponds to the binding-energy minimum 

and is found to be 2.3 Å, at approximately 0.5 eV. It should be noted that bilayers 4/6, 4/7 and 

4/8 all have approximately the same optimum binding energy and distance as in all case the 

pyridyl binds to Zn atom. 

 

 

Figure 4.15: Right panel: represents pyridyl-based molecule with 2Py anchors and (Zn-

TPP). Left panel: Binding energy versus distance plot of (Py-Zn-TTP). The equilibrium 

distance (i.e. the minimum of the binding energy curve) is found to be approximately 2.3 Å, 

for py-Zn. Key: C = grey, H = white, N = blue, Zn = light blue. 
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4.5.2 Binding Energies on a Gold Surface 

 

In this section, the optimum distances between the Au electrode and three different molecules 

shown in Figures 4.16-4.18 were calculated. Figure 4.16 shows that the optimum distance 

between the Au electrode and CH2 terminated molecule 2 is found to be about 2.3 Å, at 

approximately -1.0 eV. The CH2 anchor possesses a strong bond to the under-coordinated gold 

electrode compared to other anchors such as an amine. Figure 4.17 indicates that the optimum 

distance between the Au electrode and pyridyl-terminated molecule 8 is found to be about 2.3 

Å, at approximately -0.4 eV. The Py anchor possesses a weaker bond to an under-coordinated 

gold-electrode atom compared to other anchors, such as direct carbon. Figure 4.18 

demonstrates the optimum distance between the ZnTTP molecule 4 and an under-coordinated 

gold atom to be around 2.9 Å, at approximately -0.5 eV. 

 

 

 

 

 

 

 

Figure 4.16: Right panel: representation a molecule 2 terminated with a direct carbon 

anchor on a gold tip. Left panel: Binding energy of C8 alkyl chain molecule to gold as a 

function of molecule-contact distance. The equilibrium distance (i.e. the minimum of the 

binding energy curve) is found to be approximately 2.3 Å, for Au-direct carbon. Key: C = 

grey, H = white, N = blue, Au = dark yellow. 
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Figure 4.17: Right panel: represents molecule 8 binding to a gold ad-atom. Left panel: 

Binding energy of molecule 8 to gold as a function of molecule-contact distance. The 

equilibrium distance (i.e. the minimum of the binding energy curve) is found to be 

approximately 2.3 Å, for Au-Py. (Key: C = grey, H = white, N = blue, Au = dark yellow. 

   

 

 

 

 

 

Figure 4.18: Right panel: represents molecule 4 binding to gold ad-atom. Left panel: Binding 

energy of molecule 4 to gold as a function of molecule-contact distance. The equilibrium 

distance (i.e. the minimum of the binding energy curve) is found to be approximately 2.9 Å, 

for Au-Zn. Key: C = grey, H = white, N = blue, Zn = light blue, Au = dark yellow. 

 

 

 

 



69 

 

Table 4.1 summaries the optimum separation distances d and binding energies (B.E.) of 4 

different structures. The rows labelled Au-CH2, Au-Py, and Au-ZnTTP show the optimum 

separation distances and their corresponding binding energies of the monolayer/ bilayers bound 

to an Au substrate, while the row labelled Py-ZnTTP shows the optimum separation distance 

and its corresponding binding energy of the bilayer in the absence of a Au surface. Based on 

these calculations, the CH2 anchor possesses the stronger bond to the under-coordinated gold 

electrode compared to other anchors, while the Py anchor has the weakest bond. 

 

 

Table 4.1: Summarizes binding energies (B.E), and optimum distances (𝑑), calculations for 

mono/bilayers that bind to under-coordinated gold electrode with different anchor groups. 

 

 

 

Anchor groups  
𝑑 (Å) 

 

B.E (eV) 

Au-CH2 2.3 1.00 

Au-Py 2.3 0.40 

Au-ZnTTP 2.9 0.50 

ZnTTP-Py 2.3 0.50 
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4.6 Optimised DFT Structures of Molecular Junctions 

 

Using the optimized structures and geometries for the compounds obtained as described above, 

I again employed the SIESTA code (for more detail see section 2.7 in chapter 2) to calculate 

self-consistent optimized geometries, ground state Hamiltonians and overlap matrix elements 

for the gold-molecule-gold junction. After relaxation, I calculated the electrical conductance 

and Seebeck coefficient. for alkyl chains 1-3 and phenyl ring derivatives 6-8 with different 

anchor groups including pyridyl, CH2 , NH2  and large anchors such as ZnTTP. These single-

molecules or bilayer molecules are sandwiched between two gold electrodes first, then between 

gold and single-layer graphene sheet (SLG), which I will discuss thoroughly in chapter 5. 

 

 

 

 

 

 

 

4.6.1 Simulations of Au-single-molecule-Au junctions.   

 

In this section, gold-optimised molecule-gold junctions involving 1, 2, 3 (see panel A), and 4, 

5 (panel B) are shown in Figure 4.19. 
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Figure 4.19: A schematic figure of the Au-mono-Au junctions. Both contacts are Au 

electrodes. A: a-c are alkyl chains Au-1-3-Au monolayer junctions. While B: d-e are ZnTPP 

and Gr involving Au-4-Au, and A-5-Au respectively. 

 

 

 

 

A 
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4.6.2 Simulations of Au-single-molecule-Au junctions.  

In this section optimized gold-bilayer-gold junctions formed from the 4/6, 4/7, and 4/8 bilayers 

are shown in f-h of Figure 4.20. 

 

 

 

 

 

 

 

Figure 4.20: A schematic figure of the Au-bilayer-Au junctions. Both contacts are Au 

electrodes. f: Au-4/6-Au, g: Au-4/7-Au, h: Au-4/8-Au junctions. 

4.7 Electric Transport Simulations  

 

As a first step in carrying out transport calculations, the ground state Hamiltonian and 

optimized geometry of each compound were obtained using SIESTA. The generalised gradient 

approximation (GGA) exchange-correlation functional was used along with double zeta 

polarized (DZP) basis sets and the norm-conserving pseudopotentials. The real space grid was 

defined by a plane wave cut-off of 250 Ry. The geometry optimization was carried out to a 

force tolerance of 0.01 eV/Å. This process was repeated for a unit cell with the molecule placed 

between two electrodes, using the optimized distances between electrodes and the anchor 

groups shown in Table 4.1. From the ground state Hamiltonian, the transmission coefficient 

𝑇(𝐸), and the room temperature electrical conductance 𝐺 were obtained, as described in the 

sections below.   
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4.7.1.1Transport Simulations of Alkyl Chains Monolayers Au-1-3-Au  

 

The transmission coefficient curves 𝑇(𝐸) were calculated for the single-molecule junctions 

using the Gollum transport code [27]. For alkyl chains in Au-1-3-Au junctions, Figure 4.21 

demonstrates the relationship between the transmission coefficient and the length of alkane 

chains. As expected, the conductance decreases exponentially with increasing chain length 

from 8 to 18 - CH2 units. The amount of the decrease in the conductance value is approximately 

constant and as follows log10
𝐺

𝐺0
= -4, -6, and -8. The transmission coefficients for the alkyl 

chains are shown in Figure 4.21. 

 

 

 

         

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21: Top panel: represents alkyl chains monolayer junctions. Bottom panel: 

transmission coefficients T(E) curves of Au-1-3-Au junctions against electron energy E. 

Monolayers 1-3, black, blue, and red curves respectively. 

 

 

Au-1 

Au-2 

Au-3 
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To test my theoretical simulations, I shall compare the DFT calculation against the experiment 

STM measurements. I managed to find two different experimental measurements of the alkyl 

chain C8 and C12   as shown in table 4.2. I refer to them as STM-1 [29], STM-2 [30]. I could not 

find STM measurements for alkyl chain C18. 

Table 4.2 shows how DFT simulations predict the conductance trends of these alkane chains. 

Additionally, it also demonstrates how the experimental measurements vary from one STM 

device to another due to many parameters, for instance, solvent, temperature and so on.  

 

Table 4.2. Conductance of two STM measurements and my DFT simulations of linear alkyl 

chains. Simulations are taken at the DFT-predicted Fermi energy. 

Alkyl chain DFT conductance 

𝑙𝑜𝑔(𝐺/𝐺°) 

STM-1 

conductance 

𝑙𝑜𝑔(𝐺/𝐺°) [29] 

STM-2 

conductance 

𝑙𝑜𝑔(𝐺/𝐺°) [39] 

C8 -4.0 [this work] -4.0 [29] -5.0 [30] 

C12 -6.0 [this work] -5.0 [29] -6.0 [30] 

C18 -8.0 [this work] - - 
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4.8.1.2 Transport Simulation of a graphene-like molecule in an Au-Au Junction 

 

In this section, I shall calculate the transmission coefficient of Au-5-Au which is a graphene-

like molecule attached to the gold electrodes on both sides as shown in the top panel of Figure 

4.22. The Fermi energy is considered approximately near the HOMO resonance thus, the 

charge transfer in the graphene sheet molecule is HOMO dominated. The value of the 

conductance is about log10
𝐺

𝐺0
=0.3 for the Au-5-Au 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22: Top panel:  Schematic illustrations of molecular junction for Au-5-Au. Bottom 

panel: transmission coefficient 𝑇(𝐸) of molecule 5 as a function of energy. 
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Au/5 
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4.7.2 Spin-dependent Transport Calculations of single-molecule/bilayer Molecular 

Junctions 

 

Spin-polarised calculations based on the density functional theory play a critical role in studying the 

structure-property relation in these metallic-molecular junctions based on their electronic structure [31]. 

Typically, the electron spin and the electronic orbital current are usually linked when an external magnetic 

field is applied to an electronic system [32]. Additionally, examining the effects of electron-vibration 

interactions on the spin-selective transport in dsDNA and enhancing the spin polarization to introduce a 

number of unique spin-splitting transmission modes in the HOMO-LUMO gap [33]. Here, I shall first 

calculate the spin-polarised transport for the monolayer Zinc tetraphenyl porphyrin (ZnTPP), molecule 4. 

Then I shall connect the Porphyrin (ZnTPP), to the pyridine-based molecules 6, 7, 8 and finally I shall I 

connected them to gold (111) electrodes, as shown in the top panel of Figures 4.23-4.26. The generalised 

gradient approximation (GGA) was combined with the transport code Gollum for these simulations. For 

all these junctions the LUMO resonance is located near the Fermi energy, which reveals these charge 

transport to be LUMO dominated as expected owing to the transmission of charge from the metal atom 

to the other molecules in the junctions. Spin up and spin down for these junctions are completely identical. 

The conductance values are  log10
𝐺

𝐺0
= -3.0, -5.0, -6.0, and -7.0 respectively as illustrated in the bottom 

panels of Figures 4.23-4.26. 
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Figure 4.23: Top panel:  Schematic illustrations of monolayer molecular junction for Au/4/Au. 

Bottom panel: Spin-polarised transmission coefficients, 𝑇(𝐸) =
𝑇𝑢𝑝(𝐸)+𝑇𝑑𝑜𝑤𝑛(𝐸)

2
, of Au/4/Au 

junctions against electron energy E. Monolayer 4, dark and light green curves represent spin 

up and down respectively. 
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Figure 4.24: Top panel:  Schematic illustrations of bilayer molecular junction for Au-4/6-Au. 

Bottom panel: Spin-polarised transmission coefficients, 𝑇(𝐸) =
𝑇𝑢𝑝(𝐸)+𝑇𝑑𝑜𝑤𝑛(𝐸)

2
, of Au-4/6-

Au junctions against electron energy E. bilayer 1, dark and light purple curves represent spin 

up and down respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Au/4/6 

Au/4/6 spin up 

Au/4/6 spin down 
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Figure 4.25: Top panel: Schematic illustrations of bilayer molecular junction for Au-4/7-Au. 

Bottom panel Spin-polarised transmission coefficients, 𝑇(𝐸) =
𝑇𝑢𝑝(𝐸)+𝑇𝑑𝑜𝑤𝑛(𝐸)

2
, of Au-4/7-Au 

junctions against electron energy E. bilayer 2, dark and light grey curves represent spin up and 

down respectively.  

 

 

 

 

 

 

Au/4/7 

Au/4/7 spin up 

Au/4/7 spin down 
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Figure 4.26: Top panel: Schematic illustrations of bilayer molecular junction for Au-4/8-Au. 

Bottom panel: Spin-polarised transmission coefficients, 𝑇(𝐸) =
𝑇𝑢𝑝(𝐸)+𝑇𝑑𝑜𝑤𝑛(𝐸)

2
, of Au-4/8-

Au junctions against electron energy E. bilayer 3, dark and light blue curves represent spin up 

and down respectively. 

 

 

 

 

 

 

 

 

Au/4/8 

Au/4/8 spin up 

Au/4/8 spin down 
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4.8 Thermopower Calculations 

 
After computing the electronic transmission coefficient for the single molecule/bilayer 

junctions, I now compute their Seebeck coefficients  𝑆 as described in chapter 3.  To calculate 

the thermopower of the studied molecular junctions, it is useful to introduce the non-

normalized probability distribution 𝑃(𝐸) defined by 

where 𝑓(𝐸) is the Fermi-Dirac function and 𝑇(𝐸) is the transmission coefficients and whose 

moments 𝐿𝑖 are denoted as follows 

where 𝐸𝐹 is the Fermi energy. The Seebeck coefficient, 𝑆, is then given by  

where 𝑒 is the electronic charge. 

 

The formula evaluated by Gollum code is 

 

 𝑆𝑒(𝑇) =
−1

𝑒𝑇

𝐿1

L0
    (4.5) 

where     𝐿𝑖 = ∫𝑑𝐸𝑃(𝐸)(𝐸 − 𝐸𝐹)
𝑖 

 

and                                                          𝑃(𝐸) = −𝑇(𝐸)
𝑑𝑓(𝐸)

𝑑𝐸
 

For bilayers, 1 use expression, 𝑇(𝐸) =
𝑇𝑢𝑝(𝐸)+𝑇𝑑𝑜𝑤𝑛(𝐸)

2
, where 𝑇𝑢𝑝(𝐸) and 𝑇𝑑𝑜𝑤𝑛(𝐸) are 

transmission coefficients for the separate spin channels and it is assumed that there is no spin-

flip scattering.  This equation describes the linear response regime and is consistent with 

 𝑃(𝐸) = −𝑇(𝐸)
𝑑𝑓(𝐸)

𝑑𝐸
  (4.2) 

 𝐿𝑖 = ∫𝑑𝐸𝑃(𝐸)(𝐸 − 𝐸𝐹)
𝑖  (4.3) 

 𝑆(𝑇) = −
1

𝑒𝑇

𝐿1
𝐿0

   (4.4) 
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Onsager reciprocal relations. It is apparent that the Seebeck coefficient is proportional to the 

slope of the logarithm of the transmission coefficient at the Fermi level. Therefore, by raising 

the slope of 𝑙𝑜𝑔𝑇(𝐸) near 𝐸 = 𝐸𝐹  S is improved. In general, depending on the direction of the 

slope of the transmission function at the Fermi energy 𝐸𝐹 , the value of S can either be positive 

or negative. This originates from the structure of the charge carriers: S is positive for transport 

that is hole-dominated and negative for transport that is electron-dominated [34-35]. To 

calculate the Seebeck coefficient for the single molecule/bilayer junctions as shown in Figures 

4.27-4.32 I used DFT combined with the quantum transport code Gollum. I shall calculate the 

Seebeck coefficient in two different junctions including Au-Au and then, SLG-Au which will 

be investigated in chapter 5. 

 

 

4.8.1.1 Thermopower Simulations for Monolayer alkyl Chains in Au-Au Junctions 

 

As previously mentioned, the sign and value of the Seebeck coefficient 𝑆 are determined by 

the slope of the transmission coefficient T(E). Figure 4.27 shows the Seebeck coefficients 𝑆 of 

single alkyl chains evaluated at room temperature involving 1, 2, 3, where 𝐸𝐹 is placed at 

approximately the middle of the HOMO-LUMO gap. The sign of 𝑆 is found to be a negative 

for the Au-1-Au, Au-2-Au. And Au-3-Au junctions are -.0.5, -3.0, and -1.6 μV/K respectively 

as shown in Figure 4.27. 
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Figure 4.27: Top panel: Schematic illustrations of monolayer molecular junctions for the alkyl 

chains Au-1-Au, Au-2-Au, and Au-3-Au. Bottom panel: Seebeck coefficient 𝑆 as a function 

of Fermi energy of three alkyl chain.  Seebeck coefficients of monolayers 1, 2 and 3, black, 

blue and red curves respectively.   
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4.8.1.2 Thermopower Simulations for Graphene-like molecule in a Au-Au Junction 

 
 
Figure 4.28 illustrates the Au-5-Au graphene-like molecule sandwiched between two gold electrodes. 

Due to the fact that this junction yields a transmission coefficient that is a HOMO-dominated, the 

Seebeck sign is positive at the DFT-predicted Fermi E-EF
DFT=0 eV 

The value of  𝑆  for the Au-5-Au is found to be 4.0 μV/K. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.28: Top panel: Schematic illustrations of Gr molecular junction Au-5-Au. Bottom 

panel: Seebeck coefficient S as a function of Fermi energy of graphene sheet. Seebeck 

coefficient of monolayer 5 (Gr), orange curve.   
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4.8.2 Spin-polarised Thermopower Calculations of mono/bilayer Molecular Junctions 

In this section, spin polarised calculations were carried out, due to the presence of a metal atom 

in the porphyrin molecule. Since these molecules are LUMO-dominated, the Seebeck 

coefficient for mono/bilayer molecules 4, 4/6, 4/7, and 4/8   is discovered to be negative at the 

DFT-predicted Fermi E-EF
DFT=0 eV as shown in figures 4.29-4.32. The values of 𝑆 are – 

(8.0) 𝜇 𝑉 𝐾⁄  for Au-4-Au, while for the Au-4/6-Au, Au-4/7-Au, and Au-4/8-Au junctions, they 

are – (225+227) ,  – (233+247)  and – (236+238)( 𝜇 𝑉 𝐾)⁄  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.29: Top panel: Schematic illustrations of monolayer molecular junction for the 

Au/4/Au. Bottom panel: Seebeck coefficient S as a function of Fermi energy of ZnTTP.  

Seebeck coefficients of monolayer 4, dark and light green curves represent the spin up and 

down curves.   

 

Au/4 
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Figure 4.30: Top panel: Schematic illustrations of bilayer molecular junction for the Au-4/6-

Au. Bottom panel Seebeck coefficient S as a function of Fermi energy of bilayer 1.  Seebeck 

coefficients of bilayer 4/6, dark and light purple curves represent the spin up and down curves.   

 

 

 

 

 
 
 

 

 

 

 

 

 

 

Au/4/6 

Au/4/6 spin up 

Au/4/6 spin down 
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Figure 4.31: Top panel: Schematic illustrations of bilayer molecular junction for the Au-4/7-

Au. Bottom panel Seebeck coefficient S as a function of Fermi energy of bilayer 2. Seebeck 

coefficients of bilayer 4/7, dark and light grey curves represent the spin up and down.   

 

 

 
 

 

 

 

 

Au/4/7 

Au/4/7 spin up 

Au/4/7 spin down 

 



88 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.32: Top panel: Schematic illustrations of bilayer molecular junction for the Au-4/8-

Au. Bottom panel Seebeck coefficient S as a function of Fermi energy of bilayer 3.  Seebeck 

coefficients of bilayer 4/8, dark and light blue curves represent the spin up and down.   

 

To summarise the above Seebeck coefficient calculations are collected in table 4.3. The alkyl 

chains Au-1-Au, Au-2-Au, and Au-3-Au have negative sign because the transport is LUMO 

dominated. Molecule 4 has negative sign of Seebeck coefficients sign of Seebeck coefficients is 

negative due to the Fermi level being closer to LUMO than to the HOMO.  

Au/4/8 

Au/4/8 spin up 

Au/4/8 spin down 
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Table 4.3:  DFT simulations of Seebeck coefficient 𝑆 at DFT-predicted Fermi E-EF
DFT=0 eV for both 

mono/bilayer structures in Au – Au junctions. 

 

Mono/bilayer junctions 

 

𝑆 (𝜇 𝑉 𝐾)⁄  

 

Polarization state 

Au-1-Au -0.5 == 

Au-2-Au -3.0 == 

Au-3-Au -1.6 == 

Au-4-Au -8.0 == 

Au-5-Au 4.0 == 

Au-4/6-Au -(225, 227) up and down 

Au-4/7-Au -(233, 247) up and down 

Au-4/8-Au -(236, 238) up and down 
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4.9. Conclusion 

 

The investigations in this chapter modelled the thermoelectric proprieties of the single-

molecule and bilayer junctions by employing density functional theory. As a first step I studied 

the frontier orbitals for both single-molecule and bilayer structures involving 4 different 

anchors such as direct carbon, amine, pyridine, and Zn-contact. 

The isolated surface plots of the 4 different anchor groups illustrate different behaviors of 

localized and delocalized weights on the HOMO and LUMO orbitals. The binding energy of 

the 4 different anchor groups, which bind to the gold electrode have been also investigated. 

The DFT results show that the direct carbon has the strongest binding among the 4 anchors. 

Secondly, the charge transport simulations for single-molecule and bilayer structures that bind 

to gold electrodes have been explored.  The theoretical results demonstrate that for the 3-alkyl 

chains, the Fermi energy (E-EF
DFT=0 eV) is placed approximately in the mid-gap between the 

HOMO and LUMO resonances. While for the bilayers, the transmission coefficient is LUMO 

dominated at Fermi energy (E-EF
DFT=0 eV). Finally, I simulated the thermopower calculations 

of the single-molecule and bilayer structures in Au-Au junctions. The Seebeck coefficients 

show different behavior for these junctions, and I shall discuss them in more detail in chapter 

5.  
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Chapter 5 

 

 

High Performance Thermoelectricity of Multicomponent Junctions 

 
 

  Organic thin films composed of highly ordered molecular arrays have great prospects in 

thermoelectric energy harvesting. Molecular arrays bound to graphene substrates via non-

covalent interaction have shown better thermoelectric behavior compare with typical 

covalently bonded metal-thiolate arrays. Recently, thermoelectric properties of non-conjugated 

junctions, using graphene as a substrate, have been reported. However, conjugated oligo-

aromatic molecules with small HOMO-LUMO gap is more attractive for energy-harvesting 

purposes. 

In this work, my collaborators at Cavendish Laboratory, University of Cambridge and Dalian 

Maritime University demonstrate a method to fabricate an aromatic molecular array on a 

graphene substrate via multi-component method. They first immobilize zinc -cantered 

porphyrin on a graphene substrate by π-π stacking [1-2], and then modify it by attaching a 

conjugated pyridine backbone to the ZnTPP via a coordination bond as shown in figure 1(b). 

This stepwise building method separates the molecular backbones due to the large ZnTPP foot 

print and shows good thermopower with Seebeck coefficient up to ~51 μV/K. This value is 

higher than most of the reported Seebeck coefficients for molecular junctions and suggests a 

new route for approaching high-efficiency thermo-electric materials.  
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Figure 5.1: (a) Scheme of measurement system used in experiment work, (b) an example of 

multi-component structure in EGaIn junction [42]. 

 

 

5.1 Introduction  

 

In molecular devices and thermoelectric energy harvesters, weak anchor-substrate coupling is 

desirable, because weak coupling can effectively suppress interfacial phonon transport [3] and 

molecular functional properties preserved, whereas they can be quenched due to strong 

interfacial coupling [4-5]. 

Although metallic substrates can form weak coupling junctions with molecules via noncovalent 

interactions, such junctions can be unstable at room temperature due to the high mobility of 

metal atoms [6-7]. To avoid this problem, graphene was recently used as a novel substrate for 

building-up non-covalent molecular junctions, and using pyrene[8-9] or amine[10-11] as an 

anchor group. Compared with their metal-thiolate derivatives, such junctions show a number 

of enhancements in performance, for example, they behave as a better electrical barrier [10], 

and exhibit better thermo-electric behavior [12]. Most of the recently published 

graphene/molecule junctions use alkyl chains as the backbone, but this type of backbone was 

not favored in device applications, because its large HOMO-LUMO gap suppresses the 

electron transport [13-14] and thermopower [15]. Molecules with large conjugation systems, 

such as oligo-phenyl structures, are therefore, more attractive for molecular electronic studies 

[16-17]. The past decades show that electrode material, which may be metallic or non-metallic, 

(a) (b) 
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has an important effect. The most frequently used conducting materials are Au [18], Ag [19], 

Pd, and Pt [20] as examples. Gold has been the most used electrode substance due to its 

qualities as a precious metal, including excellent chemical stability, high conductivity, and 

easy-to-clean surfaces and tips. However, there are several issues with gold electrodes, 

including the movement of surface ions at room temperatures brought by thermal fluctuations 

and instabilities [21]. Therefore, creating non-metallic electrodes such as carbon-based 

materials [22--23], graphene [24-25] and silicon [26] have inspired researchers to investigate 

the potential for producing accurate single-molecule electrical and thermal measurements with 

these types of electrodes. These display a variety of interesting features, such as high charge 

mobility, stability, mechanical strength, and flexibility of their - conjugated structure [22-23]. 

 In this work, I present a new direction of research, where I can control the sign of the Seebeck 

coefficient by changing one of the electrode types to form asymmetric junction (i.e., Au-

molecule-Gr).  I find that the Seebeck coefficient changes sign for some, but not all junctions, 

depending on the organic components that are used in the junction [27].  

5.2 Binding Energies 

 

As explained in chapter 4 section 4.5, the counterpoise technique and DFT companion are used 

to compute binding energies and the optimum binding distance between two items by removing 

basis set superposition errors [28–29]. For more information about the counterpoise method, 

see section 2.7 in chapter 2.  

 

5.2.1 Binding Energies on a Graphene Substrate  

 

In this section, I calculate binding energies to find the optimum distance between the graphene 

substrate and different molecules as shown in Figures 5.1-5.4.  
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 Figure 5.1 shows the binding energy as a function of the distance between the graphene sheet 

(Gr) and ZnTTP. The optimum distance (i.e., the minimum of the binding energy curve) is 

found to be approximately 4.0 Å and the optimum binding energy is 0.2 eV (single-molecule 

case). Figure 5.2 shows the binding energy as a function of the distance between the graphene 

sheet and 4/8 bilayer. In this case, the optimum distance (i.e., the minimum of the binding 

energy curve) is found to be approximately 4.0 Å, and the binding energy 0.15 eV (bilayer 

case). Similarly, Figure 5.3 shows the binding energy as a function of the distance between the 

graphene sheet and pyridyl anchor, where the optimum distance (i.e., the minimum of the 

binding energy curve) is found to be approximately 3.4 Å, and the binding energy 0.20 eV. I 

also calculated the optimum distance and binding energy between two graphene sheets as 

shown in Figure 5.4. 

 

 

 

 

 

Figure 5.2: Right panel: represents the ZnTTP molecule binding to a graphene sheet. Left 

panel: Binding energy as a function of the optimum binding distance 𝑑, where 𝑑 is found to be 

approximately 4.0 Å, and binding energy 0.2 eV, (single-molecule case).  
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Figure 5.3: Right panel: represents bilayer 3 binding to a graphene sheet. Left panel: Binding 

energy as a function of the optimum binding distance 𝑑, where 𝑑 is found to be approximately 

4.0 Å, and binding energy 0.15 eV, (bilayer case).  

 

 

 

 

 

 

 

Figure 5.4: Right panel: represents molecule 1 binding to a graphene sheet. Left panel: 

Binding energy as a function of the optimum binding distance 𝑑, where 𝑑 is found to be 

approximately 3.4 Å, and binding energy B. E= 0.20 eV, (single-molecule case).  
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Figure 5.5: Right panel: represents molecule 5 binding to a graphene sheet. Left panel: 

Binding energy as a function of the optimum binding distance 𝑑, where 𝑑 is found to be 

approximately 1.4 Å, and binding energy B. E= 0.2 eV, (single-molecule case).  

 

Table 5.1 represents the optimum separation distance and binding energy for four different 

anchor groups bound to a graphene electrode through either single-molecule or bilayer 

components. Figures 5.2-5.5 illustrate the binding energies for one end (specifically to a Gr 

sheet) of the asymmetric junction Au-M-Gr. The binding energies for the other end (Au), are 

already presented in chapter 4, (see Figures 4.15-4.18).  

Table 5.1 also shows that these anchors bind more strongly to Au than the Gr sheet. This is 

expected as the stability of organic molecules on a gold substrate is reasonably higher than on 

graphene surface and my simulations predict the coupling to Au to be up 5 times stronger.  

Another reason for that is that the van der Waals interactions between organic molecules and 

graphene sheet are fairly week. My simulations here are well supported by the van der Waals 

interactions, for instance, ZnTTP binds to gold by 0.50 eV, whereas the same anchor binds to 

 

 

Gr-graphene sheet 
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graphene by 0.20 eV, and this suggests that ZnTTP is more likely to interact with a metallic 

surface than a non-metallic surface. One could notice that the direct carbon contact to Au 

surface is the strongest anchor among all the anchor-electrode contacts with binding energy of 

1 eV. 

 

 

Table 5.1: Summarizes all the binding energies and optimum distances calculations for 

mono/bilayers that bind to gold or graphene sheet.  𝑑 is the equilibrium distance and B.E is the 

corresponding minimum energy difference. (Au binding energy simulations were present in 

chapter 4). 

 

Contact point  
𝑑 (Å) 

 

B.E (eV) 

Gr-NH2 3.4 0.20 

Gr-ZnTTP 4.0 0.20 

Gr-bilayer 4.0 0.15 

Gr-graphene 1.4 0.2 

Au-CH2 3.4 1.00 

Au-Py 4.0 0.40 

Au-ZnTTP 2.9 0.50 

ZnTTP-Py 2.3 0.50 
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5.3 Optimised DFT Structures of Compounds in Their Junctions 

 

Starting from the optimised structures and geometries for the compounds obtained as described 

in chapter 4 (Figures 4.1,4.2) I again employed the SIESTA code to calculate self-consistent 

optimised geometries, ground state Hamiltonians and overlap matrix elements. I then used the 

Gollum quantum transport code to calculate the transmission coefficient, and Seebeck 

coefficient S for graphene-molecule-gold junction. This section includes alkyl chains 1-3 and 

phenyl ring derivatives 6-8 with different anchor groups including pyridyl, CH2, amine and 

large anchor such as ZnTTP. For more information about the studied components see chapter 

4. These single molecules and bilayers are sandwiched between gold and a single layer 

graphene sheet (SLG). 

 

 

 

 

 

 

5.3.1 Gold- graphene (SLG) simulations of single-molecule Junctions 

 

In this section, I repeat the same gold-gold simulations for the single-molecule junction 

involving A (1, 2, 3), B (4 and 5). However, the junctions here are asymmetric (i.e., Au-Gr). 

Figure 5.5 shows the studied molecules in gold and single layer graphene sheet (SLG) 

junctions. 
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Figure 5.6: A schematic figure of the Au-mono-SLG junctions. Top contact is SLG electrode, 

and the bottom contact is Au electrode. A: a-c is alkyl chains Au/1-3/SLG single-molecule 

junctions. While B: d-e are ZnTPP and graphene sheet Au-4-SLG, and Au-5-SLG 

respectively. 
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5.3.2 Gold- Graphene Sheet (SLG) Simulation of Bilayer Structures 

 

This section represents the bilayer structures 4/6, 4/7 and 4/8 attached to gold and a single layer 

graphene sheet (SLG).  

 

 

 

 

 

 

Figure 5.7: A schematic figure of the Au-bilayer-SLG junctions. Top contact is SLG 

electrode, and the bottom contact is Au electrode. f: Au-4/6-SLG, g: Au-4/7-SLG, h: Au-4/8-

SLG bilayer junctions. 

 

5.4 Transport Simulations  

 

As is described in section 4.8 of chapter 4, to investigate the transmission coefficient, I started 

from the completely optimised gas-phase molecules and then constructed the junctions by 

attaching the molecules via different anchor groups to gold and SLG electrodes. Similar to the 

computations shown in chapter 4, the ground state Hamiltonian and optimised geometry of 

each compound were obtained using the density functional theory (DFT) code and combined 

with the Gollum transport code. The generalised gradient approximation (GGA) exchange 

correlation functional was used along with double zeta polarized (DZP) basis sets and the 

norm-conserving pseudo potentials. The real space grid was defined by a plane wave cut-off 

of 250 Ry. The geometry optimization was carried out to a force tolerance of 0.01 eV/Å. This 
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process was repeated for a unit cell with the molecule between two electrodes where the 

optimised distance between electrodes and the anchor groups are shown in Table 5.1. In what 

follows, I will investigate the charge transport properties for eight asymmetric junctions (gold- 

SLG electrodes) as shown in Figures 5.6-5.7. 

 

 

5.4.1Transport Simulations of alkyl chains in Au-1-3- SLG and Au-5- SLG Junctions  

 

The transmission coefficient curves T(E) were calculated for the single-molecule junctions 

using the Gollum transport code. The bottom panel in Figure 5.8 shows 3 transmission curves 

of the alkyl-chain junctions Au/1-3/SLG, in which the alkyl chains have different lengths (n=8, 

12 and 18).  It is clear from Figure 5.8 that as the chains get longer, their conductance become 

smaller, following a similar trend noted for Au-1-3-Au junctions. In addition, Fermi energy is 

predicted near the middle of the HOMO-LUMO gap. The actual values of the conductance for 

the alkyl chains are log10 𝐺/𝐺0 = -3.0, -5.0, -7.0   respectively. On the other hand, the 

transmission coefficient of the Au-5-SLG junction, formed by inserting the graphene-like 

molecule between Au and SLG electrodes as shown in the bottom panel in Figure 5.10, shows 

that in this case, charge transfer is LUMO dominated, and the conductance is approximately 

log10 𝐺/𝐺0 = -2.0.                                                                
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Figure 5.8: Top panel: Representation of alkyl chains single-molecule junctions. Bottom 

panel: transmission coefficients T(E) curves of Au-1-SLG junctions against electron energy E. 

Molecules 1-3, black, blue and red curves respectively. 

5.4.1.1. Transport simulations of alkyl chains terminated by methyl groups in Au-1-3- 

SLG. 

The transmission coefficient curves T(E) were calculated for the alkyl chains terminated by 

methyl group as shown in the top panel of Figure 5.9. These curves exhibit a similar trend noted 

for Au-1-3-SLG junctions terminated by direct carbon, with a Fermi energy expected to be near 

the middle of the HOMO-LUMO gap. The actual values of the conductance for the alkyl chains 

 

   

Gr-1 

Gr-2 

Gr-3 
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are log10 𝐺/𝐺0 = -3.0, -5.0, -7.0   respectively. Therefore, removing one of the hydrogen atoms 

from the anchor group of alkyl chains molecules does not significantly affect its conductance 

or trends. The conductance of a molecule depends on its overall structure and the arrangement 

of its electrons. If the molecule maintains its overall structure and essential electronic properties 

such as delocalized π-electrons or conjugation, then as shown by these results, the change in 

its conductance with length remains qualitatively the same, even after removing a hydrogen 

atom from the anchor group. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9: Top panel: Representation of alkyl chains terminated by methyl group single-

molecule junctions. Bottom panel: transmission coefficients T(E) curves of Au-1-SLG 

junctions against electron energy E. Molecules 1-3, black, blue, and red curves respectively. 
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Figure 5.10: Top panel:  Schematic illustrations of molecular junction for Au-5-SLG. Bottom 

panel: transmission coefficient 𝑇(𝐸) of molecule 5 as a function of energy. 
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5.4.2 Spin Polarised Transport Calculations of Single molecule/Bilayer Molecular 

Junctions 

 

The application of electron spin for storage and processing is a current area of nanotechnology 

study. Inorganic materials are a component in some modern spintronic devices, and the use of 

organic materials in spintronics is already a significant research area in the scientific and 

engineering disciplines [30-31]. Double-stranded DNA (dsDNA) monolayers at room 

temperature were found to transmit spin-selective electrons, according to research by Gohler 

et al [32]. They stated that dsDNA length increases spin polarization, and they demonstrated 

effective spin filtering [33]. In a theoretical study, spin polarization and spin-dependent 

electron conductance on the helix symmetry were evaluated using the Green's function method. 

Here I shall carry out spin-dependent transport computations for the single molecule Zinc 

tetraphenyl porphyrin (ZnTPP), molecule 4 and then, I combine Porphyrin (ZnTPP) with the 

pyridine -based cores 6,7,8, as shown in the top panel of Figures 5.9-5.12. The generalized 

gradient approximation (GGA) was used, along with the transport code Gollum for this 

calculation. The HOMO resonance occurs near the Fermi energy for all these junctions, 

showing that the charge transfer is HOMO dominated, which is completely opposite to the case 

where the same molecules are attached to the two gold electrodes (see section 4.4.5 in chapter 

4 for more details). Spin up and spin down transmission coefficients for these junctions are 

slightly different. The conductance values are log10 𝐺/𝐺0 = -4.0, -5.0, -7.0, and -10.0    respectively.  
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Figure 5.11: Top panel:  Schematic illustrations of molecular junction for Au-4-SLG. Bottom 

panel: Spin-polarised transmission coefficients, 𝑇(𝐸) =
𝑇𝑢𝑝(𝐸)+𝑇𝑑𝑜𝑤𝑛(𝐸)

2
,  of Au-4-SLG 

junctions against electron energy E. Molecule 4, dark and light green curves represent spin up 

and down curves respectively.  
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Gr/4 spin up 

Gr/4 spin down 
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Figure 5.12: Top panel:  Schematic illustrations of molecular junction for Au-4/6-SLG. 

Bottom panel: Spin-polarised transmission coefficients, 𝑇(𝐸) =
𝑇𝑢𝑝(𝐸)+𝑇𝑑𝑜𝑤𝑛(𝐸)

2
, of Au-4/6-

SLG junctions against electron energy E. bilayer 1, dark and light purple curves represent 

spin up and down curves respectively.  
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Figure 5.13: Top panel: Schematic illustrations of molecular junction for Au-4/7-SLG. 

Bottom panel Spin-polarised transmission coefficients, 𝑇(𝐸) =
𝑇𝑢𝑝(𝐸)+𝑇𝑑𝑜𝑤𝑛(𝐸)

2
, of Au-4/7-

SLG junctions against electron energy E. bilayer 2, dark and light grey curves represent spin 

up and down curves respectively.  
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Figure 5.14: Top panel: Schematic illustrations of molecular junction for Au-4/8-SLG. 

Bottom panel: Spin-polarised transmission coefficients, 𝑇(𝐸) =
𝑇𝑢𝑝(𝐸)+𝑇𝑑𝑜𝑤𝑛(𝐸)

2
, of Au-4/8-

SLG junctions against electron energy E. bilayer 3, dark and light blue curves represent spin 

up and down curves respectively. 
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5.5 Thermopower Simulations 
 
Equation 4.5, as described in chapter 4, is used to determine the Seebeck coefficient for the 

eight junctions that are attached to the gold/ SLG electrodes. First, I shall calculate the single 

molecule then bilayer’s Seebeck coefficients as shown in Figures 5.7-5.8. It is worth 

mentioning that, the sign and the magnitude of the Seebeck coefficient are determined by the 

transmission coefficient's slope. In other terms, whether the curve is HOMO or LUMO 

dominated.  

 

 

5.5.1 Thermopower Simulation for Alkyl Chains and Graphene-like molecules in Au- 

SLG Junctions.  

 

Figure 5.14 shows the Seebeck coefficients 𝑆 of alkyl chains evaluated at room temperature involving 1, 

2, 3 where the 𝐸𝐹 is placed near to the HOMO resonances. The sign of 𝑆 found to be positive and the 

value of 𝑆 for the Au-1-SLG, Au-2-SLG, and Au-3-SLG junctions are 24, 16.5, and 17 μV/K 

respectively. On the other hand, Figure 5.14 shows the Seebeck coefficient 𝑆 of 5 to be negative at the 

DFT-predicted Fermi E-EF
DFT=0 eV, because this molecule is LUMO dominated and the actual value 

for S is -8.0 μV/K 
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Figure 5.15: Top panel: Schematic illustrations of molecular junctions for the alkyl chain 

monolayers Au-1-SLG, Au-2-SLG, and Au-3-SLG. Bottom panel: Seebeck coefficient 𝑆 as a 

function of Fermi energy of three alkyl chain.  Seebeck coefficients of 1, 2 and 3, black, blue 

and red curves respectively.   
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Figure 5.16: Top panel: Schematic illustrations of molecular junctions for the Au-5-SLG. 

Bottom panel: Seebeck coefficient S as a function of Fermi energy of graphene sheet. Seebeck 

coefficient of monolayer 5, orange curve.   

 

5.5.2 Spin-polarised Thermopower Calculations of Single-molecule/Bilayer Junctions 

  

Due to a metal atom in the following molecules, spin polarised calculations are carried out in 

this section. The Seebeck value for mono/bilayer structures 4, 4/6, 4/7, and 4/8 is found to be 

positive at the DFT-predicted Fermi levels E-EF
DFT=0 eV, because these molecules are 

HOMO-dominated as shown in Figures 5.16-5.19. In this case, the spin up and spin down 

transmission curves are slightly different. The values of 𝑆 are 14 𝜇 𝑉 𝐾⁄  for Au-4-SLG. 

While for the Au-4/6-SLG, Au-4/7-SLG, and Au-4/8-SLG are 70, 178 and 300 𝜇 𝑉 𝐾⁄  spin 

up and spin down respectively. 
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Figure 5.17: Top panel: Schematic illustrations of molecular junctions for the Au-4-SLG. 

Bottom panel: Seebeck coefficient S as a function of Fermi energy of ZnTTP.  Seebeck 

coefficients of 4, dark and light green curves represent the spin up and down.   
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Figure 5.18: Top panel: Schematic illustrations of molecular junctions for the Au-4/6-SLG. 

Bottom panel Seebeck coefficient S as a function of Fermi energy of bilayer 1.  Seebeck 

coefficients of bilayer 4/6, dark and light purple curves represent the spin up and down curves.   
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Figure 5.19: Top panel: Schematic illustrations of molecular junctions for the Au-4/7-SLG. 

Bottom panel Seebeck coefficient S as a function of Fermi energy of bilayer 2.  Seebeck 

coefficients of bilayer 4/7, dark and light grey curves represent the spin up and down curves.   
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Figure 5.20: Top panel: Schematic illustrations of molecular junctions for the Au-4/8-SLG. 

Bottom panel Seebeck coefficient S as a function of Fermi energy of bilayer 3.  Seebeck 

coefficients of bilayer 4/8, dark and light blue curves represent the spin up and down curves.   
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5.6 Experimental Section  

 

In this research, the experiments employed a technique to create well-spaced arrays of oligo-phenyl wires 

on a single-layered (SL) graphene substrate [34]. Initially, zinc tetraphenyl porphyrin (ZnTPP, molecule 

4 in Figure 1.5 (a) was utilized to form a thin molecular film on SL chemical-vapor-deposited (CVD) 

graphene on a copper substrate. The attachment of ZnTPP molecules to graphene occurred through π-π 

stacking interactions. Subsequently, conjugated pyridine backbone molecules (molecules 6, 7, and 8 in 

Figure 4.2 were deposited onto the ZnTPP layer via zinc-pyridine coordinative bonds. These backbones 

exhibited a perpendicular orientation to the substrate due to their lone pair geometry and were separated 

from each other by the large footprint of ZnTPP molecules. The measured results obtained from AFM 

were found to be in good agreement with the corresponding thickness values estimated using density 

functional theory (DFT). This concordance between experimental and theoretical approaches further 

validates the bilayer growth. Additionally, this study also examined a series of alkyl amine molecules 

known for forming high-quality self-assembled monolayers (SAMs) on graphene through non-covalent 

interactions as reported previously [35-36], for comparative analysis. 

 

In this study, the electrical and thermoelectric properties of SAMs are investigated by building molecular 

junctions using eutectic Gallium Indium alloy (EGaIn) [37] serving as the upper electrode. EGaIn is a 

flexible liquid metal with non-Newtonian properties.   

A cone-shaped tip was formed from EGaIn and maintained its structure by developing a native oxide 

outer layer (GaOx) of approximately 0.7 nanometres upon exposure to air [38-39]. Research has 

demonstrated that such tips can make non-destructive contact with SAMs [40] and create 

Cu/Gr/SAMs/GaOx/EGaIn junctions. 
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5.6.1 Experiment Results  

 

 

 

 

 

 

 

 

 

 

Figure 5.21: (a) G-V curve of Gr/SAMs/GaOx/EGaIn junction, SAMs molecule: 1, 2 and 3; 

(b) G-V curve of Gr/SAMs/GaOx/EGaIn junction, SAMs molecule: 4, 4/6, 4/7 and 4/8 [42]. 

 

Figure 3(a) illustrates the statistical distribution of conductance (G) at zero bias, obtained using 

numerical differentiation for various alkyl linker junctions. As the quantity of CH2 units 

increases, the conductance value decreases exponentially. 

The multi-component conjugated SAM-based junctions Gr/4/6, Gr/4/7, and Gr/4/8 were tested 

using electrical behaviour measurements. The statistical findings were derived from 80 J-V 

curves acquired on a minimum of two independent samples. 

Figure 3(b) displays the corresponding numerical differential conductance at zero bias. The 

electric conductivity for the pyridine-based oligo-phenyl linkers (molecule 6, 7 and 8) was 

expected to be higher than the alkyl linkers (molecule 1, 2, and 3) with similar lengths, because 

the delocalized electrons in the π system facilitate the electron transport process which the 

electrical values DFT result.  

 

The thermoelectric properties of SAMs were examined Using a modified EGaIn configuration 

that included a Peltier stage and two thermocouples for controlling and tracking the temperature 

difference (V). 

 

Gr/4 Gr/4/6  Gr/4/7 Gr/4/8                    Gr/1    Gr/2          Gr/3 
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Figure 5.22: Thermoelectric properties of molecular junctions. (a, b) statistics of Seebeck 

coefficient for all measured junctions [42]. 

 

Figure (a) displays the measured Seebeck distributions of various chain length alkyl junctions 

on graphene surfaces. Each type of junction was measured on at least two independent samples 

prepared with the same recipe. Since the slopes of linear fits for all junctions were negative, 

the Seebeck coefficients of the junctions were positive. This indicates that the electrode Fermi 

level was placed closer to the molecular orbital HOMO resonance [41].  

Figure 4 (b) shows the measured Seebeck distribution of all conjugated molecular junctions on 

graphene substrates using a first layer of ZnTPP (molecule 4) as a footprint. A ZnTPP layer 

adsorbed on graphene without the growth of a conjugated backbone (molecules 6-8) was 

determined to be 19 ± 4.4 μV/K, which is approximately two times higher than that observed. 

The Seebeck coefficients increased to 40 ± 8.4 μV/K (Gr/4/6), 47.5± 9.1 μV/K (Gr/4/7), and 

51±9.2 μV/K (Gr/4/8). These values are about three times higher than those of alkyl linkers 

which agree with theoretical result.  

 

  

Gr/1    Gr/2       Gr/3    Gr/4 Gr/4/6  Gr/4/7 Gr/4/8 
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5.7 Validating the DFT Simulations Against experimental Measurements. 

 

 

 

My experimental collaborators at Cavendish Laboratory, University of Cambridge and Dalian Maritime 

University provided me with the Seebeck coefficient measurements for both single-molecule and bilayer 

junctions.  In this section, I am going to validate my theoretical simulations against the experiment results. 

In chapter 4, I preformed my simulations on symmetric junctions (specifically gold-gold junctions), and 

calculated their conductance and thermopower. Here, I shall restrict the comparison to their thermopower 

only.    

Table 5.1 shows the measured Seebeck coefficients for both single-molecule and bilayer structures (2nd 

column). The experimentalists informed me that their drain, and source are made of gold and the eutectic 

Gallium Indium alloy (EGaIn, 1st column). My first simulations on these structures were in gold-gold 

junctions and the predicted Seebeck coefficient values are presented in the 4th column. Regardless to the 

numbers of SSTM and SDFT (2nd versus 4th), one could see the sign of S is completely the opposite for the 

two sets of values. Since the sign is the opposite for the eight studied junctions, this suggests that EGaIn-

Au cannot be equivalent to Au-Au junction as demonstrated in Table 5.1.         
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Table 5.2. Thermoelectric properties of the studied structures in symmetric junctions. 

Measured and predicted Seebeck coefficients experimental measurement, and DFT 

respectively. DFT simulations for Au-Au junctions and at the DFT-predicted Fermi (𝐸F −

 𝐸𝐹
𝐷𝐹𝑇 = 0 𝑒𝑉). For more detail about Au-Au simulations see chapter 4.  

 

 

Junction 

 
 

Experimental 
measurement 

S (𝜇 𝑉 𝐾⁄ ) 

std 
S (𝜇 𝑉 𝐾⁄ ) 

 
 

DFT 
S (𝜇 𝑉 𝐾⁄ ) Au-Au 

junction 

 
 
 

Polarization state 

EGaIn -1-Au 16.5 +/-8 -0.5 == 

EGaIn -2-Au 14.0 +/-9.5 -3.0 == 

EGaIn -3-Au 13.5 +/-8 -1.6 == 

EGaIn -4-Au -0.26 +/-0.2 4.0 == 

EGaIn -5-Au 11.0 +/-4.4 -8.0 == 

EGaIn -4/6-Au 40.0 +/-8.4 -(225+227) spin up, spin down 

EGaIn -4/7-Au 47.5 +/-9.1 -(223+247) spin up, spin down 

EGaIn -4/8-Au 51.0 +/-9.2 -(236+238) spin up, spin down 

 

 

As the first set of simulations failed against the experiments (chapter 4). I repeated the same simulations 

however, this time in asymmetric junction (i.e., gold-graphene), as shown in section 5.5.   Table 5.2 

summarizes the Seebeck results of the asymmetric junctions and compares them against experimental 

measurements.    

By looking at the Seebeck coefficient signs in the 2nd and 4th columns, one could tell that Au-Gr 

simulations reproduced the experimental measurements for every single junction. As for the actual values, 
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DFT simulations successfully predict the experimental measurements trend. This comparison suggests 

that asymmetry plays a crucial role in the experiments and that the origin of the asymmetry (ie the choice 

of the asymmetric electrodes) may not be of primary importance. It should be noted an excellent 

agreement obtained between experimental measurements and DFT for the single-molecule junctions and 

less accurate for bilayers as the system is more complicated (i.e., multicomponent).          

 

Table 5.3. Thermoelectric properties of the studied structures in asymmetric junctions. 

Measured and predicted Seebeck coefficients experimental measurements, and DFT 

respectively. DFT simulations for Au-Gr junctions and at the DFT-predicted Fermi (𝐸F −

 𝐸𝐹
𝐷𝐹𝑇 = 0 𝑒𝑉). For more detail about Au-Gr simulations see section 5.5 above.   

 

 

Junction 

 
 

Experimental 

measurements 
S (𝜇 𝑉 𝐾⁄ ) 

std 
S (𝜇 𝑉 𝐾⁄ ) 

 
 

DFT 
S (𝜇 𝑉 𝐾⁄ ) Au-Gr 

junction 

 
 
 

Polarization state 

EGaIn -1-Au 16.5 +/-8 24 == 

EGaIn -2-Au 14.0 +/-9.5 16.5 == 

EGaIn -3-Au 13.5 +/-8 17 == 

EGaIn - 4 -Au -0.26 +/-0.2 -8 == 

EGaIn -5-Au 11.0 +/-4.4 14 == 

EGaIn -4/6-Au 40.0 +/-8.4 70 spin up, spin down 

EGaIn -4/7-Au 47.5 +/-9.1 178 spin up, spin down 

EGaIn -4/8-Au 51.0 +/-9.2 300 spin up, spin down 
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5.8. Conclusion 

 

Overall, in this work I demonstrate a strategy of utilizing multi-component method to fabricate 

conjugated molecular backbone on graphene substrate separated with equal distance using 

ZnTPP as footprint and compare it with the amine based non-conjugated junctions with similar 

tunnelling length. For asymmetric single-molecule junctions, I found that the alkyl chains are 

a HOMO-dominated with positive 𝑆; while the junction formed from the graphene-like 

molecule is a LUMO-dominated with negative 𝑆. Secondly, I examined asymmetric bilayer 

junctions. I also have calculated the spin-polarised transmission coefficients and the Seebeck 

for these molecules, which were required as the junctions involve metallic atom (Zn). At the 

DFT-predicted Fermi energy (𝐸F − 𝐸𝐹
𝐷𝐹𝑇 = 0 𝑒𝑉), I showed that all junctions are HOMO-

dominated with a positive 𝑆. Furthermore, the electron transport of the molecular junctions 

shows similar tunneling decay factors as other similar oligo-phenyl structures on metal 

substrates. The Seebeck coefficient of the multi-component junction was about 3 times higher 

than the alkyl-based molecules, with comparable thickness, and higher than the Seebeck of 

most reported molecular junctions (> 50 μV/K). This suggests a new way for achieving high 

thermoelectric performance molecular-scale junctions. 
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Chapter 6 
 

 

 Conclusion and Future Work  

 

 

 

6.1 Conclusion  

 

 

To increase the effectiveness of thermoelectric devices, this thesis concentrated on electron 

transport theory in molecular-scale quantum devices and experimental modeling to investigate 

the electronic structure of diverse molecules. Blocks perform other device functions when 

connected to metal electrodes and create a nanoscale circuit. 

This thesis has presented a series of studies into the electronic and thermoelectric properties of 

molecular junctions from metallo-porphyrins and a large set of symmetric and asymmetric 

molecules. 

Chapter 2 explains the fundamental ideas behind the DFT algorithm SIESTA, which is used 

for all calculations of electronic structure. In order to calculate their transport properties, I 

connected these isolated molecules to metallic or graphene electrodes after extracting the 

Hamiltonian of the isolated molecule and relaxing it.  

Chapter 3 presents the underlying concepts about transport theory, including the Landaur 

formula, thermoelectric coefficients, and scattering theory, and the Gollum implementation of 

Green's function methods.  

In Chapter 4, I presented a study of the electron transport properties of the single-

molecule/bilayer molecular junctions, formed from Zinc Tetraphenyl Porphyrin (ZnTPP), 

small graphene-like molecules (Gr), three derivatives with pyridine backbones, and three alkyl-

chain backbones terminated with asymmetric anchor groups: amine (NH2 ), and a direct carbon 

(CH2 ) bond. In the first step, I investigated their electronic structure properties by computing 

their molecular orbitals. I then computed their optimised geometries and binding energies to 
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find the optimum separation distance between the molecule and the gold electrode, Next, I 

computed their electrical and Seebeck properties and compared theoretical calculations to 

experimental data using an EGaIn top contact. The transmission coefficient and the Seebeck 

coefficient of studied molecules did not agree with the measurements, so in  

Chapter 5, based on the same core molecules, junctions with asymmetric electrodes were 

studied. In these calculations, to model junctions with asymmetric electrodes, molecules were 

sandwiched between gold and a single-layer graphene sheet (SLG). First, I calculated the 

binding energy to find the optimum distance between the graphene substrate and different 

anchor groups such as ZnTTP, and NH2. By examining asymmetric single-molecule/bilayer 

junctions, I obtained much better agreement with experiment. I found that the graphene-like 

molecule is LUMO-dominated with negative S, while the rest of the studied molecules are 

HOMO-dominated with positive S. The Seebeck coefficient of the multi-component junction 

was higher than the Seebeck of most reported molecular junctions (> 50 μV/K); These suggest 

a new approach to producing high thermoelectric performance materials based on asymmetry.  
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6.2 Future Work  

 

In this thesis, I have highlighted the Seebeck coefficient and electrical conductivity for 

asymmetric alkyl chains, pyridine derivatives and Zinc Tetraphenyl Porphyrin (ZnTPP), which 

these molecules are sandwiched to gold/gold and gold/graphene electrodes. In future work, it 

is interesting to look at how calculations change when different metals like superconducting 

electrodes at low temperatures [1] platinum, palladium [2-3], and iron [4] are used in place of 

gold/graphene leads or combinations of electrode materials [5].  Furthermore, since the control 

of heat across solids and solid-molecule interfaces is of importance for the thermal management 

of nanoscale devices and for improving the performance of thermoelectric materials, it would 

be interesting to investigate the connectivity dependence of phonon transport [6-7]. Due to the 

possible uses in thermal devices, phonon transport parameters in three-terminal systems have 

recently attracted increased attention [8]. Therefore, it would be worthwhile to use techniques 

for calculating phonon transport via asymmetric-terminal systems in order to determine how 

much phonons contribute to thermal conductance. In addition, it may be beneficial to look into 

the spin transport in the presence of ferromagnetic electrodes and a combination of 

ferromagnetic and superconducting electrodes. In the latter, resonant transport [9] and novel 

interference effects [10] can also take place, associated with Andreev scattering at the 

superconducting boundary [11], which would be superposed onto single molecule interference 

features. 

Finally, it would be interesting to explore the theoretical simulations when using different 

molecules such as anthracene molecules attached to a Porphyrin or graphene sheet.  
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