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Abstract—Semantic communication holds promise for integra-
tion into future wireless networks, offering a potential enhance-
ment in network spectrum efficiency. However, implementing
semantic communication in aerial-aided edge networks (AENs)
introduces unique challenges. Within AENs, semantic communi-
cation strategically substitutes part of the communication load
with the computation load, aiming to boost spectrum efficiency.
This departure from traditional communication paradigms intro-
duces novel challenges, particularly in terms of energy efficiency.
Furthermore, by adding complexity, the use of a semantic coder
based on machine learning (ML) in AENs encounters real-time
updating challenges, further amplifying energy costs in these
complex and energy-limited environments. To address these chal-
lenges, we propose an energy-efficient semantic communication
system tailored for AENs. Our approach includes a mathemat-
ical analysis of semantic communication energy consumption
within AENs. To enhance energy efficiency, we introduce an
energy-efficient game-theoretic incentive mechanism (EGTIM)
designed to optimize semantic transmission within AENs. More-
over, considering the accurate and energy-efficient updating of
semantic coders in AENs, we present a game-theoretic efficient
distributed learning (GEDL) framework, building upon the
foundations of the renewed EGTIM. Simulation results validate
the effectiveness of our proposed EGTIM in improving energy
efficiency. Additionally, the presented GEDL framework exhibits
remarkable performance by increasing model training accuracy
and concurrently decreasing training energy consumption.

Index Terms—Semantic communication, energy efficiency,
game theoretic, distributed learning.

I. INTRODUCTION

THE 6G wireless communication is considered a three-
dimensional (3-D) communication network fully assisted

by edge cloud facilities [1]. The aerial facilities with edge
clouds, i.e., aerial edge clouds (AECs), are anticipated to pro-
vide abundant storage and computing resources to subscribers
alongside the terrestrial edge clouds (TECs). Subscribers are
allowed to access these edge facilities to offload computation-
ally sensitive tasks for rapid processing or acquire massive
image/video information etc. [2].

Aerial-aided edge networks (AENs), however, introduce un-
precedented spectrum resource and energy challenges [3]. The
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deployment of edge networks poses a significant volume of
task interactions and hence dramatically increases the volume
of communication transmission tasks [4]. It means the network
needs to provide more data transmission within the limited
spectrum resources to ensure network quality of service (QoS).
How to optimize the spectrum efficiency of the AENs therefore
becomes an urgent concern.

Semantic communication [5] looks promising in improving
spectrum efficiency. It utilizes the semantic coder largely based
on machine learning (ML) instead of the conventional commu-
nication coder. The ML-based semantic encoder extracts the
specific meaning of the input data, thus significantly reducing
communication transmission bits [6]. Several studies have in-
vestigated the application of semantic communication in trans-
mitting images [7]/text [8]/video [9]/speech [10], etc. These
studies have all demonstrated the effectiveness of semantic
communication in improving spectrum efficiency and network
QoS. Semantic communication is hence also considered to be
one of the essential applications of 6G communication [11].

Several studies already investigated the employment of
semantic communication for AEC devices. Kang et. al [12]
proposed a new aerial semantic image transmission paradigm
based on deep reinforcement learning (DRL) to improve the
transmission accuracy of unmanned aerial vehicles (UAVs).
In [13], semantic communication was integrated into their
presented DRL framework for increasing communication relia-
bility and decreasing the latency of air-ground networks. Kang
et. al [14] introduced a task-oriented semantic communication
framework for UAVs. The UAV sends only the necessary im-
ages to the required users rather than all images, thus reducing
its energy consumption. However, these existing studies for
semantic communication concentrate more on AEC devices
and end-to-end semantic coder design. They also neglect to
take into account the influence of semantic communication
applications for AENs.

There are some outstanding challenges for semantic com-
munication in AENs. First, the utilization of trained semantic
coders in AENs raises the sophisticated network energy opti-
mization challenge. Optimizing energy efficiency for AENs
becomes a crucial concern as semantic communication re-
distributes communication load onto computational resources,
thereby enhancing spectral efficiency. This shift necessitates
addressing energy optimization challenges associated with
the transformation of energy utilization patterns. Developing
an energy-efficient semantic communication framework is
paramount to effectively manage this issue and ensure optimal
energy utilization in AENs.
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Fig. 1: Proposed system model.

In [15] and [16], different semantic communication frame-
works were proposed, they, however, ignore the energy cost
of semantic communications. Yang et. al [17] proposed an
energy saving semantic coder utilization scheme over wireless
networks with rate splitting. Moreover, the optimization of
semantic communication energy cost over 2-D edge networks
was investigated in [18], [19]. Nonetheless, these approaches
did not account for the unique scenario and challenges of
AENs. For instance, mobile network operators (MNOs) incur
additional monetary and energy costs to implement the AECs.
A certain percentage of AEC energy is inevitably consumed
in air hover. How to improve the energy efficiency of semantic
communication over AENs thus remains a challenge.

Semantic communication also requires real-time updating
ML-based semantic coders for various specific content [20].
Designing various distributed learning frameworks for seman-
tic coder updating in different networks is one of the main
challenges of semantic communication in networks [21]. The
existing studies are limited. Shi et. al [22] proposed a semantic
communication framework for general 2-D edge networks
and utilized federated learning (FL) to update the ML-based
semantic coder. Similarly, Qin et. al [23] investigated the
FL framework in semantic communication enabled networks.
Furthermore, considering the properties of vehicular networks,
e.g., dynamic, an MSFTL [24] framework was designed and
tailored for semantic coder updating in vehicular networks.
Nevertheless, these 2-D FL frameworks for updating semantic
coders are not suitable to be deployed on the AENs directly.
Updating semantic coders faces several unique challenges in
AENs. For instance, the distributions of training data from

different coder owners are frequently not independent and
identically distributed (non-IID) [25]. Furthermore, as the
AECs are energy-limited, the energy efficiency of the learning
framework has to be considered. How to timely update the
semantic coder accurately and energy-efficiently in an AEN
with non-IID training data is one of the challenges for semantic
communication to apply in AENs. To the best of our knowl-
edge, designing an effective learning framework to update the
semantic coders in AENs has not been widely studied.

To address semantic coder updating challenges in AENs
while optimizing the energy efficiency of semantic commu-
nication, in this paper, we propose a novel energy-efficient
semantic communication system for AENs. We then discuss
the resource allocation problem during semantic communi-
cation usage. A new energy-efficient game theoretic incen-
tive mechanism (EGTIM) based on the proposed semantic
communication system is presented to optimize the network
energy efficiency in a fair way. In addition, we propose a game
theoretic efficient distributed learning (GEDL) framework for
semantic coders updating in AENs. It renews the proposed
EGTIM and combines EGTIM with a conventional distributed
learning approach to update semantic coders accurately and
energy efficiently.

The major contributions of this paper are summarized as
follows:

• We propose a novel energy-efficient semantic communi-
cation system to support AENs. In this system, AECs and
TECs provide edge services to users via employed ML-
based semantic coders. Moreover, it enables edge devices
to schedule the processing locations of computational
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tasks due to semantic communication intelligently to
improve the energy efficiency of the AEN. The AENs’
spectral efficiency and the QoS thus can be improved.

• In particular, we present a new EGTIM in the proposed
semantic communication system to further improve the
energy efficiency of AENs. The computational and com-
munication workload of the AEC and TECs to perform
semantic communication are developed as a Stackelberg
game. It is designed to maximise the energy efficiency
of the AEN while proportional fairness maximising the
service revenue of each edge device in the network.

• A GEDL framework is proposed for semantic coder
updating in AENs. It is based on our designed renewed
EGTIM for semantic coder updating. Compared to FL,
it significantly improves the semantic coder accuracy in
IID/non-IID scenarios and improves the training energy
efficiency by retraining the model after federated aggre-
gation in the AEC.

The remainder of this paper is organized as follows. We
describe the proposed system model in Section II. In Section
III, the game problem formulation and the proposed EGTIM
are presented. Section IV describes the presented GEDL
framework for semantic coder updating in AENs. Simulation
results are shown in Section V. Finally, we conclude this paper
in Section VI.

II. SYSTEM MODEL

In this paper, we consider a three-dimensional edge network
aided by an AEC j (Fig. 1). The TECs provide edge services
via semantic coders to subscribers on the terrestrial. An
AEC j with semantic coders hovers in the air and assists
TECs in providing edge services to subscribers. The semantic
communication task processing can be performed in TECs and
AEC j. Furthermore, to optimize the allocation of network
energy resources, semantic extraction task locations allow
for replacement. For instance, in the case of a TEC with
insufficient computational resources, a part of the semantic
extraction tasks can be provided to the AEC via conventional
communication. The semantic extraction tasks are calculated
in new locations and the semantic information is then trans-
mitted to the subscribers. In addition, the semantic coders in
TECs and AEC j need to be updated in real-time according
to different tasks.

We assume that the energy power of AEC j hovers in
the air is P l

j . The free computational capability (free CPU-
cycle frequency) of AEC j is fj . Moreover, there are I TECs
within the service range of AEC j that provide edge service
to subscribers. We denote the data size of tasks that each TEC
i prepares to transmit semantic extraction tasks to AEC j as
mi,j bits. The semantic encoder execution latency of TEC i
for these tasks can be expressed as:

TC
i =

ami,j

fi
, (1)

where fi is the CPU-cycle frequency of TEC i to process these
semantic extraction tasks and the unit is cycles/s. Further, a is

the pure number of CPU-cycle consumed to calculate each 1-
bit [26]. According to [27], the computing power of the TEC
i can be denoted by

PC
i = κf3

i , (2)

where κ is the CPU architecture-related coefficient and is
considered to be the same across various devices [27]. We
thus have the execution energy consumption of TEC i for
these semantic extraction tasks as:

EC
i = κami,jf

2
i . (3)

Similarly, in the case of the TEC i provides the mi,j bits
semantic extraction task to the AEC j, the execution latency
and energy consumption of AEC j can be expressed as:

TC
j =

ami,j

fj,i
, (4)

EC
j = κami,jf

2
j,i, (5)

where fj,i is the CPU-cycle frequency that AEC j allocate
to the task bits mi,j . To ensure the QoS and subscribers’
satisfaction, in this paper, we assume fj,i = fi.

In addition, during the semantic extraction task providing
process, the data transmission rate of the TEC i to the AEC
j can be denoted by

rTi = Bi log2(1 +
pigi
σ2

), (6)

where Bi is the bandwidth of the communication channel
between the TEC i and the AEC j. Further, pi, gi and σ
are the transmission power, channel gain and additive white
Gaussian noise (AWGN) power in this channel, respectively.
We then can have the transmission delay as:

TT
i =

mi,j

rTi
=

mi,j

Bi log2(1 +
pigi
σ2 )

. (7)

Thus, the transmission energy consumption is

ET
i = piT

T
i =

pimi,j

Bi log2(1 +
pigi
σ2 )

. (8)

As the completed semantic extraction task result size is
much smaller than the task size, resembling [28], [29], we
ignore the transmit delay and energy consumption of trans-
mission tasks after semantic extraction.

For easy reference, the main parameters and their descrip-
tion used throughout this paper are presented in Table I.

III. STACKELBERG GAME THEORETIC INCENTIVE
MECHANISM DESIGN

To improve the AEN energy efficiency, the fairness optimiz-
ing assignment of the number of semantic compression tasks
processed by the TECs and the AEC is essential. Because we
found that when AEC edge resources are underutilized, the
hovering of airborne devices takes longer for the same amount
of energy. This results in a significant amount of energy being
wasted for hover rather than performing economically efficient
semantic message computing/transmission. Therefore, we con-
struct the TECs and the AEC interaction as a Stackelberg game
[30] from the economic perspective. Its objective is to enable
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TABLE I: NOTATION DEFINITION

Symbol Definition
f CPU-cycle frequency
m Bits of transmitted data
mt Bits of transmitted data during coder updating
TC Semantic execution latency
TT Transmission delay
EC Semantic execution energy consumption
ET Transmission energy consumption
Ej Available hover energy of AEC j
P l
j Energy power of AEC j hover in the air

Pn
j Energy power of AEC j utilizing with no economic benefit
b Unit bonus price
κ CPU architecture-related coefficient
α Net income monetary parameter
β Cost price monetary parameter
γ Sale price monetary parameter

energy wasted for AEC hovering to be utilized for semantic
extraction task processing to improve the network energy
efficiency. It thus incentivises TECs to additionally provide
partial semantic extraction tasks to the AEC in fairness, where
the AEC is trusted. The Stackelberg game is comprised of a
leader and followers, where the followers change their policies
according to the policies developed by the leader. Thus, the
proposed incentive mechanism consists of the game at the
AEC (leader) and the game at TECs (followers), which we
elaborate on in detail in the following two subsections.

A. Game at the AEC

We elaborate on the game of the AEC in this subsection.
First, AEC j can reaps more processing revenues when more
semantic extraction tasks from TECs are processed. The
energy used to process these tasks can be thought of as saved
hover energy. Correspondingly, the reduced hovering time also
reduces the revenue of the AEC j for processing regular tasks,
e.g., computing offloading, and computing tasks from TECs.
Furthermore, a portion of the total revenue of the AEC j is also
required to be paid to the TEC to create incentives. Without
loss of generality, we define the monetary utility Uj of the
AEC j as:

Uj = Nj +Rj −Bj −Gj . (9)

where Nj is the net income of AEC j to transmit semantic
extraction tasks to subscribers. The Rj is the cost price of AEC
j’s energy to process semantic tasks. This energy is originally
wasted for the hover. Moreover, Bj is the bonus paid to TECs
providing the tasks and Gj is the revenue loss of AEC j
due to the transfer of some holdup energy to the additional
semantic extraction execution resulting in a reduction of the
holdup time. We consider the net income Nj and cost price
Rj as the energy consumption similar to the previous study
[31]. We have

Nj(mi,j) = α

I∑
i=1

EC
j , (10)

Rj(mi,j) = β

I∑
i=1

EC
j , (11)

where α > 0 is the net income monetary parameter and β > 0
is the cost price monetary parameter of energy. We further set
γ is the sale price monetary parameter and γ = α+ β.

The revenue loss Gj depends on the aerial hover time and
we define it as revenue loss of not performing its regular tasks.
To obtain the Gj , we first formula the residence time of AEC
j without additional semantic compression tasks as:

T 0
j (mi,j) =

Ej

P l
j + Pn

j + κf3
j0

, (12)

where Ej is the available hover energy of AEC j and fj0 is
the CPU-cycle frequency required for the AEC j to perform
its regular tasks. Further, P l

j is the AEC power for hovering in
the sky and Pn

j is the AEC utilizing power with no economic
benefit. We then have the residence time of AEC j with
additional semantic compression tasks as:

T 1
j (mi,j) =

Ej − ej
P l
j + Pn

j + κf3
j0

, (13)

where ej =
∑I

i=1 E
C
j is the energy consumption of the AEC

j to execute the provided tasks. This is due to the energy
consumption ej of processing semantic tasks reducing the total
energy Ej of the AEC. Therefore, we can find the Gj as:

Gj(mi,j) = γκf3
j0(T

0
j − T 1

j ), (14)

where γ is the sale price monetary parameter as energy here
is not sold and receives zero economic benefit.

In addition, we set the unit bonus price of each task bit
being transmitted from the TEC to the AEC to b. The bonus
paid Bj to TECs providing the tasks can be expressed by

Bj(b,mi,j) =

I∑
i=1

bmi,j . (15)

Therefore, we have

Uj(b,mi,j) = γ

I∑
i=1

EC
j −

I∑
i=1

bmi,j − γκf3
j0(T

0
j − T 1

j ).

(16)

Mathematically, the AEC’s game problem can be presented
as:
Problem 1:

max
b

γ

I∑
i=1

EC
j −

I∑
i=1

bmi,j − γκf3
j0(T

0
j − T 1

j ) (17a)

s.t. fj0 +

I∑
i=1

fj,i ≤ fj (17b)

b > 0 (17c)
Ej > ej (17d)
if mi,j = 0, fj,i = 0 (17e)

where constraint (17b) ensures the CPU-cycle used for seman-
tic processing is less than the total AEC computational capac-
ity. Furthermore, constraint (17c) guarantees the semantic task
unit price is greater than 0 and constraint (17d) is intended to
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ensure the AEC has sufficient energy to process the semantic
task. Constraint (17e) shows the relationship between mi,j and
fj,i.

B. Game at TECs

Similarly, based on energy variation, we can define the
utility of a TEC i as:

Ui = Bj −Ni − Ct
i − Si. (18)

where Bj is the bonus gain of TEC i from the AEC j and Ni is
the net income of processing semantic tasks. These parameters
are the same as Eq. (9). Moreover, Ct

i is the transmission cost
from the TEC i to the AEC j. In particular, Si is the potential
decrease in subscriber satisfaction due to the change in the
location of the semantic transmission service. First, based on
Eq. (15), we have Bj as:

Bj(b,mi,j) = bmi,j . (19)

The Ni from Eq. (18) is the net income forgone of TEC
i to transmit semantic compression tasks to subscribers. The
net income is transferred to the AEC. Therefore, similar to
Eq. (10), we have the net income forgone of TEC i as:

Ni(mi,j) = αEC
i . (20)

In addition, Ct
i is the transmission energy revenue loss from

the TEC i to the AEC. As no economic benefit is generated
from this energy, we denoted the Ct

i by

Ct
i (mi,j) = γET

i . (21)

In Eq. (17) Si is set as the satisfaction revenue change
of TEC i due to the semantic transmission tasks transfer
from the TEC to the AEC. The lower satisfaction results
in a lower motivation for subscribers to access the edge
services, resulting in lower gains. In this paper, we argue that
subscriber satisfaction is related to task processing delay. We
hence model the satisfaction revenue as a logarithmic function
related to execution delay. Because the logarithmic function
based on execution delay precisely expresses the satisfaction
of subscribers with the edge services [32], [33]. The Si can
be denoted by

Si(mi,j) = φ(ln(1+ θ−TC
i )− ln(1+ θ−TC

j −TT
i )), (22)

where φ ≥ 0 is the monetary parameter and θ ≥ TC
j + TT

i to
ensure the satisfaction is positive. Therefore, we have

Ui(b,mi,j) = bmi,j − ακami,jf
2
i − γET

i

− φ(ln(1 + θ − TC
i )− ln(1 + θ − TC

j − TT
i )). (23)

In addition, we also need to consider the privacy leakage of
TECs. Because even though the AEC is trusted, setting a TEC
privacy breach tolerance threshold ζ is necessary to prevent
possible attacks. According to [34], we have the relationship
between transfer tasks bits and privacy leakage value pri as:

pri = log2(1 + e
1−mi+1

mi,j ). (24)

Algorithm 1 EGTIM

1: Initialization: semantic transmission tasks mij , CPU-cycle
frequency fi, the maximum number of iteration K, the
stopping criterion threshold ξ > 0, and learning rate ς

2: for each i = 1, 2, ..., I
3: Derive optimal m∗

i,j , i.e., fi(b) by ∂Ui

∂mi,j
= 0

4: end for
5: Substitute fi(b) in Uj(b)
6: while k < K
7: b

′
= b− ς ▽ Uj(b)

8: b
′′
= b, b = b

′

9: until b
′′ − b < ξ

10: end while
11: Derive optimal mi,j according to optimal b
12: return b and mi,j

where mi is the number of training data that TEC i have.
Hence, we can have the upper bound of transfer tasks bits
mmax

i,j via pri < ζ.
The TECs’ game problem can be expressed as:

Problem 2:

max
mi,j

bmi,j − ακami,jf
2
i − γ

pimi,j

Bi log2(1 +
pigi
σ2 )

− φ(ln(1 + θ − TC
i )− ln(1 + θ − TC

j − TT
i )) (25a)

s.t. 0 ≤ mi,j ≤ mmax
i,j (25b)

C. Nash equilibrium for the game

The game of TECs and the AEC can model as a Stackelberg
game. To guarantee fairness, the objective of the TECs is to
maximise their utility by simultaneously selecting the most ap-
propriate mi,j when given the known unit price b. Meanwhile,
the AEC’s objective is to maximise its utility by varying b, for
a known mi,j . The game can be expressed by

Ui(b
∗,m∗

i,j) ≥ Ui(b
∗,mi,j), (26)

Uj(b
∗,m∗

i,j) ≥ Uj(b,m
∗
i,j), (27)

where b∗ and m∗
i,j are solutions in which the parties jointly

pursue the optimal strategies, i.e., the Nash equilibrium (NE)
point(s). We demonstrate the existence of NE in this game.
Existence of NE:

The second-order partial derivative of Ui(b
∗,mi,j) can be

denoted by

∂2Ui

∂m2
i,j

= φ((

a
fi

θ − TC
i + 1

)2 − (

a
fi

+ 1
rTi

θ − TC
i − TT

i + 1
)2). (28)

Since θ − TC
i + 1 > θ − TC

i − TT
i + 1 and a

fi
< a

fi
+ 1

rTi
,

we can observe that ∂2Ui

∂m2
i,j

< 0. Hence, Ui is concave in mi,j .
As the strategy set of the TEC i is also compact and convex,
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based on the Debreu-Glicksberg-Fan theorem [30], the NE of
this game exists.

In order to achieve NE, we utilize the backward induction
approach in game theory and obtain the optimal strategies of
followers (TECs) first. Subsequently, based on these TECs’
strategies, the leader’s (AEC’s) optimal strategy is developed.
Thus, we first derive the first-order partial derivative of Ui as:

∂Ui

∂mi,j
= b− ακaf2

i − γ
pi
rTi

− φf2
i (θ + 1)

(fi − ami,j + θfi)(rTi fi − fimi,j − rTi ami,j + rTi θfi)
.

(29)

As Ui is concave in mi,j , the maximum of Ui and cor-
responding mi,j thus can be derived by ∂Ui

∂mi,j
= 0. Due

to it being hard to express, we simply denoted the optimal
m∗

i,j = fi(b). Therefore, the utility function of Uj can be
rewritten as:

Uj(b) =γ

I∑
i=1

κafi(b)f
2
j,i −

I∑
i=1

bfi(b)

− γκf3
j0(T

0
j − T 1

j ). (30)

If we can derive the maximum Uj and corresponding b, we
therefore can obtain the corresponding m∗

i,j in a closed-form
based on Eq. (29). However, due to the complexity of the Eq.
(30), we cannot derive the NE closed form. Fortunately, b and
mi,j both have boundaries. The NE thus can be obtained by
performing a gradient descent method [35] over b and mi,j .
The solution step is shown in Algorithm 1.

IV. EFFICIENT DISTRIBUTED LEARNING DESIGN

The application of semantic communication significantly
improves the network QoS. Nevertheless, how to update users’
ML-based semantic coders efficiently and accurately in real-
time becomes one of the biggest challenges of semantic com-
munication studies. FL is a potential approach to cope with
the challenge of semantic coder updates in the network [23].
Nevertheless, the 3-D network environment is sophisticated,
and energy limited. In particular, the case where the users’
training data are non-IID significantly reduces the semantic
communication QoS. To address these challenges, we propose
a GEDL framework for AENs (Fig. 2). Specifically, TECs
first transmit some semantic communication transmission tasks
to the AEC based on our proposed renewed EGTIM for
semantic coder updating. The TECs then update the semantic
coder based on their training data and transmit the new coder
model to the AEC for the federated aggregation. Subsequently,
the AEC performs the federated aggregation and retrains the
aggregated model utilizing the tasks provided by TECs. This
is because AEC is flexible in terms of data collection, it is
often used as a federated aggregation node [36]. Finally, the
AEC sends back the model to participated TECs and completes
one training epoch. The model accuracy thus can be improved
while maximising energy efficiency. We will demonstrate these
in our simulations.

Fig. 2: The process of proposed GEDL.

We first renew the EGTIM for semantic coder updating. As
increased semantic coder accuracy can improve the network
QoS, it enhances network revenue. Similar to [37], we utilize
a logarithmic function to model the relationship between
training accuracy and training task size. The revenue of model
accuracy improvement thus can be denoted by

At
j = δ(ln(1 +

I∑
i=1

mt
i,j) + η), (31)

where mt
i,j is the proving task bits from the TEC i to the

AEC j. The difference between mi,j and mt
i,j is that mi,j is

the providing tasks during trained semantic coder transmission
and mt

i,j is the providing tasks during semantic coder training.
Further, δ is the monetary parameter and η is the basic
accuracy of FL.

Therefore, we should update the utility function of the AEC
j as:

U t
j = At

j +Rt
j −Bt

j −Gt
j . (32)

Similar to Eq. (9), in Eq. (32), Rt
j = βκaf t2

j

∑I
i=1 m

t
i,j is the

energy cost revenue of AEC j gained for additional training
mt

i,j data and Bt
j is the bonus paid from the AEC j to TECs

providing the tasks. Further, Gj is the gain loss of the AEC
j due to the transfer of some holdup energy to additional
training.

Therefore, the game problem for AEC j when coder training
can be presented as:
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Problem 3:

max
b

δ(ln(1 +

I∑
i=1

mt
i,j) + η) + βκaf t2

j

I∑
i=1

mt
i,j

−
I∑

i=1

bmt
i,j − γκf3

j0(T
0
j − T 1

j ) (33a)

s.t. fj0 + f t
j ≤ fj (33b)

b > 0 (33c)
Ej ≥ ej (33d)
if mt

i,j = 0, f t
j = 0 (33e)

where f t
j is the CPU-cycle frequency of the AEC j to perform

the additional training after federated aggregation. Due to the
requirement to perform federated aggregation, the power of
AEC j for the regular task without economic benefit also needs
to be plus the aggregation power. Furthermore, the reduction
in training sample size reduces the model accuracy and thus
affects the accuracy of the model after federated aggregation
[38]. Therefore, TECs still train the number of new tasks they
have.

The utility function of proving semantic transmission tasks
thus can be changed from Eq. (18) by

U t
i = Bt

i − Ctra
i − St

i , (34)

where Bt
i is the training bonus gain of TEC i from the AEC

j and Ctra
i is the transmission energy consumption. Further,

St
i is the revenue change due to the satisfaction change. As

satisfaction is associated with training time, we have

St
i = φ(ln(1 + θt − T t

i )− ln(1 + θt − T t
j − T a

i )), (35)

where T t
i is the distributed learning training computing time

without AEC additional training, i.e., FL training computing
time. Further, T a

i is the AEC additional training time. Since the
training time tends to be much greater than the training data
transmission time, we ignore the variation in satisfaction due
to the transmission time. Hence, we have the game problem
for the TEC i during training new coders as:
Problem 4:

max
mt

i,j

bmt
i,j − γ

pim
t
i,j

Bi log2(1 +
pigi
σ2 )

− φ(ln(1 + θt − T t
i )

− ln(1 + θt − T t
i − T a

i )), (36a)

s.t. 0 ≤ mt
i,j ≤ mt,max

i,j (36b)

where mt,max
i,j is the maximum available providing training

data considering the risk of privacy leakage arising. Further-
more, mt

i is the total training task bits of the TEC i. It can
be found from Problem 4 that the strategy set of the TEC i is
also compact and convex as same as Problem 2. In addition,
the second differentiation of U t

i is similar to Ui and concave
in mt

i,j . Thus, the NE of this game is still existing and the NE
point can be achieved by Algorithm 1.

V. SIMULATION RESULTS

In this section, we provide simulation results to validate
the performance of the proposed EGTIM and GEDL. First,
we elaborate on the energy efficiency of our EGTIM. The
advantage of our GED framework is then assessed by compar-
ing it with baseline distributed learning in image transmission
scenarios [22], [23].

A. EGTIM

To the best of our knowledge, there is little previous research
on the study of energy-efficient semantic communication in
AEN networks. Therefore, in simulations, we demonstrate
the effectiveness of EGTIM compared to the straightforward
employment of semantic communication in AENs. We first
elaborate on the simulation settings in assessing the perfor-
mance of our proposed EGTIM. We assume there are 5 TECs
in the service range of the AEC j. To better demonstrate our
proposed mechanism, we assume that all TECs have the same
conditions. Similar to [27] and [29], we set a = 120; pi = 0.2
w; κ = 10(−26); fi = 0.5 × 109 cycles/s; fj0 = 0.5 × 109

cycles/s. Further, if not mentioned specifically, we assume
the monetary parameter α = 1, β = 1 and thus γ = 2. The
hold-up power of the AEC is set as 1 w and by default the
constraints are all satisfied.
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Fig. 3: NE existence under the proposed EGTIM.

In Fig, 3, the existence of NE is demonstrated. It can be
observed that as the unit reward value increases, the optimal
task size that TECs are willing to provide also increases. This
is due to the increased transfer task size allowing TECs to
earn greater benefits as the unit rewards increase. However,
the utility function of the AEC shows an increasing trend
followed by a decreasing trend. There is therefore an NE point
that maximises the utility of the AEC while ensuring that the
utilities of TECs are maximised (i.e., optimal transfer task
size).

Fig. 4 illustrates the energy savings in joules (J) at different
amounts of TECs and different hover consumption power.
We define energy saving as the reduction in wasted hover
consumption minus the lost energy consumption for regular
AEC tasks and the power consumption of TECs transmitting.
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Mathematically, the energy saving equals Rj

β − Gj+Ct
i

γ . As
can be observed, more energy can be saved as the number of
TECs increases. This is due to the fact that the increase in the
number of TECs decreases the energy consumption in hover
and outweighs the resulting loss raise. It is notable that the
number of TECs does not grow indefinitely as the AEC has
a finite computing capacity. In addition, the higher the hover
power, the greater the energy saving, but the magnitude of
the increase is decreasing. Because the hover power increase
means consuming the same energy for additional semantic
transmission tasks, the AEC can be maintained on air for a
longer time. The corresponding cost loss thus falls and the
magnitude of the increase is decreasing as the percentage of
hover energy consumption of the AEC becomes larger.
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Fig. 4: Energy saving of proposed EGTIM in various scenar-
ios.
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Fig. 5: Effect of different CPU-cycle on providing task size.

In Fig. 5, we evaluate the influence of different CPU-cycle
on providing task size from TECs to the AEC. It is observed
that more CPU-cycle frequency required for semantic task
transmission makes TECs more inclined to transfer more task
bits. However, the increase in CPU-cycle frequency required
for regular tasks results in lower providing task sizes. This
is because the increased CPU-cycle frequency required for
tasks increases the efficiency of AEC hover energy utilization.
Therefore, TECs are biased towards providing more tasks for

more revenue. Further, the increased fj0 increases the hover
time reduction benefit loss and therefore reduces the overall
data transfer revenue and hence the unit reward.

B. GEDL

To estimate our GEDL, we employ the convolutional neural
network (CNN) as the semantic coder and set the appli-
cation scenario as an image transmission environment. The
semantic coder setting is the same as the previous semantic
communication study, i.e., [7]. Further, we train models on the
CIFAR-10 [39] dataset with 60000 training data and 10000
test data, which all have 10 class images. As in the same
previous subsection, we assume there are 5 TECs involved
in the training. To create the non-IID training environment,
we enable each TEC in training to have only four classes of
the training data in the different 10000 CIFAR-10 data. The
transmission accuracy is determined by the PSNR, which is
a criterion for the quality of image transmission in semantic
communication [7]. We have

PSNR = 10lg
MAX2

∥x− x̂j∥2
, (37)

where MAX is the maximum value for a pixel and x is the
input of the image and x̂j is the output via the semantic coder.
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Fig. 6: The accuracy of various training frameworks with the
AEC input samples grows.

Fig. 6 demonstrates the comparison of accuracy under
different learning frameworks. We compare the different learn-
ing frameworks together when the training data is non-IID.
Furthermore, we also add the FL model with IID training data
as a reference. Since the input data of AEC remains 0 in FL-
based frameworks, the PSNR of FL-based frameworks did not
change as the AEC input samples grows. It is seen that as
the training data obtained by the AEC increases, the coder
accuracy also increases. In particular, the trend of the increase
exhibits a trend of the logarithmic function, thus verifying our
hypothesis in Eq. (31). In addition, with the increase in the
volume of data, the accuracy of the proposed GEDL increased
and even exceeded the performance of FL trained with the IID
model. The accuracy of our proposed GEDL without FL also
rapid growth. This is because the greater the amount of data
AEC has, the more the training process approaches central
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learning. The training data is mixed together for training and
therefore the accuracy increases. Nevertheless, it is noteworthy
that due to privacy, AEC’s available computing resources and
energy constraints, the data AEC obtains is limited. However,
our proposed GEDL is always more accurate than FL with the
non-IID training scenario.
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Fig. 7: Convergence speed of different training frameworks.

5 6 7 8 9

Number of the TEC

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

E
n
e
rg

y
 s

a
v
in

g
 (

J
)

Hover power=1w

Hover power=1.1w

Hover power=1.2w

Fig. 8: Energy saving of proposed GEDL in various scenarios.

Fig. 7 shows the comparison of the convergence speed of
FL and our proposed distributed learning. We also included FL
trained with the IID data as a reference. It can be observed
that all learning eventually reaches convergence and the time to
reach convergence is almost the same. However, our proposed
GEDL is always more accurate than FL after each communica-
tion round. This is because our proposed GEDL is based on the
FL for accuracy improvement and thus it increases the training
accuracy but needs the FL process to reach convergence.

In Fig. 8, the energy savings in joules (J) at different
amounts of TECs and different hover consumption power are
shown. We set the training epoch is 200. We can see that in
contrast to Fig. 4, there is a declining trend in energy savings
as the number of TECs increases. This is because accuracy
revenue shows a logarithmic function trend. Providing more
data when there are more TECs may increase energy savings,
but not the corresponding accuracy gains. As a result, the
total task size provided by TECs is decreasing and thus

decreases the total energy saving. However, the GEDL we
propose can always improve energy efficiency and save energy.
Furthermore, the magnitude of the energy saving increase with
the hover power increase varies from Fig. 4. It is likewise due
to the existence of the trend in the logarithmic function of
accuracy revenue. The decrease in regular task revenue due
to time reduction makes the task size increase dramatically in
order to reach the NE point.
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Fig. 9: The impact of β value on energy saving.

Fig. 9 illustrates the impact of changes in β value on
energy saving. We evaluate this by adjusting the size of the
energy cost monetary factor β. The smaller β means a higher
energy cost price. We can observe that as the cost price
grows, the overall energy saving of the network also rises
exponentially. Due to the reduction in net income, the network
members are more inclined to save energy for monetary
benefits. Consequently, mt

i,j from the TEC i increases sharply
in order to reach the NE point, thus making the energy saving
increase.

VI. CONCLUSIONS

In this paper, we first proposed a novel energy-efficient
semantic communication system in AENs. We then presented
an EGTIM based on the Stackelberg game. In our EGTIM,
the edge facilities on the terrestrial are incentivised to transfer
part of their semantic transmission tasks to the AEC via the
traditional communication encoder. The AEC performs the
semantic feature extraction of these tasks and transmits the
semantic information to the subscribers. The energy efficiency
of the aerial devices thus can be improved. In addition, we
further proposed a GEDL framework based on the renewed
EGTIM for energy-limited 3-D networks updating semantic
coders with non-IID training data. The simulation results
demonstrated the effectiveness of our mechanism and learning
framework.
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for Strategic Semantic Communication,” 2022 IEEE Information Theory
Workshop (ITW), Mumbai, India, 2022, pp. 279-284.
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