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Abstract

Safeguarding critical infrastructure is paramount as we face escalating natural hazards.

This thesis uses extreme value modelling to enhance our understanding and estimation

of extreme sea levels (ESLs) and river flows. We focus on the intrinsic complexities

of non-stationarity and dependence inherent in such phenomena and propose novel

statistical methodologies to address these challenges.

Coastal and fluvial flooding are some of the most widespread natural disasters today.

Estimates of ESLs and river flows can be useful for guiding design criteria of flood

defences. We illustrate how falsely assuming stationarity and independence affects

estimation. We find that current methods over- or under-estimate extreme events,

depending on the location of interest, which, if used for defence design, could lead to a

waste of resources or put communities at risk, respectively.

We develop a novel methodology for ESLs that accounts for non-stationarity in

skew surges and peak tides, the dependence between these components and their tem-

poral dependence. We discuss how to simulate skew surge time series that replicate

their seasonality, temporal dependence and extreme values; these are useful for coastal

erosion maintenance planning and predicting surge barrier closure rates. Lastly, we

present a novel model for temporal dependence in extreme river flows based on a max-

autoregressive moving average process. We derive new extremal dependence features

and show how this process can capture the unique features of river flow extremes. Ad-

ditional methods are discussed relevant to the Extreme Value Analysis conference data
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challenges.

Ultimately, this thesis contributes to advancing extreme value modelling techniques

tailored specifically to protecting and maintaining critical infrastructure against natural

hazards. By enhancing our ability to prepare for extreme events, our findings can

inform policy-making and infrastructure planning to foster greater resilience in the face

of escalating natural hazards.
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Chapter 1

Introduction

1.1 Motivation

In the face of escalating environmental challenges resulting from anthropogenic global

warming, it has become more crucial than ever to accurately model, forecast and predict

extreme environmental events. These events range from severe storms and wildfires to

droughts and rising sea levels. At the time of writing, Storm Isha brings 99mph winds

and heavy rain to the UK disrupting road, rail and air travel, leaving 56,000 homes

without power and two fatalities. This follows just one week after record-breaking low

temperatures of −15◦C were recorded in Scotland. On the other hand (and the other

side of the pond), California has faced increasingly severe wildfires in the past decade

due to prolonged droughts and changing climate patterns, leading to the loss of lives

and homes. As the global population increases and more infrastructure is built, the

impacts felt by extreme environmental events become more significant (Seneviratne

et al., 2012, 2021).

We are particularly interested in rare and potentially destructive phenomena called

natural hazards; examples include floods, droughts, earthquakes and wildfires. Cli-

mate change is impacting the frequency and intensity of natural hazards (Seneviratne

1
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et al., 2021). These events can have significant and wide-ranging impacts on society,

depending on the type and magnitude of the hazard itself, but also the vulnerability

of the population and the level of preparedness/resilience in place. Determining the

likelihood of such events enhances our disaster preparedness and helps to implement

effective policies so that the impacts on society are minimised.

In this thesis, we focus on flooding as one of the most widespread natural disasters,

affecting millions of people globally each year. Specifically, we are interested in coastal

and fluvial flooding. Coastal flooding poses significant risks to human communities

and the natural environment, especially in the UK due to its extensive coastline that is

exposed to various weather patterns. Several factors contribute to the risks associated

with coastal flooding, including mean sea level rise, storm surges, high tides and large

waves. Similarly, fluvial (or riverine) flooding poses an increasing risk to communities

as we observe heavier rainfall events and urbanisation in many catchment areas. Conse-

quences of flooding include infrastructure damage, loss of life and injury, displacement

of people and increased erosion. Accelerating rates of erosion pose significant risks

to the environment (e.g., habitat destruction) and to society (e.g., undermining of in-

frastructure such as roads, buildings and utility lines). As sea levels continue to rise,

the importance of proactive measures to reduce vulnerability and enhance resilience

becomes increasingly critical for natural hazards.

Flooding poses unique risks to the nuclear industry, for example, impacts to the

cooler system (leading to potential overheating of the reactor core), loss of electrical

power (affecting the ability to control and operate safety systems) and ingress of wa-

ter into critical areas (e.g., the reactor buildings and auxiliary structures) (Office for

Nuclear Regulation, 2021). This was demonstrated by the Fukushima nuclear accident

in 2011, where, following an earthquake, a tsunami resulted in electrical grid failure

and damaged the power plant’s backup energy sources so that the reactors could not

be cooled; this resulted in the release of radioactive contaminants into the surrounding
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areas (International Atomic Energy Agency, 2015). EDF Energy (the industrial part-

ner of this PhD project, funded by EDF Group) manages eight nuclear power stations

across the UK, five of which are generating zero-carbon electricity and three that are

in the defueling phase (the first stage of decommissioning). EDF Energy’s nuclear fleet

is located in the UK coastal zone so is susceptible to flooding and erosion.

For coastal infrastructure, the inference of such extreme events helps guide design

criteria for flood defences. Flood defences, such as a sea wall or flood barrier (located

at an estuary) play a critical role in safeguarding lives and protecting infrastructure.

Design criteria require that defences are built to withstand rare events but with limited

resources, these cannot be built too conservatively. For example, the Office for Nuclear

Regulation (the UK’s independent nuclear regulator for safety and security) set the

design basis criterion for natural hazards at a frequency of exceedance of 10−4 per

year (Office for Nuclear Regulation, 2014). Similarly, flood defences at other locations,

such as the Thames Barrier, are often built to withstand events that are likely to occur

within their projected T -year lifespan (Environment Agency, 2021). With ever-changing

environmental conditions, flood defences must also be maintained; as the frequency of

freak weather events increases as a result of climate change, the life expectancy of

defences may decrease. It is also fundamental to understand the intensity and duration

of extreme sea levels and river flows for erosion maintenance planning.

Statistical modelling of natural hazards represents a challenge since, by definition,

rare events typically do not occur within the observational range so records are sparse.

Extreme value theory is a powerful tool that can be used to estimate events that are

expected to occur, or be exceeded, at least once in a T -year period. Therefore, these

estimates are fundamental for guiding the design criteria of flood defences. Standard

statistical methods are likely to perform poorly as the T -year period of interest is typi-

cally longer than the historical record of data and we may be interested in events that

are more extreme than any previously observed. The underpinning asymptotic, or limit,
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arguments for extreme value theory facilitate a framework which allows extrapolation

beyond the maxima of data to estimate such events.

Extreme value theory has been effectively used to guide policies surrounding coastal

and fluvial hazards, including for guidance surrounding nuclear safety from natural

hazards (Office for Nuclear Regulation, 2021). However, these existing methods make

several unjustified and restrictive assumptions about the data that we challenge in this

thesis. We account for non-stationarity and temporal dependence in both sea levels

and river flow, although these considerations extend beyond the applications discussed

here. For our extreme sea level analysis, we decompose the sea levels into surge and tide.

We account for within- and across-year non-stationarity in both components owing to

seasonality and anthropogenic climate change. We also model the dependence between

the two variables and their temporal dependence, which results from extreme weather

events spanning multiple days. As river flows exhibit a unique temporal dependence

structure, we develop the theory for modelling this based on an extension of time series

models by deriving its extremal properties. By understanding the temporal dependence

of both variables, we learn about prolonged periods in extreme states that can accelerate

erosion rates.

Our results demonstrate an improvement on those used in practice. Our model for

extreme sea levels is being implemented by the Environment Agency (the Government

organisation responsible for environmental protection in the UK) for their updated

coastal flood boundary report (Environment Agency, 2018); this periodically assesses

and updates flood risk information, and forms the basis for design decisions on future

coastal flood defence projects. In combination with our extreme river flow analysis, our

work is also of interest to the Thames Barrier in determining the life expectancy of the

barrier as we face unprecedented environmental challenges.
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1.2 Overview of thesis

This thesis aims to develop improved methods for estimating extreme sea levels and

river flows, that can be used for policy making and protecting livelihoods/infrastructure.

The structure of the thesis is as follows:

Chapter 2 provides an overview of the existing methods for modelling univariate

extreme values. We begin by deriving the extreme value models under strict assump-

tions about the data, that are not tenable in reality. Then we detail how to relax these

assumptions so that environmental data can be reliably modelled and list the existing

approaches for doing so.

Chapter 3 details our novel methodology for estimating extreme sea levels that is the

first to capture seasonality, interannual variations and longer term changes. We use a

joint probabilities method, with skew surge and peak tide as two sea level components.

The tidal regime is predictable but skew surges are stochastic. We present a statistical

model for skew surges, where the main body of the distribution is modelled empirically

whilst a non-stationary generalised Pareto distribution (GPD) is used for the upper

tail. We capture within-year seasonality by introducing a daily covariate to the GPD

model and allowing the distribution of peak tides to change over months and years.

Skew surge-peak tide dependence is accounted for via a tidal covariate in the GPD

model and we adjust for skew surge temporal dependence through the subasymptotic

extremal index. We incorporate spatial prior information in our GPD model to reduce

the uncertainty associated with the highest return level estimates. Our results are

an improvement on current return level estimates, with previous methods typically

underestimating. We illustrate our method at four UK tide gauges. This chapter is

published as D’Arcy et al. (2023b). We have also developed an accompanying R package

to implement our methodology, this is presented in Appendix B.

Chapter 4 extends the methodology of Chapter 3 to account for the effects of climate

change on extreme sea level estimates. As the global climate changes, rising sea levels
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combined with increases in storm intensity and frequency pose an increasing risk to

coastline communities. We present an updated method for estimating extreme sea

levels that accounts for the effects of climate change on extreme events that are not

accounted for by mean sea level trends. We model extreme skew surges using a non-

stationary GPD with covariates accounting for climate change, seasonality and skew

surge–peak tide interaction. We develop methods to efficiently test for extreme skew

surge trends across different coastlines and seasons. We illustrate our methods using

data from four UK tide gauges and estimate sea level return levels when accounting for

these long term trends. This chapter is published as D’Arcy et al. (2022).

Chapter 5 presents a procedure for simulating skew surges that focuses on capturing

their temporal dependence structure, as well as their seasonal behaviour and extreme

values using the ideas from Chapter 3. We use a copula framework to model the pairwise

dependence of values separated by different lags, assuming the data follows a Markov

process. Since the strength of temporal dependence varies with the time of year, we

allow the copula parameters to vary with time using harmonics. Understanding the

temporal dependence of skew surges is fundamental to coastal maintenance planning;

severe storms accelerate rates of coastal erosion which is further exacerbated when

storm events last multiple days with prolonged levels of high skew surge. Additionally,

simulated skew surge time series are useful for surge barrier management, such as

the Thames Barrier, UK. These simulations can be used for estimating future closure

rates and for planning barrier maintenance, which is restricted due to time constraints.

We provide simulation results at four UK tide gauges, including Sheerness which is

located at the Thames Estuary. Here, we compare our results with simulations that

do not account for temporal dependence and demonstrate the implications this has on

estimating surge barrier closure rates.

Chapter 6 derives the extremal properties of max-autoregressive moving average

(Max-ARMA) models which are powerful tools for modelling time series data with
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heavy-tailed behaviour. These are a non-linear version of the popular auto-regressive

models. River flow data typically have features of heavy tails and non-linearity, as

large precipitation events cause sudden spikes in the data that then exponentially de-

cay. Therefore, stationary Max-ARMA models are a suitable candidate for captur-

ing the unique temporal dependence structure exhibited by river flows. This paper

contributes to advancing our understanding of extremal properties of stationary Max-

ARMA processes. We detail the first approach for deriving the extremal index, the

lagged asymptotic dependence coefficient, and an efficient simulation for a general

Max-ARMA process. We use the extremal properties, coupled with the belief that

Max-ARMA processes provide only an approximation to extreme river flow, to fit a

Max-ARMA model which broadly captures river flow behaviour over a high threshold.

We make our inference under a reparametrisation which gives a simpler parameter space

that excludes cases where any parameter is non-identifiable. We illustrate results for

river flow data from the UK River Thames.

Chapter 7 details a methodology proposed for the Extreme Value Analysis 2021

conference data challenge. We aim to predict the number and size of wildfires over the

contiguous United States between 1993 and 2015, with more importance placed on ex-

treme events. In the data set provided, over 14% of both wildfire count and burnt area

observations are missing; the objective of the data challenge was to estimate a range

of marginal probabilities from the distribution functions of these missing observations.

To enable this prediction, we assume that the marginal distribution of a missing ob-

servation can be informed using non-missing data from neighbouring locations. In our

method, we select spatial neighbourhoods for each missing observation and fit marginal

models to non-missing observations in these regions. For the wildfire counts, we assume

the compiled data sets follow a zero-inflated negative binomial distribution, while for

burnt area values, we model the bulk and tail of each compiled data set using non-

parametric and parametric techniques, respectively. Cross validation is used to select
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tuning parameters, and the resulting predictions are shown to significantly outperform

the benchmark method proposed in the challenge outline. We conclude with a discus-

sion of our modelling framework and evaluate ways in which it could be extended. This

chapter is published as D’Arcy et al. (2023a)

Chapter 8 introduces a variety of methods to capture the extremal behaviour and

model tail behaviour of complex environmental phenomena in practice, which were used

by the Lancopula Utopiversity team to tackle the data challenge of the Extreme Value

Analysis 2023 conference. This data challenge was split into four sections, labelled C1-

C4. Challenges C1 and C2 comprise univariate problems, where the goal is to estimate

extreme quantiles for a non-stationary time series exhibiting several complex features.

We propose a flexible modelling technique, based on generalised additive models, with

diagnostics indicating generally good performance for the observed data. Challenges C3

and C4 concern multivariate problems where the focus is on estimating joint extremal

probabilities. For challenge C3, we propose an extension of available models in the

multivariate literature and use this framework to estimate extreme probabilities in the

presence of non-stationary dependence. Finally, for challenge C4, which concerns a

50-dimensional random vector, we employ a clustering technique to achieve dimension

reduction and use a conditional modelling approach to estimate extremal probabilities

across independent groups of variables.

Chapter 9 concludes by summarising the contributions of this thesis and discussing

potential avenues for further work.



Chapter 2

Literature review

2.1 Introduction

This chapter details extreme value methods that are relevant to all aspects of the

thesis. Extreme value theory is a rapidly emerging area of statistics, where interest lies

in modelling the tails of a distribution where events are rare. Applications exist across

many sectors including environmental science, energy, finance and sports. Standard

statistical techniques that rely on large samples are unsuitable since data are scarce

in the tail. This motivates the necessity for extreme value models. Extreme value

theory provides a statistically rigorous framework for modelling extreme events, using

asymptotically justified theory, that can extrapolate beyond the range of observed data.

We begin by describing two approaches for modelling univariate extreme values in

Section 2.2. These approaches were initially derived under the assumption of indepen-

dent and identically distributed (IID) random variables, which is typically not tenable

in reality. In Section 2.3, we present existing methods used to extend these models

for sequences that are dependent but stationary. Lastly, in Section 2.4, we review

approaches for dealing with non-stationarity in extreme value models.

The ideas developed in this thesis lie within the univariate setting, where we are

9
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interested in observations of a single variable at a specific location. We acknowledge

there is ongoing research in both multivariate and spatial extreme value analysis; many

of our approaches could be extended to these situations. We refer the reader to Coles

(2001), Heffernan and Tawn (2004) and Huser and Wadsworth (2022), although this

list is certainly not exhaustive of the vast body of available literature.

2.2 Extreme value models

In this section, we discuss the two most widely used approaches for modelling extreme

values in the univariate setting: the generalised extreme value distribution for mod-

elling block maxima and the generalised Pareto distribution for modelling threshold

exceedances. We detail these in Sections 2.2.1 and 2.2.2, respectively. Coles (2001)

gives a thorough overview of these models. We restrict our attention to the upper tail,

although both methods can be easily adapted for the lower tail.

2.2.1 Generalised extreme value distribution

Let X1, . . . , Xn be a sequence of n ∈ N IID random variables with common distribu-

tion function F . Here, we are concerned with the behaviour of the random variable

Mn = max{X1, . . . , Xn}, denoting the maximum of the sequence. Understanding the

distribution of Mn provides insight into the extremal behaviour of the process. Theory

for the minima can be obtained analogously since,

min{X1, . . . , Xn} = −max{−X1, . . . ,−Xn}.

The distribution of Mn can be derived exactly, for all x ∈ R, as

Pr(Mn ≤ x) = Pr(X1 ≤ x, . . . , Xn ≤ x) = Pr(X1 ≤ x) · · ·Pr(Xn ≤ x) =
[
F (x)

]n
.
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However, this is not useful in practice for two reasons. Firstly, F is typically unknown.

Secondly for any x < xF , where xF is the upper endpoint of F , F n(x) → 0 as n → ∞

so the asymptotic distribution of Mn is degenerate with a point mass at xF .

Instead, we use the following result of Leadbetter et al. (1983). The Extremal Types

Theorem says that if there exist sequences of constants an > 0 and bn such that for all

x ∈ R,

Pr

(
Mn − bn
an

≤ x

)
=
[
F (anx+ bn)

]n → G(x) as n→ ∞, (2.2.1)

where G is a non-degenerate distribution function, then G is a member of one of the

following families:

Gumbel: G(x) = exp

{
− exp

[
−
(
x− b

a

)]}
for −∞ < x <∞,

Fréchet: G(x) =


0 x ≤ b

exp
{
−
(
x−b
a

)−α}
x > b,

Weibull: G(x) =


exp

{
−
[
−
(
x−b
a

)α]}
x < b

1 x ≥ b,

with parameters a > 0, b ∈ R and α > 0. A parameterisation to unify these three

distributions is given by

G(x) = exp

{
−
[
1 + ξ

(
x− µ

σ

)]−1/ξ

+

}
, (2.2.2)

where y+ = max{y, 0} and (µ, σ, ξ) ∈ R × R+ × R. This is known as the generalised

extreme value distribution (GEV) with parameters µ, σ and ξ representing the location,

scale and shape, respectively. For ξ > 0, this corresponds to the Fréchet distribution
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with a heavy upper tail, ξ < 0 the reversed Weibull with a finite upper limit and ξ = 0

the Gumbel with an exponential tail; ξ = 0 should be interpreted as the limit as ξ → 0.

Leadbetter et al. (1983) details the proof of this theorem. In practice, we assume that

for large n and all x ∈ R,

Pr

(
Mn − bn
an

≤ x

)
= G(x) = exp

{
−
[
1 + ξ

(
x− µ

σ

)]−1/ξ

+

}
.

Estimating the unknown normalising constants an and bn is not required because

they are absorbed into the location and scale parameters of the GEV, since if the above

equality holds, then for all x ∈ R,

Pr(Mn ≤ x) = G

(
x− bn
an

)
,

so in practice we model

Pr(Mn ≤ x) = exp

{
−
[
1 + ξ

(
x− µ

σ

)]−1/ξ

+

}
.

Parameters of the GEV are commonly estimated using likelihood inference (Coles,

2001), and this is the approach we take throughout the thesis. Other techniques,

such as Bayesian methods (Coles and Tawn, 1996) or probability-weighted moments

estimates (Hosking et al., 1985), can be adopted.

The GEV is the only class of distributions to satisfy the max-stability property.

That is, a distribution G is max-stable if, for any m ∈ N, there are constants αm > 0

and βm such that for all x ∈ R,

Gm(αmx+ βm) = G(x). (2.2.3)

That is, raising a max-stable distribution to the power ofm ∈ N results in a distribution

from the same family, apart from a change of location and scale. So taking the maximum
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of IID random variables with marginal distribution G gives a random variable with the

same distributional form i.e., the GEV with the same shape parameter (but different

location and scale parameters), following from equality (2.2.3). This motivates the

block maxima approach, where data of length k can be split into m blocks of equal

length n, where k = mn, and the m block maxima are treated as realisations from

the GEV. This max-stability property is analogous to the sum-stability property linked

to the well-studied central limit theorem, that motivates a Gaussian model for the

distribution of finite sample means.

The choice of block size n is critical as it induces a bias-variance trade-off. Small

blocks lead to a poor approximation by the limiting Extremal Types Theorem resulting

in bias, whilst large blocks mean there are fewer maxima as m = k/n, thus a greater

estimation variance. With IID data, this is an easier choice than in practice, as care

needs to be taken to ensure the identically distributed assumption. For example, this

could be invalidated by choosing seasonal blocks for environmental data. Letting n be

the number of observations in a year is common in environmental extreme value analysis

since this avoids these issues of non-stationary block maxima. We discuss these issues

further in Section 2.4.

Extreme quantiles xp, where G(xp) = 1 − p for p ∈ (0, 1) with p near zero, can be

estimated by inverting the form of the GEV in equation (2.2.2), to give

xp =


µ− σ

ξ
[1− {− log(1− p)}−ξ for ξ ̸= 0

µ− σ log{− log(1− p)} for ξ = 0,

and substituting in the parameter estimates. For G the annual maxima distribution,

the value xp is termed the return level with return period 1/p years; this is the level

we expect the annual maximum to exceed every 1/p years, on average. Equivalently,

this corresponds to a value exceeded once per year, with probability p. Return levels

are a common metric for assessing risk, especially in the environmental sector, where
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Figure 2.2.1: An illustration of the block maxima (left; with blocks corresponding to
years and indicated by vertical dashed lines) and threshold exceedance (right; with a
threshold of 2.8m, indicated by a horizontal dashed line) approach for defining extreme
values. Both approaches are applied to approximate twice daily sea level observations
from 2010-2020 at the Lowestoft tide gauge (BODC, 2020) shown in grey with extreme
observations shown in blue.

small values of p are typically of interest to estimate rare events. For example, in

the nuclear industry, regulators require accurate return level estimates for p = 10−4

to ensure that power stations are robust to extremely rare natural hazards (Office for

Nuclear Regulation, 2014). Accurate estimation of return levels is crucial for protection

against natural hazards, such as those discussed in this thesis.

2.2.2 Generalised Pareto distribution

A key limitation of the block maxima approach is that it is often wasteful of data;

observations may be recorded hourly, yet only the annual maximum is modelled. An

alternative, more widely used method, is to define extreme values as exceedances of

a high threshold. Figure 2.2.1 demonstrates how the peaks over threshold approach

typically considers more data than the block maxima approach. Within this framework,

all large events are included in the model (rather than one per year) and unusually small

annual maxima are excluded from the analysis.

For an arbitrary term X in an IID sequence of random variables with distribution

function F and some high threshold u, the stochastic behaviour of an extreme event is
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defined by,

Pr(X > u+ y | X > u) =
1− F (u+ y)

1− F (u)
for y > 0.

If the block maxima have limiting distribution G (as in distribution (2.2.2)), then

the threshold exceedances have a corresponding limiting distribution known as the

generalised Pareto distribution (GPD). For large n and a level u, the distribution of the

threshold exceedance X − un(u) of the threshold un(u), given that X > un(u) where

un(u) = bn + anu, is asymptotically,

Pr
(
X > un(x) | X > un(u)

)
→ H̄u(x) where H̄u(x) =

[
1 + ξ

(
x− u

σu

)]−1/ξ

+

,

for x > u as n→ ∞, with an, bn as in limit (2.2.1) and (σu, ξ) ∈ R+ × R the scale and

shape parameters, respectively. The shape parameter is the same as that for the GEV,

whereas the scale parameter is threshold dependent since σu = σ + ξ(u− µ) for µ and

σ the GEV parameters.

Assuming that the above limit holds in practice for a high threshold un(u) = u and

un(x) = x, then exceedances of this threshold have limiting GPD tail model,

Pr(X > x) = λu

[
1 + ξ

(
x− u

σu

)]−1/ξ

+

, (2.2.4)

for x > u where λu = Pr(X > u). For ξ > 0, this corresponds to X − u|X > u being

Pareto distributed with heavy tails, for ξ < 0 the GPD is light-tailed with a finite upper

endpoint and for ξ = 0 it corresponds to X − u|X > u being exponentially distributed.

Smith (1989) details the relationship between the GEV and GPD, and Coles (2001)

provides a formal justification for this model in describing threshold exceedances.

For inference, an appropriate threshold must be selected. This choice is analogous

to choosing a block size as in Section 2.2.1. A low threshold is likely to violate the

asymptotic basis of the model which will invoke bias, whilst a high threshold results
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in an increased variance of estimates due to a paucity of exceedances available for

inference. Diagnostics such as mean residual life plots and parameter stability plots

are common approaches for threshold selection (Coles, 2001). Parameter stability plots

are motivated by the threshold stability property: Davison and Smith (1990) state

that if X − u|X > u ∼ GPD(σu, ξ), then for any v > u such that Pr(X > v) > 0,

X−v|X > v ∼ GPD(σu+ξ(v−u), ξ). Scarrott and MacDonald (2012) give an overview

of various methods for threshold selection, although more recent methods have been

proposed by Wadsworth (2016), Northrop et al. (2017) and Murphy et al. (2023), with

these diagnostics exploiting the threshold stability property of the GPD.

As for the GEV, likelihood inference is typically used for parameter estimation,

although other approaches can be used. GPD parameters are estimated by maximising

the following log-likelihood function, where nu denotes the number of exceedances of

the threshold u, where exceedances of u are denoted by y1, . . . , ynu ,

ℓ(σu, ξ) =


−nu log σu − (1 + 1/ξ)

nu∑
i=1

log(1 + ξyi/σu) if ξ ̸= 0

−nu log σu − (1/σu)
nu∑
i=1

yi if ξ = 0.

(2.2.5)

Return levels are obtained similarly to the block maxima approach, by inverting the

GPD tail model given by expression (2.2.4). This gives us the value exceeded once every

m observations, so alterations need to be made to obtain return levels corresponding to

maxima over specific time periods, as opposed to counts of observations. Coles (2001)

details this procedure.

2.3 Extremes of dependent sequences

So far, the extreme value models have been derived assuming that the underlying

process is IID. However, in practice these assumptions are unrealistic. In this section,

we focus on relaxing the temporal independence assumption and instead focus on a
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stationary sequence of random variables {Xt; t ∈ Z}.

Stationarity is a more realistic assumption than IID for many environmental pro-

cesses. This corresponds to a series whose variables may be mutually dependent but

whose stochastic properties are homogeneous through time (Coles, 2001), i.e., they have

the same marginal distribution across time. Formally, a time series of random variables

{Xt; t ∈ Z} is stationary if the joint probability density function f of any set of values

in the series is the same as if they were all shifted in time by the same lag τ ∈ Z, so that

fXj1
,...,Xjn

(xj1 , . . . , xjn) = fXj1+τ ,...,Xjn+τ
(xj1 , . . . , xjn) for all n ∈ N and j1, . . . , jn ∈ N,

where j1 ≤ . . . ≤ jn and all (xj1 , . . . , xjn) ∈ Rn (Chatfield, 2013).

Dependence takes many forms, so we cannot generalise extremal behaviour without

imposing some constraints. Often, a condition is assumed that limits the extent of long

range dependence at extreme levels; this allows us to focus on the effects of short range

dependence (Leadbetter et al., 1983). A stationary series {Xt; t ∈ Z} is said to satisfy

the D(un) condition if, for all i1 < . . . < ip < j1 < . . . < jq, where i1, . . . , ip, j1, . . . , jq ∈

Z with j1 − ip > l,

∣∣Pr(Xi1 ≤ un, . . . , Xip ≤ un, Xj1 ≤ un, . . . , Xjq ≤ un) −

Pr(Xi1 ≤ un, . . . , Xip ≤ un) Pr(Xj1 ≤ un, . . . , Xjq ≤ un)
∣∣ ≤ α(n, l),

where α(n, ln) → 0 for some sequence ln, such that ln/n→ 0 as n→ ∞. This condition

ensures extreme events are near independent if they are sufficiently distant from each

other in time. Provided this condition is satisfied for an appropriate sequence un i.e.,

un = anz + bn where an, bn are as in limit (2.2.1), the limiting extreme value models of

Section 2.2 remain appropriate. Leadbetter et al. (1983) show that this condition holds

for all univariate, stationary Gaussian processes with a correlation function that decays

to zero geometrically, so for all stationary autoregressive moving-average, ARMA(p, q),

models.
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Under the D(un) assumption, the block maxima approach is still expected to be

asymptotically valid since temporal dependence in block maxima vanishes. Therefore,

as the block size tends to infinity, the block maxima can be considered independent of

each other. We discuss this further in Section 2.3.1. Similarly, the GPD remains appro-

priate for modelling the marginal distribution of threshold exceedances of a stationary

process {Xt; t ∈ Z with Xt > u} consisting of dependent realisations where, for exam-

ple, X1 and X2 could both be exceedances and be dependent. However, the likelihood

inference procedure with log-likelihood function (2.2.5) would not be appropriate for

modelling joint exceedances due to this dependence. We discuss methods for dealing

with dependent exceedances in Section 2.3.2.

Temporal dependence is a common theme throughout this thesis, as in the wider

extreme value theory context. Diagnostics for temporal dependence, including the

coefficient of asymptotic dependence and the extremogram, are detailed in Section 2.3.3.

We also discuss how to use copulas for modelling temporal dependence of Markov

processes in Section 2.3.4.

2.3.1 Block maxima and stationarity

If for un = anz + bn, with an and bn defined by limit (2.2.1), the D(un) condition holds

then the maxima of a stationary series will converge to a GEV distribution. Consider

a stationary process {Xt; t ∈ Z} with Mn = max{X1, . . . , Xn} and a sequence of IID

variables {X∗
t ; t ∈ Z} with M∗

n = max{X∗
1 , . . . , X

∗
n} with the marginal distributions of

Xi and X
∗
i equal for all i ∈ Z. As n→ ∞,

Pr

(
M∗

n − bn
an

≤ x

)
→ G1(x) if and only if Pr

(
Mn − bn
an

≤ x

)
→ G2(x),

where G1 is a non-degenerate distribution function and G2(x) = Gθ
1(x), for a constant

0 < θ ≤ 1. Specifically, if the distribution of the IID maxima is GEV with parameters
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(µ, σ, ξ), then the distribution of the stationary maxima is also GEV with parameters

(µ∗, σ∗, ξ) where µ∗ = µ− σ(1− θ−ξ)/ξ and σ∗ = σθξ.

The quantity θ is termed the extremal index; this captures the effect of the tempo-

ral dependence on the distribution of the maxima. For an independent series, θ = 1

however, the converse is not true; there are many stationary series with θ = 1 that

are not independent, for example, all Gaussian processes satisfying the D(un) con-

dition. Let Npn(un) denote the number of observations of {Xt, . . . , Xt+pn} to exceed

the threshold un, where pn = o(n). If Npn(un) ≥ 1, clusters are defined as the set

{Xt+i > un : i = 1, . . . , pn}. Then Npn(un) denotes the cluster size, which has limiting

probability mass function π defined by

π(m) = lim
n→∞

Pr(Npn(un) = m|Npn(un) ≥ 1),

for m ∈ N (Hsing et al., 1988). Leadbetter et al. (1983) characterise the extremal index

as the reciprocal of the limiting mean cluster size, where limiting refers to increasing

the threshold that defines exceedances to the upper endpoint. So θ−1 =
∑∞

m=1mπ(m).

Whereas O’Brien (1987) defines it in terms of the number of down-crossings at the end

of a cluster of threshold exceedances, i.e.,

θ = lim
n→∞

Pr(X2 ≤ un, . . . , Xpn ≤ un|X1 > un). (2.3.1)

It follows that, provided we can reasonably assume long range independence (large

enough block sizes will impose this), using the GEV family to model block maxima

remains appropriate. Therefore, when modelling block maxima data, dependence can

be ignored and we proceed as in Section 2.2.1 but with different parameters to those

of the corresponding independent series. However, as dependence levels increase, the

accuracy of the GEV as a limiting approximation is likely to diminish so care is needed

when modelling such data.
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2.3.2 Peaks over threshold and stationarity

The GPD remains appropriate for modelling the marginal distribution of exceedances

of a sequence containing dependent realisations. However, dependence in the series

invalidates the likelihood inference for jointly modelling exceedances, since this is based

on an IID assumption (see expression (2.2.5)). Alternative inference procedures can be

adopted, including the quasi-maximum likelihood estimators (Lee and Hansen, 1994).

A common approach for dealing with dependent threshold exceedances is declus-

tering. This involves filtering dependent observations to yield a set of approximately

independent threshold exceedances. Under a long range dependence assumption, es-

sentially very similar to the D(un) condition, separate clusters of exceedances may be

considered independent in the limit. Then values from different clusters are taken to be

independent as the threshold gets sufficiently large. However, values within a cluster

still exhibit dependence even at high thresholds. A common approach is to identify

these independent clusters above a high threshold and evaluate the characteristic of

interest for each cluster, then use these for inference as taking only one value from each

cluster (e.g., the maximum) gives an IID sample (Eastoe and Tawn, 2012).

There are different methods used to identify clusters. Coles (2001) discusses the runs

approach of Smith and Weissman (1994), this assumes exceedances belong to the same

cluster if they are separated by fewer than a specified number of values consecutively

below the threshold. Formally, let Wi be 1 if Xi > u and 0 otherwise, and let Nn(u)

be the number of exceedances of a high threshold u in the sequence {Xt, . . . , Xt+n} for

t ∈ Z and n ∈ N. Then Zn :=
∑n

i=1

[
Wi

∏
j=1 r(1−Wi+j)

]
is the total number of times

the final exceedance of a cluster is followed by r ∈ N non-exceedances. Then the runs

estimate of the extremal index is given by

θ̂ = Zn/Nn(u). (2.3.2)
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The value r is termed the run length and represents the number of values below the

threshold between clusters, this must be specified before estimation and the choice of

r is complex. This decision is the main pitfall with the runs estimate of θ or way of

identifying clusters, as discussed by Smith and Weissman (1994). The runs estimate

is strongly related to definition (2.3.1) of O’Brien (1987) where clusters are defined as

those separated by pn non-exceedances, so that pn corresponds to the run length.

Ferro and Segers (2003) propose an automatic declustering scheme to avoid the sub-

jective choice of clusters by automatically choosing a run length. They use the fact that

the non-degenerate limiting distribution of the normalised times between exceedances

of a threshold (inter-exceedance times) is exponential for IID random variables. For the

general stationary process case, with extremal index θ ∈ [0, 1], the distribution is a mix-

ture of an exponential and a degenerate probability distribution at 0. The normalised

inter-arrival time distribution has the non-degenerate mixture form of (1− θ)ϵ0 + θµθ,

where ϵ0 is a point mass at 0 and µθ is the exponential distribution with mean θ−1, with

mixture weights 1 − θ and θ, respectively. The extremal index represents the propor-

tion of non-zero inter-exceedance times, as well as the reciprocal of the mean of these

non-zero times. In other words, the extremal index is the proportion of times between

exceedances that can be regarded as times between clusters (inter-cluster times). This

provides a limiting argument for the automatic declustering scheme, where theoretical

moments of the limiting distribution are equated to their empirical counterparts.

Ferro and Segers (2003) define another estimator for the extremal index, the intervals

estimator, that is based on the limiting distribution of inter-exceedance times discussed

above. For a sample of size n, with nu observations exceeding a threshold u, and

observed inter-exceedance times Ti for i = 1, . . . , (nu − 1), the intervals estimator is
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given by,

θ̃n(u) =


min{1, θ̂n(u)} if max{Ti : 1 ≤ i ≤ (nu − 1)} ≤ 2

min{1, θ̂∗n(u)} if max{Ti : 1 ≤ i ≤ (nu − 1)} > 2,

where

θ̂n(u) =

2

(
nu−1∑
i=1

Ti

)2

(nu − 1)
nu−1∑
i=1

T 2
i

and θ̂∗n(u) =

2

{
nu−1∑
i=1

(Ti − 1)

}2

(nu − 1)
nu−1∑
i=1

(Ti − 1)(Ti − 2)

.

Ferro and Segers (2003) make a direct comparison of the runs and intervals estimators

via a simulation study using data from a first-order stationary max-autoregressive mov-

ing average, Max-ARMA(1,0), process with differing extremal indices. Such a process

is defined by Xt = max{(1 − θ)Xt−1,Wt} for t ∈ Z where θ ∈ (0, 1] is the extremal

index and {Wt; t ∈ Z} is an IID series of unit Fréchet random variables. Max-ARMA

processes are an extension of the commonly used ARMA models in time series, that

are useful for data with heavy-tailed behaviour; we discuss Max-ARMA(p, q) processes

extensively in Chapter 6. The results of Ferro and Segers (2003) emphasize the sensi-

tivity of the runs estimator to parameter choices (the run length and extremal index),

whilst the intervals estimate avoids this sensitivity. An interesting result is that the

runs estimate (2.3.2) appears superior to the intervals estimator for all Max-ARMA

processes when there are fewer exceedances, based on comparisons of root mean square

error.

2.3.3 Diagnostics for dependence

When studying dependence in extreme value theory, we are concerned with two dif-

ferent types of extremal dependence: asymptotic dependence and asymptotic indepen-

dence, which are formally defined later. These are typically described in a bivariate



CHAPTER 2. LITERATURE REVIEW 23

setting (Joe, 1997) but we derive them here for a stationary univariate time series to

describe the extremal dependence in a stationary series {Xt; t ∈ Z} for values sepa-

rated by time lag τ ∈ Z, i.e., for (Xt, Xt+τ ). In this section, we detail three measures

of extremal dependence: the coefficient of asymptotic dependence χ, the coefficient of

asymptotic independence η and the extremogram ρ.

Coefficient of asymptotic dependence

When considering extremal dependence in a stationary univariate time series context,

it is natural to consider the probability

χτ = lim
x→xF

Pr(Xt+τ > x|Xt > x),

where τ ∈ N and xF is the upper end-point of the common marginal distribution of Xt

and Xt+τ (Coles et al., 1999). We say that Xt and Xt+τ are asymptotically dependent,

or exhibit extremal dependence, when χτ > 0. When χτ = 0, we say that Xt and

Xt+τ are asymptotically independent, whilst perfect extremal dependence corresponds

to χτ = 1. Considering χτ for all τ ∈ N gives insight into the asymptotic dependence

structure across time lags and note that χτ = χ−τ for all τ , so we only consider τ ∈ N.

Asymptotic dependence and asymptotic independence cannot be compared with

generic dependence; a series can be asymptotically independent but exhibit strong

correlation at the same time, and vice versa. For example, take two normal random

variables (X1, X2) with X1 ∼ N(0, 1) and

X2 =


X1 with probability 1/2

−X1 with probability 1/2,

so X2 ∼ N(0, 1). Then, Kendall’s τ measure of correlation is zero, which is used for

measuring dependence over all of the data, but χ = 1/2 so these variables are asymptot-
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ically dependent. Note (X1, X2) do not have a bivariate normal distribution although

they have normal margins. Alternatively, all variables from the standard bivariate nor-

mal family (with correlation parameter ρ < 1) are asymptotically independent but can

be strongly correlated in the body if ρ is close to 1. In this case, the coefficient of

asymptotic dependence χτ = 0 does not reflect the relative strength of the dependence

in extremes at lag τ . Therefore alternative measures of extremal dependence have been

developed that we detail next.

Identifying a process as asymptotically independent or asymptotically dependent

is fundamental since in an asymptotically dependent sequence, a large value is likely

to be followed by another large value, so we expect to observe clusters forming at

extreme levels. As discussed in Section 2.3.2, identifying limiting clusters is a key step

in understanding the dependence structure so that we can apply standard extreme value

models.

Coefficient of asymptotic independence

Let the stationary process {Xt; t ∈ Z} have unit Fréchet margins, without loss of

generality. Then, for a slowly varying function Lτ (·), and ητ ∈ (0, 1] the coefficient of

asymptotic independence at lag τ ∈ N, Ledford and Tawn (1996) argue that

Pr(Xt+τ > x | Xt > x) ∼ Lτ (x)x1−1/ητ as x→ ∞.

When ητ = 1, then Pr(Xt+τ > x|Xt > x) = Lτ (x) → χτ > 0 as x → ∞ (provided

Lτ (x) ̸→ 0). This means there is a non-zero probability of Xt+τ being large when Xt

is large at all extreme levels, corresponding to asymptotic dependence with χτ > 0.

When ητ < 1, Pr(Xt+τ > x|Xt > x) → 0 as x → ∞ irrespective of the form of Lτ (x);

this corresponds to asymptotic independence, i.e. χτ = 0, since the probability that

Xt+τ is large given Xt is large converges to 0 as more extreme levels are considered (i.e.,

as x→ ∞). Since ητ = η−τ for all τ , we only consider τ ∈ N.
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To summarise extremal dependence at lag τ , the pair of measures (χτ , ητ ) is needed.

Under asymptotic dependence, when χτ > 0 and ητ = 1, we consider χτ to be a measure

of the strength of dependence. Conversely, when we have asymptotic independence,

where χτ = 0 and ητ < 1, we use ητ to signify the strength of dependence between

variables.

Coles et al. (1999) also introduce χ̄τ as a measure of extremal dependence that

is analogous to ητ , but on a more useful and interpretable scale. Ledford and Tawn

(2003) also introduce a measure of serial dependence in extreme values separated by

lag τ ∈ N as

Λτ = 2ητ − 1 ∈ (−1, 1],

where this is interpreted similarly to the autocorrelation function in time series analysis.

When Λτ = 1, then ητ = 1, so provided Lτ (s) ̸→ 0 as s→ ∞, this indicates asymptotic

dependence. Whilst Λτ < 1 corresponds to ητ < 1, so Xt and Xt+τ are asymptotically

independent, and Xt and Xt+τ are independent when ητ = 1/2 and Λτ = 0. Addition-

ally 0 < Λτ < 1, Λτ = 0 and Λτ < 0 correspond to positive extremal association, ‘near’

independence and negative extremal association, respectively. As Λτ = Λ−τ for all τ ,

we only consider τ ∈ N.

The extremogram

Davis and Mikosch (2009) define an alternative measure of serial dependence: the

extremogram. Like χτ , this is an extreme value analogue of the autocorrelation function

of a stationary process. For a regularly varying marginal stationary series {Xt; t ∈ Z},

the extremogram is defined for two sets A and B, that are bounded away from zero, by

the limit

ρAB(τ) = lim
n→∞

Pr(a−1
n Xt ∈ A | a−1

n Xt+τ ∈ B),

for an → ∞ such that Pr(|Xt| > an) ∼ n−1 as n → ∞. If, for example, {Xt} has
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unit Fréchet margins, then an = n. By defining A and B as bounded away from

zero, the events {a−1
n Xt ∈ A} and {a−1

n Xt+τ ∈ B} become extreme in the limit. For

A = B = (1,∞), the extremogram becomes the coefficient of extremal dependence

between Xt and Xt+τ , i.e., ρAB(τ) = χτ .

2.3.4 Copulas

Copula functions provide an appropriate model for the dependence structure between

variables and are classically applied in the multivariate setting. We refer the reader

to Joe (2014) and Nelsen (2006) for a detailed review of copulas. We describe copu-

las first in this multivariate setting, but later demonstrate how they can be used for

modelling temporal dependence in a univariate series under a kth order Markov model

assumption (Winter and Tawn, 2017).

Multivariate case

Consider d ≥ 2 random variables (X1, . . . , Xd) with joint distribution function F and

marginals with distribution functions (X1 ∼ F1, . . . , Xd ∼ Fd). The dependence struc-

ture among these variables can be modelled using a distribution C : [0, 1]d → [0, 1]

with Uniform(0,1) margins, known as a copula. If (X1, . . . , Xd) ∼ F , then Sklar’s the-

orem (Sklar, 1959) tells us that the multivariate distribution function can be written

as a composition of a copula C and the marginal distributions, as follows

F (x) = C{F1(x1), . . . , Fd(xd)},

where x = (x1, . . . , xd) ∈ Rd. Copulas are advantageous because they are invariant

to marginal transformations, so can describe the association between the variables in

a way that is independent of the marginal distributions (Coles et al., 1999). This

copula C is unique for continuous random variables. To find the copula form, the
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probability integral transform (PIT) is used to transform between margins. For any

continuous random variable Y , with distribution function FY , we can apply the PIT

to transform between margins by obtaining a Uniform(0,1) random variable via U =

FY (Y ) with U ∼ Uniform(0,1). Similarly from a Uniform(0,1) random variable U we

can obtain another continuous random variable T with distribution function FT and

inverse distribution function F−1
T using T = F−1

T (U). Then we can obtain the copula

as follows,

C(u1, . . . , ud) = F
(
F−1
X1

(u1), . . . , F
−1
Xd

(ud)
)
,

for (u1, . . . , ud) ∈ (0, 1)d.

There are many established parametric forms that copulas can take (Joe, 2014),

here we present the Gaussian and multivariate logistic extreme value distribution (sub-

sequently referred to as the logistic) copulas. These both model the dependence of

variables via a single parameter.

Let U and V be uniform random variables in (0,1). The bivariate Gaussian copula

with correlation parameter ρ ∈ (−1, 1) is given by

C(u, v, ρ) = Φ2

(
Φ−1(u),Φ−1(v); ρ

)
, u, v ∈ (0, 1),

where Φ2(·, ·) is the bivariate standard normal distribution and Φ−1(·) the inverse of the

univariate standard normal distribution function. Then the Gaussian copula density

can be written as

c(u, v; ρ) =
1√

1− ρ2
exp

{
−ρ

2x2 + ρ2y2 − 2ρxy

2(1− ρ2)

}
, u, v ∈ (0, 1),

where x = Φ−1(u) and y = Φ−1(v). For the Gaussian copula, the extremal dependence

measures are χ = 0 and Λ = ρ so this copula is suitable for asymptotically independent

variables with the sign of extremal association determined by the value of ρ (Heffernan,
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2000).

The logistic copula, introduced by Émile and Gumbel (1960), with parameter 0 <

α ≤ 1 is given by

C(u, v;α) = exp
{
−
[
(− log u)1/α + (− log v)1/α

]α}
, u, v ∈ (0, 1).

When α = 1, U and V are clearly independent, with C(u, v; 1) = uv. The logistic

density is written as

c(u, v;α) =
C(u, v;α)

uv
(xy)1/α−1

(
x1/α + y1/α

)α−2
[(
x1/α + y1/α

)α
+ α−1 − 1

]
,

for x = − log(u) and y = − log(v). For this copula, χ = 2 − 2α and Λ = 1 when

0 ≤ α < 1, with dependence strengthening as α decreases to the limit; χ = 1 when

α = 0, so this is suitable for asymptotically dependent variables. Whereas when α = 1,

χ = 0 and Λ = 0, so as stated above, U and V are independent (Heffernan, 2000).

Markov case

Copulas can be used in the univariate setting to model temporal dependence between

observations separated by time lag τ ∈ N. Winter and Tawn (2017) demonstrate this

through an application to heatwaves. Under the assumption that the stationary series

{Xt; t ∈ Z}, with marginal distribution function FX , follows a kth order Markov chain,

the joint density of X1:n = (X1, . . . , Xn), denoted f1:n for n > k, can be written as

f1:n(x1:n) = f1:k(x1:k)
n−k∏
t=1

fk+1|1:k(xt+k | xt:(t+k−1)) = f1:k(x1:k)
n−k∏
t=1

f1:k+1(xt:t+k)

fk+1(xt+k)
,

(2.3.3)

where fk+1|1:k is the conditional density of Xk+1 given X1:k, and the subscript i : j

corresponds to variable indices (i, i + 1, . . . , j) for i ≤ j. We use the law of condi-

tional probability to obtain the second equality above, exploiting the stationarity of
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the process so that the joint marginal distribution satisfies

fi:j(xi:j) = fi+τ :j+τ (xi:j), (2.3.4)

for i ≤ j, any τ ∈ N and all xi:j ∈ Rj−i+1. Copula models can then be used for modelling

the joint distribution f1:k+1, with the corresponding joint distribution function F1:k+1

satisfying

F1:k+1(x1:k+1) = C1:k+1{FX(x1), . . . , FX(xk+1)},

where C1:k+1 is the copula for (k + 1) successive variables in the Markov chain. The

Markov process inherits the stationary condition of equality (2.3.4) if the copula C1:k+1

has the property that it’s m-dimensional marginal distribution, for all m < k + 1,

satisfies

Ci1,...,im(x1:m) = Ci1+τ,...,im+τ (x1:m),

for τ ∈ N, ij ∈ N for j = 1, . . . ,m with 1 ≤ i1 < . . . < im + τ ≤ k + 1, and x1:m ∈ Rm.

Then, the joint density f1:k+1 of (2.3.3) can be rewritten as the density of the copula,

so that we can obtain the joint marginal density f1:n in terms of a product of copula

densities (Winter and Tawn, 2017). Therefore, under a kth order Markov assumption,

multivariable copula theory can be easily extended to a stationary univariate series.

2.4 Extremes of non-stationary sequences

Whilst stationarity is a more realistic assumption than IID, it is common to have a

univariate time series exhibit non-stationarity, where the characteristics of the pro-

cess change systemically with covariate values. Environmental variables typically ex-

hibit non-stationarity across time as it is common for different seasons to have differ-

ent climate patterns and to observe long term trends owing to anthropogenic climate

change (Seneviratne et al., 2021). Accounting for these non-stationary features is a
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common theme throughout this thesis.

Standard extreme value methods discussed so far are not applicable to non-stationary

processes, instead additional steps are required to capture the underlying covariate ef-

fects. There is no general theory that can be applied to a non-stationary process since

the forms of non-stationarity vary significantly. We account for these features using a

variety of statistical modelling techniques and use these models to enhance the extreme

value models discussed in Sections 2.2.1 and 2.2.2.

Carter and Challenor (1981) present one of the earliest approaches for capturing

seasonality in extreme value models for environmental variables. They suggest splitting

the year into months and modelling each month’s data using separate extreme value

distributions so that a particular month has the same distribution across years. This

assumes stationarity within each month across years but implies a discontinuity in

behaviour from one month to another, and the approach is not parsimonious. More

sophisticated methods for non-stationary extremes have been developed since this early

approach (Chavez-Demoulin and Davison, 2005; Eastoe and Tawn, 2009), including

those developed in this thesis (see Chapter 3).

In this section, we focus on the GPD for modelling non-stationary process extremes

as this is more commonly used throughout the thesis and in practice. Approaches are

similar for the GEV modelling in these contexts but are more complicated if covariates

vary across a block. We refer the reader to Parey et al. (2013) for an example of

incorporating non-stationarity in the GEV. We discuss two main approaches to capture

non-stationarity. Firstly, we introduce the non-stationary GPD in Section 2.4.1 where

we allow the model parameters to vary with covariates; we present parametric and non-

parametric approaches for doing so and discuss extensions of the GPD model initially

proposed by Davison and Smith (1990). An alternative approach is the preprocessing

model of Eastoe and Tawn (2009) where covariate effects are modelled and removed

before the potentially non-stationary extreme value analyses of Davison and Smith
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(1990). The latter non-stationary modelling is an attempt to explain covariate effects

in the tail of the distribution that are different from those in the data; we discuss this

method in Section 2.4.2. Lastly, in Section 2.4.3, we demonstrate how to estimate the

unconditional model for extremes from a covariate-dependent model to give results for

marginal extremes.

2.4.1 Non-stationary GPD

Let {Xt; t ∈ Z} now denote a non-stationary sequence with associated covariate vector

Zt ∈ Rd for d ∈ N and t ∈ Z. We are interested in modelling the extremes of the

sequence Xt | Zt = z where z ∈ Rd for covariate realisation z. We can do so by mod-

elling the extremes of Xt using the GEV or GPD as usual, but allowing the parameters

to be functions of the covariates to capture the non-stationarity. Formally, Davison and

Smith (1990) define the non-stationarity GPD model as,

Xt − u | (Xt > u,Zt = z) ∼ GPD
(
σu(z), ξ(z)

)
,

where each parameter of the GPD, i.e., say θ ∈ {σu, ξ}, has the form θ(z) = h(zTβ),

where zT is the transpose of the covariate vector, β ∈ Rd is the vector of coefficients,

and h : R → Θ is a specified function, termed the inverse link function, that transforms

the linear term on R into the space Θ, where Θ is the feasible parameter space of θ.

Link functions are commonly used to constrain a parameter to its domain, for example,

the log-link function is typically used for the scale parameter function σu(z) to ensure

positivity for all values of z, i.e., log σu(z) = zTβ with Θ = (0,∞). The parameters

of these regression coefficients are estimated at the same time as extreme value model

fitting.

When defining extremes as exceedances of a fixed threshold u, we can also model

the rate of exceedance in terms of the covariates, i.e., λu(z) = Pr(Xt > u|Zt = z). Here
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the link function is typically the logit-link function since λu(z) ∈ [0, 1] = Θ. Whilst

any of the GPD parameters and λu(z) can be influenced by covariates, it is uncommon

to allow the shape parameter to vary since it is difficult to estimate; keeping the shape

parameter constant across covariates avoids introducing additional uncertainty into the

model (Chavez-Demoulin and Davison, 2005). Although, one should check a constant

shape parameter is a reasonable assumption.

For parametric regression, the form of covariate dependence is explained through

regression parameters and is specified before fitting (i.e., the choice of linearity and/or

covariate selection). Choosing a parametric form is somewhat subjective and benefits

from understanding the process of interest. Standard statistical model selection and

comparison tools can be used to help determine the appropriate form of the covariate

models. In contrast, for non-parametric regression, the relationship is not specified

before model fitting. Instead, the covariate effects are estimated based on an assumption

of smoothness of the function θ(z), as opposed to a particular parametric form, so that

θ(z) = h(z) where h is now d-dimensional so that h : Rd → Θ (Northrop et al., 2016).

We discuss these parametric and non-parametric approaches further in the following

subsections.

Parametric covariate functions

Smith (1989) and Davison and Smith (1990) were the first to use parametric regression

techniques within extreme value models. Parametric functions of covariates can take

a range of functional forms with differing complexities. Perhaps the simplest form for

a parameter is a linear model; these can be extended to quadratic or cubic functions.

Another simple parametric form uses piecewise constant functions, where stationarity

is assumed over consecutive subsets of the covariate samples. Ross et al. (2018) adopt

this approach for modelling extreme surges in the North Sea. Here the domain of

the storm direction covariate is partitioned into subsets so that corresponding surge
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observations can be reasonably assumed as stationary. Coles et al. (1994) use harmonics

to model seasonal variability in their extreme value model for low temperature data.

Using continuous-time periodic models avoids arbitrarily choosing seasonal blocks and

allows the parameters to vary smoothly across time, or an alternative covariate, giving

a parsimonious model.

Parametric covariate functions can be easily incorporated into inference by replacing

the constant parameters with their functional form within the likelihood function. How-

ever, parametric regression models require that h(zTβ) takes a predefined functional

form, which can often be restrictive to the forms for σu(z) and λu(z). Additionally,

whilst the estimated forms for σu(z) and λu(z) observed within the data can be suit-

ably modelled with a parametric regression model, it may be unlikely that this pattern

will apply for z outside of the observed range. For example, long term climate change

trends, say with t as time as a covariate, can often be adequately modelled by a linear

function in the range of observed data. However, under different scenarios, this linear

trend could change in the future as the relationship is likely with different covariates

representing the presence of greenhouse gases (see Chapter 4).

Generalised additive models

More recently, generalised additive models (GAMs) have been used for capturing co-

variate trends using smooth functions within extreme value models (Chavez-Demoulin

and Davison, 2005). GAMs are extensions of generalised linear models with a linear

predictor involving a sum of smooth functions of covariates; see Wood (2017) for an

overview of smooth functional forms. GAMs are a type of semi-parametric model that

are less restrictive than parametric models because the functional forms between co-

variates and model parameters have more degrees of freedom than given by parametric

relationships.

Generalised additive extreme value models (EVGAMs) were proposed by Youngman
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(2019) and are widely implemented via the evgam R package (Youngman, 2022). Note

that evgam captures non-stationarity through the scale and shape parameters, but not

the rate parameter; in the next subsection we discuss how evgam is used for modelling

non-stationarity in the GPD threshold. The rising popularity of EVGAM is due to

its flexible functional forms that enable multiple covariate interactions for covariates

that are either discrete or continuous, so that complex covariate relationships can be

modelled. However, this flexibility of modelling covariates in the data range makes

extrapolation for learning about future behaviours more difficult as these functions

revert to a simplistic formulation when moving well beyond the observed covariate data

range.

Non-stationary thresholds and quantile regression

Another extension of the Davison and Smith (1990) framework is allowing the threshold

to be covariate dependent (Kyselý et al., 2010). This makes sense in practice because

what is a suitably high threshold for one covariate may be too low a threshold for another

covariate. Additionally, to precisely model covariate effects it makes sense to have ex-

ceedances spread across the observed covariate values (Northrop et al., 2016). Northrop

and Jonathan (2011) use quantile regression to set a threshold so that the probability

of exceeding this threshold is approximately constant across covariates. This procedure

can be easily implemented using the evgam package (Youngman, 2022). Northrop and

Jonathan (2011) argue that it is more logical to allow the threshold to vary with covari-

ates than to keep a constant threshold and then model how the rate parameter λu varies

with covariates. This makes sense when the covariate effects are large, however, when

the covariate effects are small in comparison to the variability of the data, there are

different perspectives on whether to model these effects through the model parameters

or the threshold.
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2.4.2 Pre-processing

Eastoe and Tawn (2009) propose an alternative method to those discussed in Sec-

tion 2.4.1, based on the common approach for handling non-stationarity in time se-

ries analysis, known as the preprocessing model. The main difference is that non-

stationarity is first modelled for the entire data set and then removed. Let X̃t denote

the preprocessed series corresponding to the non-stationary series Xt, so that the main

body of X̃t is now stationary. Covariate effects on the extremes of Xt may differ from

those in the body of the distribution of Xt, so the tails of the preprocessed series X̃t

are not guaranteed to be like that of a stationary process. Therefore, non-stationary

extreme value models (such as those discussed in Section 2.4.1) are used for the extreme

value analysis of X̃t. The crux of the idea is that all, or at least the most complex,

non-stationarity will be removed by the preprocessing step, making the subsequent

non-stationary extreme value modelling simpler.

Eastoe and Tawn (2009) argue that their preprocessing approach is an improve-

ment to the standard method of Davison and Smith (1990) since the reasons for non-

stationarity are often associated with the mechanisms that generate the process. If the

covariate effects observed in the body of the data are the same as those in the tail, it

is inefficient to estimate these effects only using extreme values.

As with the approach of Section 2.4.1, modelling the covariate effects (here for the

entire distribution of Xt) is a fundamental step. Eastoe and Tawn (2009) propose the

Box-Cox location-scale model for preprocessing; this is given by

X
ϕ(zt)
t − 1

ϕ(zt)
= µ(zt) + ψ(zt)X̃t, (2.4.1)

for all t ∈ Z where ϕ, µ and logψ are linear functions of the covariates zt ∈ Rd. However,

this may not fully capture all the covariate effects and more established methods could

be implemented if expert knowledge of the problem exists (e.g., by using the parametric
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regression functions of Section 2.4.1). Diagnostic tools for checking stationarity can be

used to detect model misspecification. In situations where misspecification is small and

undetected, Eastoe and Tawn (2009) show that their approach remains superior to that

of Davison and Smith (1990).

Once an appropriate extreme value model is chosen for X̃t | Zt = zt, there is a need

to find the equivalent model for the original series Xt. Say the Box-Cox location-scale

model of (2.4.1) is used for preprocessing, then we obtain the conditional distribution

for Xt | Zt = zt, for suitably large x, as follows

Pr(Xt > x | Zt = zt) = Pr

(
µ(zt) + ψ(zt)X̃t >

xϕ(zt) − 1

ϕ(zt)

∣∣∣∣Zt = zt

)
= Pr

(
X̃t >

1
ϕ(zt)

[xϕ(zt) − 1]− µ(zt)

ψ(zt)

∣∣∣∣Zt = zt

)

= λ̃ũ(zt)

{
1 + ξ̃(zt)

[ 1
ψ(zt)

(
1

ϕ(zt)
[xϕ(zt) − 1]− µ(zt)

)
− ũ

σ̃ũ(zt)

]}−1/ξ̃(zt)

,

where ũ is the threshold for defining exceedances for X̃t and σ̃ũ > 0, ξ̃ and λ̃ũ are the

scale, shape and rate parameters, respectively, of the potentially non-stationary GPD.

We detail how to obtain the marginal distribution of the original series {Xt} in the

next section.

2.4.3 Marginal quantile estimation

By capturing non-stationarity via the approaches outlined so far in this section, we

obtain the conditional distribution Xt | Zt = zt and can summarise the conditional tail

characteristics. However, it is often of interest to estimate the marginal distribution

of Xt, for an arbitrary t ∈ Z, so that we can quote return levels that are indepen-

dent of covariates. The marginal distribution can be estimated using Monte-Carlo

techniques (Eastoe and Tawn, 2009). Specifically, provided we have a large sample

size n, it is reasonable to assume that the observed covariate sample (z1, . . . ,zd) is a
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representative sample from Z. Then we can approximate the marginal distribution

as follows using the conditional distribution FX|Z , as in Section 2.4.2, and covariate

density function fZ , as follows

F̂X(x) =

∫
Z

FX|Z(x | z)fZ(z)dz ≈ 1

n

n∑
t=1

FX|Z(x | zt).



Chapter 3

Accounting for seasonality in

extreme sea level estimation

3.1 Introduction

Extreme sea levels pose an increasing risk to coastline communities. In the absence of

any mitigation, the impacts can be severe: fatality, infrastructure damage and habitat

destruction. Estimates of sea level return levels are fundamental for various purposes,

including coastal flood defence design and flood risk assessments. A return level is

the value we expect the annual maximum sea level to exceed with probability p. For a

stationary series, this corresponds to a value exceeded once every 1/p years, on average.

We are particularly interested in rare events, where p ∈ [10−4, 10−1] to cover sea levels

that are important to a range of industries affected by coastal flooding. For example,

we consider data from the Heysham tide gauge; Heysham is a coastal town in north-

west England that is home to two nuclear power stations. Nuclear regulators require

accurate return level estimates for p = 10−4. We also consider a further three gauges at

Lowestoft, Newlyn and Sheerness; Sheerness is particularly important since it is located

on the River Thames estuary where extreme sea levels can propagate down the river

38
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towards London. The annual return level, or equivalently its exceedance probability,

changes with year if the series is non-stationary and discussions of appropriate design

levels involve the intended lifespan of the defence (Rootzén and Katz, 2013). We focus

on a fixed p and recognise that the return level varies across years.

Since the UK is regularly subject to coastal flooding, estimating extreme sea levels

is crucial. The 1953 North Sea flood is the worst on record for the 20th century in

the UK. Coastal defences were breached in 1,200 places leading to the evacuation of

30,000 people, damage to 24,000 properties and a death toll of 307 in England alone.

The damage was estimated at £1.2 billion in 2014 (Wadey et al., 2015). Following this

event, coastal flood defences were upgraded around most of the UK. Recently, there

has been growing concern regarding anthropogenic sea level rise due to climate change.

Rises in the mean sea level, coupled with changes in storm frequency and size, can

increase the likelihood of coastal flooding. Therefore, it is increasingly important to

accurately estimate sea level return levels so that coastline communities are protected

against events such as that in 1953. The latest best estimates for extreme sea levels

can be found in Environment Agency (2018).

Pugh and Woodworth (2014) give a comprehensive overview of sea level processes.

Sea levels are a combination of mean sea level, tide, surge and waves. We consider

still water level (with waves filtered out), for simplicity we refer to this as sea level.

The mean sea level trend is removed so that tide and surge are the only components.

Tides are the regular and predictable changes in sea levels driven astronomically; these

are well understood and perfectly forecast (Egbert and Ray, 2017). Surges define any

departure from the predicted tidal regime, often resulting from meteorological forces

such as storms and are hence sometimes called storm surges or non-tidal residual (as

in Figure 3.1.1); these are stochastic. However, surges can also include gauge record-

ing errors and tidal prediction errors, but these errors are typically negligible at well

maintained gauges, such as those on the UK National Tide Gauge Network (see Sec-
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Figure 3.1.1: Sea levels during the passage of a surge for a single tidal cycle (NOC,
2021).

tion 3.3.1). Surges can also be influenced by tide-surge interaction, this is the change

in the distribution of surge that is dependent on the tidal level, because the surge is

essentially a wave which is influenced by the water depth. This interaction is more

prominent in shallow water areas, with the largest surges typically occurring mid-tide

on the rising tide and the smallest at high tide (Prandle and Wolf, 1978; Tawn, 1992).

Early methods to estimate extreme sea levels modelled the observed sea levels di-

rectly, ignoring the known tidal component. More recent approaches focus on the con-

volution of the surge and tide distributions. Due to the complex dependence between

surge and tide, we instead consider skew surge and peak tide; skew surge is the differ-

ence between the maximum observed sea level and the maximum predicted tide (peak

tide) within a tidal cycle, regardless of their timing (see Figure 3.1.1). There is a single

skew surge value associated with each peak tide value (every 12 hours 26 minutes), as

opposed to hourly or 15 minute interval observations of surge and tide. Even though

there are fewer skew surge and peak tide observations, these components are preferred

because they have much weaker dependence; Williams et al. (2016) demonstrate that

it is reasonable to assume these are independent at most UK sites.

We build on the skew surge joint probabilities method (SSJPM) of Batstone et al.

(2013), which assumes peak tide and skew surge are independent and that they are

stationary processes within and across years, with extreme skew surges modelled by a
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generalised Pareto distribution (GPD). Our novel approach is able to reflect the realism

of the sea level processes by correcting the simplifying and false assumptions made in

the SSJPM. We account for seasonality in the skew surges by adding a daily covariate

to the rate of threshold exceedance and scale parameter of the GPD model. We also

introduce a tidal covariate to capture skew surge-peak dependence. Skew surges also

exhibit temporal dependence; we account for this using the extremal index (Tawn,

1992) but in a different way to previous analyses. Since tides are deterministic, we

choose our tidal samples so that they account for monthly and interannual variations.

We estimate return levels by deriving distributions for the annual maxima sea levels.

We obtain the estimates using our proposed method and for the SSJPM, as well as

some intermediate methods, at four sites on the UK coastline. We find that the SSJPM

tends to underestimate return levels.

It is fundamental to recognise the uncertainty associated with return level estimates

of the highest order to add value to the point estimates. We construct confidence

intervals for our estimates using a stationary bootstrap procedure (Politis and Romano,

1994). This preserves the realism of the sea level processes. Our approach is the first to

use a bootstrap procedure for uncertainty quantification on extreme sea level estimates.

We incorporate prior information for the GPD shape parameter based on related spatial

information (Environment Agency, 2018); we show that for the shape parameters and

the sea-level return level estimates, this information substantially reduces the lengths

of confidence intervals, without significantly changing point estimates.

We discuss the relevant extreme value theory and existing methodology for extreme

sea level estimation in Section 3.2. In Section 3.3 we introduce the data and explore

the seasonality of each component as well as the dependence between them. Section 3.4

describes the methodology for deriving the annual maxima distribution, starting with

an idealised solution derived under simplified assumptions that are then relaxed. Our

return level estimates are compared with previous methods in Section 3.5. Additional
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supplementary material is presented in D’Arcy et al. (2023c) and Appendix A.

3.2 Background to method

3.2.1 Relevant extreme value methods

When deriving a model for extremes, it is natural to first consider the maximum Mn

of a sequence of independent and identically distributed (IID) continuous random vari-

ables Z1, . . . , Zn, i.e., Mn = max{Z1, . . . , Zn}. This sequence has marginal distribution

function F and upper end point zF . If there exists sequences of constants {an > 0} and

{bn}, so that the rescaled block maximum (Mn − bn)/an has a nondegenerate limiting

distribution as n → ∞, then the cumulative distribution function of this limit must

have the form

G(z) = exp

{
−
[
1 + ξ

(
z − µ

σ

)]−1/ξ

+

}
, (3.2.1)

where x+ = max{x, 0} for parameters (µ, σ, ξ) ∈ R × R+ × R representing the loca-

tion, scale and shape, respectively (Coles, 2001). This is the generalised extreme value

distribution (GEV) that encompasses three families: for ξ > 0 this corresponds to the

Fréchet distribution, ξ < 0 the Weibull and ξ = 0 the Gumbel. Note ξ = 0 should

be interpreted as the limit as ξ → 0. This result provides asymptotic motivation for

using the GEV as a parametric model for observed block maxima and thus a basis to

estimate and extrapolate to high return levels. However, this assumes an underlying

IID process, which is unrealistic.

Now we relax the independence assumption, so that Z1, . . . , Zn is a stationary se-

quence with the same marginal distribution function F . This corresponds to a series

whose variables may be mutually dependent, but whose statistical properties are ho-

mogeneous through time. The limiting distribution of the rescaled block maxima of a

stationary process satisfying a long range dependence condition, which ensures events
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long apart in time are near independent, is Gθ(z) with G(z) as in equation (3.2.1) and

θ ∈ (0, 1] the extremal index (Leadbetter et al., 1983). For an independent series θ = 1,

but the converse is not true.

When a process exhibits extremal dependence, groups of extreme events form above

high thresholds; these groups are called clusters. We define different clusters as those

separated by some number of non-extreme values (i.e., below a high threshold z), this

is called the run length r. Within a cluster, extreme events are considered as dependent

whilst exceedances in different clusters are assumed to be independent. The extremal

index tells us about clusters since it can be estimated empirically as the reciprocal of

the mean cluster size of exceedances of z. This is known as the runs method (Smith

and Weissman, 1994). Clusters are identified using an arbitrary choice of run length;

this is the main pitfall with the approach. Ferro and Segers (2003) propose the intervals

estimator, based on the limiting distribution of normalised times between exceedances

of z. This distribution is exponential for independent random variables, otherwise it is

a mixture distribution of an exponential with mean θ−1 and a degenerate probability

distribution at zero, with probabilities θ and 1 − θ, respectively. Ferro and Segers

(2003) also propose an automatic declustering scheme using the intervals estimate.

Both methods only estimate θ in the observed range of z. In practice, the runs and

intervals estimators of θ are actually estimators of the subasymptotic extremal index,

for threshold level z and run length r, defined by Ledford and Tawn (2003) as

θ(z, r) = Pr(max{Z2, . . . , Zr} < z|Z1 > z). (3.2.2)

Then the extremal index is the limit of expression (3.2.2) as z → zF and r → ∞, with

z and r tending to their respective limits in a related fashion.

We can also define extremes as exceedances of a high threshold u. If expression
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(3.2.1) holds, then for an arbitrary term Z in the sequence Z1, . . . , Zn,

Pr(Z > bn + anz | Z > bn + anu) → Hu(z) where Hu(z) =

[
1 + ξ

(
z − u

σu

)]−1/ξ

+

,

for z > u as n→ ∞, with an, bn as previously and (σu, ξ) ∈ R+×R the scale and shape

parameters, respectively (Coles, 2001). The shape parameter is the same as that for

the GEV. Whereas the scale is threshold dependent since σu = σ+ ξ(u−µ) for µ and σ

the GEV parameters. This is the generalised Pareto distribution (GPD). If Z1, . . . , Zn

are IID, then exceedances of a high threshold u are IID and have limiting GPD tail

model

Pr(Z > z) = λu

[
1 + ξ

(
z − u

σu

)]−1/ξ

+

, (3.2.3)

for z > u where λu = Pr(Z > u). Again, if Z1, . . . , Zn are stationary, a common ap-

proach is to identify clusters and decluster them to yield an approximately independent

sequence of cluster maxima for which the GPD remains a valid model (Fawcett and

Walshaw, 2007).

For non-stationary processes, it is common to allow the parameters of a stationary

statistical model to vary with time or another covariate. In a block maxima framework,

observations in a block are assumed to be IID so covariates in the GEV parameters

cannot change within a block. In contrast, the GPD allows the covariates to vary

uncontrolled over consecutive observations. A range of methods can be adopted to

incorporate covariates in the model parameters λu, σu, ξ, including via harmonics (Coles

et al., 1994), splines (Jonathan et al., 2014) or generalised additive models (Chavez-

Demoulin and Davison, 2005).

3.2.2 Existing methodology

The earliest methods to estimate sea level return levels fit a GEV to the annual max-

ima (Graff, 1978; Coles and Tawn, 1990) or the annual r-largest observed sea lev-
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els (Tawn, 1988b). These direct approaches ignore the known tidal component even

though it induces non-stationarity into the sea level series, so that the GEV limit may

not be a good approximation. Dixon and Tawn (1999) show that these direct methods

underestimate extreme sea levels, especially at longer return levels for tidally dominant

sites.

Pugh and Vassie (1978) were the first to exploit the decomposition of sea levels into

tide and surge for extreme sea level estimation. This method is known as the joint

probabilities method (JPM), where the probability distribution of extreme sea levels is

derived by convolution of the distributions of these two components. The JPM gives

consideration to all surge values in the data regardless of when they occurred relative

to high tide. This approach forms the basis of the subsequent methods, but has some

restrictive and unrealistic assumptions. Since the empirical surge distribution is used

in the JPM, return level estimates are constrained by the sum of the highest predicted

tide and the highest observed surge. Hourly surge observations are assumed to be

independent, this is unrealistic as surge exhibits strong temporal dependence (Tawn

and Vassie, 1989). Pugh and Vassie (1978) do account for dependence between tide and

surge by dividing the tidal range into ordered bands of equal probability and estimating

the surge distribution for each band, but this gives results which are sensitive to the

choice of the number of bands and their boundary levels.

The revised joint probabilities method (RJPM) of Tawn (1992) attempts to address

these limitations. For the upper tail of surges, an extreme value distribution is used

to allow extrapolation beyond what has been observed, hence improving return level

estimates. To account for temporal dependence, the extremal index is used. Tawn

(1992) and Dixon et al. (1998) model the surge-tide dependence by allowing parameters

of the GEV to be functions of the tidal level. This is a difficult task because the

relationship is complex (Prandle and Wolf, 1978). Dixon and Tawn (1994) and Haigh

et al. (2010) find that the RJPM is the best performing of these methods for observed
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and simulated data.

Batstone et al. (2013) propose the skew surge joint probabilities method (SSJPM)

to overcome the requirement of modelling the dependence of surge on tide. Their

approach assumes that skew surge and peak tide are independent. Williams et al. (2016)

demonstrate this is a good approximation both physically and empirically, for many

sites in Europe and the USA. The SSJPM fits a GPD to the upper tail of skew surges and

the empirical distribution is used for the main body of the distribution. The extremal

index is used to measure dependence for sea levels in adjacent tidal peaks. They find

θ ≈ 1 for all sites, suggesting no evidence of dependence in the upper tail. Baranes

et al. (2020) adapt the SSJPM to account for interannual variations in the tidal regime,

considering summer and winter separately and assuming peak tides and skew surge are

stationary within each season.

All the methods discussed so far estimate extreme sea levels at a single site, but

this gives uncertain return level estimates for sites with shorter observation periods.

Spatial pooling can improve estimates at sites with limited or no data. Bernardara

et al. (2011) use regional frequency analysis to estimate extreme surges. This involves

grouping statistically similar sites into homogeneous regions, then fitting an extreme

value model with a constant shape parameter over all sites (Hosking and Wallis, 1997).

More recent approaches account for uncertainty in the region selection (Asadi et al.,

2018; Rohrbeck and Tawn, 2021). Batstone et al. (2013) use hindcast sea level data to

interpolate SSJPM estimates along the UK coast. Other methods allow parameters of

the extreme value distribution to vary with spatial covariates. Coles and Tawn (1990)

do this, allowing the location parameter of the GEV for sea level annual maxima to

depend on the harmonic tidal constituents. Whereas, Dixon et al. (1998) spatially

smooth parameters of the extreme value model for surges used in the RJPM, using

predictable tidal variations along the UK coastline.
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3.3 Exploratory analysis

3.3.1 Data

We use data from the UK National Tide Gauge Network obtained from the British

Oceanographic Data Centre; these undergo rigorous quality control before release. Sea

level elevations are recorded at 44 sites along the UK coastline. We consider skew

surge and peak tide observations, with one record every 12 hours and 26 minutes (i.e.,

one tidal cycle), at four sites: Heysham, Lowestoft, Newlyn and Sheerness. Heysham

is located on the west coast of England and has records from 1964-2016, with 17%

missing. Lowestoft is on the east coast of England, with data available from 1964-2020

(4% missing). Sheerness is at the Thames Estuary, also on the east coast, with data

available from 1980-2016 and 9% missing. Newlyn is located on the south coast of

England and has records from 1915-2020, with 17% missing. The data are in metres

above chart datum.

To compare the relative importance of skew surge and peak tide across sites, we

define a surge-tide index as the observed range of skew surges divided by the range

of peak tides. Heysham and Newlyn are tidally dominant with indices 0.65 and 0.70,

respectively. Lowestoft and Sheerness are surge dominant with indices 3.36 and 1.66,

respectively. We choose to study these sites because they are typically affected by

different storms and all have a long observational duration. Heysham and Lowestoft

are of particular interest because of their widely different surge-tide indices. Newlyn

has the longest study period in the tide gauge network. Howard and Williams (2021)

use physical model simulations to conclude that skew surge is dependent on peak tide

at Sheerness, so we also study this site. The highest astronomical tide (HAT) observed

is 10.72m, 2.92m, 6.10m and 6.26m for Heysham, Lowestoft, Newlyn and Sheerness,

respectively. The data were preprocessed in an attempt to remove the linear non-

stationary effect of sea level rise on skew surges caused by climate change and isostatic
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Figure 3.3.1: Monthly boxplots of skew surge (left) and peak tide (right) at Heysham.

rebound, see Environment Agency (2018) for details. Therefore all results are presented

relative to the mean sea level in 2017.

3.3.2 Seasonality and temporal dependence of skew surge and

peak tide

Figures 3.3.1 and A.9.1 show monthly boxplots of skew surge and peak tide observations

at Heysham and the remaining sites, respectively. The median of the monthly skew

surges remain relatively constant across months at Heysham, Newlyn and Sheerness

but there is some variation at Lowestoft. The skew surge range varies across the year,

exhibiting clear seasonality. Extreme skew surges and extreme peak tides typically occur

in winter and at the equinoxes, respectively. Tides also exhibit interannual variability,

including the 18.6 year lunar nodal cycle and the 8.85 year cycle of lunar perigee (Pugh

and Woodworth, 2014).

To further assess seasonality, we estimate the probability that a randomly selected

peak tide X is from month j where j = 1 − 12, given it is higher than some value xq,

the qth quantile of the distribution of peak tides, with q ∈ [0, 1]. This is defined as

P̃X(j;xq) = P̂r(m(X) = j | X > xq),

wherem(X) denotes the month of occurrence ofX and P̂r(·) is calculated empirically. If
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Figure 3.3.2: Estimates P̃X(j;xq) for j = 1 − 12 and q = 0.5 (dashed), 0.9 (dotted),
0.95 (dot-dashed), 0.99 (long-dashed), 0.999 (solid) at Heysham, with 95% confidence
intervals for q = 0.999. The horizontal cyan line indicates a probability of 1/12 for all
months.

peak tides are identically distributed over the year and all months have equal duration,

then P̃X(j;xq) = 1/12 for all j and q. Of course, months vary in length, but a significant

departure from P̃X(j;xq) = 1/12 indicates that peak tides are not identically distributed

over a year. Months with the largest peak tides will have higher values for P̃X(j;xq)

for large q.

Figure 3.3.2 shows the estimates P̃X(j;xq) for a range of q at Heysham (see Fig-

ure A.9.2 for the remaining sites). These show that P̃X(j;x0.5) ≈ 1/12 for all j = 1−12

at Heysham, Newlyn and Sheerness. At Lowestoft this varies, agreeing with the

boxplot in Figure A.9.2. For all q ≥ 0.9, there is clear evidence that P̃X(j;xq) is

largest in months nearest the equinoxes at all sites. At Heysham, P̃X(j;x0.999) > 0 for

j = 2, 3, 8, 9, 10; we find the same results at Newlyn but P̃X(1;x0.999) > 0 also. However,

at Lowestoft and Sheerness, P̃X(j;x0.999) = 0 in months close to the spring equinox.

Confidence intervals on these estimates are constructed by exploiting the property that

the number of times that an event X > xq occurs in month j follows a multinomial

distribution, with probabilities P̃X(j;xq). Figures 3.3.2 and A.9.2 also show 95% con-

fidence intervals for P̃X(j;x0.999) at each site. These indicate that the differences in

P̃X(j;x0.999) discussed above for each month are statistically significant.

Skew surge and peak tide both exhibit temporal dependence; we are only interested
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in modelling the former since peak tides are deterministic. Figure A.9.5 shows the

autocorrelation function (acf) plots for skew surge at each site. The correlation is

stronger at lower lags, as expected, and tends to zero at higher lags; although this

doesn’t always reach zero due to seasonality. At Heysham and Newlyn, the correlation is

significantly higher for all lags above 1, than at Lowestoft and Sheerness. In Section A.4

of Appendix A we explore temporal dependence in the skew surges further by looking at

the two mean measures of extremal dependence χ and χ̄ (Coles et al., 1999) at different

high thresholds and lags. We find similar patterns over lags, but weaker dependence,

for the extreme values.

3.3.3 Skew surge and peak tide dependence

Prandle and Wolf (1978) examine the tide-surge interaction, both empirically and phys-

ically, for sites in the southern North Sea. They find that the most extreme surges occur

on rising tides. This complex dependence structure motivates the use of skew surge

and peak tide in the SSJPM (Batstone et al., 2013). Williams et al. (2016) conclude

that the assumption of skew surge-peak tide independence is broadly well supported

empirically and based on valid physical reasoning. However, Environment Agency

(2018) and Williams et al. (2016) identify a weak correlation at Sheerness. Howard

and Williams (2021) use oceanographic numerical model simulations to show that the

highest skew surges tend to occur on lower peak tides at Sheerness. These findings raise

questions about the validity of the independence assumption in the SSJPM. Ignoring

the observed dependence would result in overestimates of return levels. We use a range

of exploratory data analyses to investigate these claims in Section A.3 of Appendix A.

We find that it is reasonable to assume skew surge-peak tide independence at Heysham,

Lowestoft and Newlyn, but not at Sheerness. Our results suggest that this dependence

structure is changing throughout the year, with the strongest dependence found in the

summer months.
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3.4 Novel methodology

3.4.1 Introduction

We begin by deriving the distribution of both the sea level monthly maxima Mj for

j = 1 − 12 and annual maxima M under several simplifying assumptions that we

subsequently relax. We use the fact that the peak sea level Zi in tidal cycle i can

be written as the sum of skew surge Yi and peak tide Xi in that tidal cycle, for all

i = 1, . . . , T where T is the total number of tidal cycles. In Section 3.4.2 we develop

a simplified model, assuming skew surges are IID and independent of peak tide. We

relax these assumptions to develop a novel method that reflects the realism of the sea

level process; accounting for skew surge seasonality (Section 3.4.3), skew surge-peak

tide dependence (Section 3.4.4) and temporal skew surge dependence (Section 3.4.5).

Unless stated otherwise, inference is conducted in a likelihood framework. We provide

95% confidence intervals for model parameter estimates based on the Hessian; this

assumes extreme skew surges are temporally independent and we have shown otherwise.

Stationary block bootstrap confidence intervals are preferable, but we do not use these

for model selection as they are computationally demanding. However, we use this

bootstrap approach for the confidence intervals of return level estimates (Section 3.5.4)

to ensure that estimates that are used in practice have optimal confidence intervals.

Extreme sea levels up to the ∼ 20 year return period can occur with various combi-

nations of skew surge and peak tides, e.g., a typical skew surge value combined with the

largest peak tide, through to an extreme skew surge with a typical peak tide. Since peak

tides are bounded above by HAT, return periods over 20 years can only be achieved with

extreme skew surges. The very largest return periods require skew surges bigger than

already observed. We are interested in return levels corresponding to return periods

of 1 year and above, so we require an estimate for the distribution of all possible skew

surges, though we are particularly interested in modelling the upper tail for inference
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at high return periods. Thus in each variant of our method, we develop a model for the

whole skew surge distribution under the associated assumptions about the skew surge

process.

3.4.2 Idealised case

Under the assumption that the skew surges are identically distributed, we estimate

the distribution of skew surges below a threshold u using the empirical distribution F̃Y .

This is adequate because tide gauges on the UK National Tide Gauge Network typically

have long observation lengths (>20 years) so the empirical distribution describes the

main body of the data well. To enable extrapolation in the tail we use the GPD

model (3.2.3), with constant parameters. Then, our model is

FY (y) =


F̃Y (y) if y ≤ u

1− λu
[
1 + ξ

(
y−u
σu

)]−1/ξ

+
if y > u,

(3.4.1)

where λu = 1 − F̃Y (u) and σu, ξ are the parameters of the GPD. We take λu = 0.05.

To simplify notation, we subsequently drop the u subscript on the scale σ and rate λ

parameters.

Let Tj denote the number of tidal cycles in month j. We use sequential monthly

peak tide samples {Xji ; j = 1 − 12, i = 1, . . . , Tj} where ji denotes the ith peak tide

in month j. Then, if skew surges are independent and peak tides repeat exactly on an

annual cycle, the distribution of month j maximum sea level, Mj, is

Pr(Mj ≤ z) =

Tj∏
i=1

Pr(Yi ≤ z −Xji) =

Tj∏
i=1

FY (z −Xji). (3.4.2)
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Then the annual maxima skew surge distribution is given by,

Pr(M ≤ z) =
12∏
j=1

Tj∏
i=1

FY (z −Xji). (3.4.3)

Since peak tides form a deterministic sequence, exhibiting strong pairwise sample cor-

relations, the peak tidal samples Xji that are used in expressions (3.4.2) and (3.4.3)

must be from contiguous peak tides across the year.

Although cycles of periods up to a year dominate, peak tides have longer term pe-

riodicities. Previous methods, such as Tawn (1992), assumed peak tides are stationary

within and across years so that the annual maxima distribution is given by

Pr(M ≤ z) =

( T∏
i=1

FY (z −Xi)

)1/K

, (3.4.4)

for T the total number of observations, K the number of years of observation and FY

the stationary skew surge distribution (3.4.1). We incorporate interannual peak tide

variations by taking the average of the yearly patterns over K years, where K ≥ 19 to

address all nodal cycle variations. We denote peak tide on the ith tidal cycle in month

j of year k by X
(k)
ji

for j = 1 − 12, i = 1, . . . , T
(k)
j and k = 1, . . . , K. Here T

(k)
j is the

number of tidal cycles in month j and year k, which varies over k because the timing of

the first cycle in the month can vary annually. Then we propose the following monthly

and annual maxima sea level distributions

Pr(Mj ≤ z) =
1

K

K∑
k=1

T
(k)
j∏
i=1

FY (z −X
(k)
ji

), and Pr(M ≤ z) =
1

K

K∑
k=1

12∏
j=1

T
(k)
j∏
i=1

FY (z −X
(k)
ji

),

(3.4.5)

respectively. This no longer has the property that the distribution of the annual maxima

is the product of the monthly maxima distribution, as the monthly maxima are now

dependent due to associations in peak tides in different months across years.
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3.4.3 Skew surge seasonality

As discussed in Section 3.3.2, skew surges are not identically distributed across a year.

Here we describe how we capture seasonality in the skew surge distribution in three

ways: for values above the threshold, below the threshold and in the exceedance prob-

ability. We define extreme skew surges using a month-specific threshold uj, defined as

a quantile of each monthly distribution. We use the 0.95 monthly empirical quantiles;

in Section 3.6 we discuss the merits of this approach relative to taking a threshold that

varies on a daily scale. We consider a range of models for how the parameters of the

GPD and exceedance probability separately vary over time. These models are fit inde-

pendently of each other and to different data. To distinguish between the two types of

model, we precede the model number by S (for the scale and shape parameter) and R

(for the rate parameter).

Firstly we look at exceedances of the monthly thresholds and model these using the

GPD. There are enough data within each month, over the different years, to justify

the adoption of a GPD model for exceedances of a high threshold and to assess its fit.

To account for seasonality we allow the parameters to change over time in a periodic

fashion, as discussed in Section 3.2.1. We consider four models to describe how these

parameters change with time, expressed in terms of a daily or monthly covariate. As

a first approach to account for seasonality in extremes, Carter and Challenor (1981)

suggested allowing each month to have a separate distribution. To do so we fit a GPD

with a monthly covariate on the scale σj and shape ξj parameters; we refer to this

as Model S0. We use this basic approach for comparison only. To obtain a more

parsimonious model, we fix the shape parameter to be the same value over all months

but keep a monthly covariate on the scale parameter; we call this Model S1. These

models give discontinuities at transitions between months, they assume skew surges

are identically distributed within a month and have a large number of parameters.

Therefore we introduce a covariate d = 1− 365 that denotes the day in year to capture
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Figure 3.4.1: Scale (left) and shape (right) parameter estimates for Model S0 (black)
and Model S2 (blue) at Heysham. 95% confidence intervals are added to Model S0
(error bars) and to Model S2 parameter estimates (dashed).

within-year variations smoothly. For notational simplicity, we assume d is entirely

defined using the tidal cycle index i and month j, so that there exists a function h

where d = h(j, i). We consider two harmonic parameterisations of the scale parameter

with a daily covariate. Model S2 uses a single harmonic defined by

σd = ασ + βσ sin

(
2π

f
(d− ϕσ)

)
, (3.4.6)

for parameters ασ > βσ > 0, ϕσ ∈ [0, 365) and periodicity f = 365. Model S3 uses

two harmonics with periodicities of f and f/2. The shape parameter is equal across

months for both of these models, so that Models S2 and S3 have 4 and 6 parameters,

respectively.

We now fit the models outlined above to skew surge threshold exceedances at each

site. Figures 3.4.1 and A.9.4 show Model S0 parameter estimates for Heysham and

the remaining sites, respectively. Since the 95% confidence intervals for monthly shape

parameter estimates have considerable overlap at all sites, it is reasonable to have a

common value across months as in Models S1 − 3. Table 3.4.1 reports the AIC and

BIC scores for each model at all sites. These scores suggest that restricting the shape

parameter to be an unknown constant, over months, improves model fit compared to

Model S0 in all cases. Model S2 is selected as our final model as the evidence across all
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Table 3.4.1: AIC and BIC scores at each site for each skew surge model relative to
Model S0 scores, except Model S4 which is measured relative to Model S2.

Heysham Lowestoft Newlyn Sheerness

Model No. Parameters AIC BIC AIC BIC AIC BIC AIC BIC

S1 13 -66.66 -119.52 -57.40 -118.72 -77.36 -143.83 -67.51 -123.52

S2 4 -69.5 -176.61 -60.47 -171.93 -88.89 -209.74 -76.18 -178.03

S3 6 -65.65 -161.98 -56.53 -156.85 -86.06 -194.82 -75.06 -166.73

S4 5 2.99 8.42 1.82 7.39 5.77 11.82 -181.57 3.53

sites shows this is reasonable. Table 3.4.2 gives the parameter estimates for Model S2 at

each site. Notice that the shape parameter estimates have 95% confidence intervals that

encompass zero at each site. Figures 3.4.1 and S12 show the scale and shape parameter

estimates graphically; σ̂d is higher in the winter and lower in the summer, as expected.

The estimated scale parameters of Model S2, when averaged over each month, do not

differ significantly from the estimates of Model S0 but do capture a smooth transition

within each month. We use asymptotic normality of maximum likelihood estimators

and the Delta method to add 95% confidence intervals to the scale parameter estimates.

We also considered using a log link function for the scale parameter instead of the

identity link function for Models S2 and S3 but found that the identity link yields a

better model fit. Furthermore, the identity link function has the advantage of preserving

the threshold stability property when covariates are included (Eastoe and Tawn, 2009).

Another fundamental part of capturing within year seasonality is through the rate

parameter λ. So far, we have assumed this is constant as the threshold has been set at

the same quantile across months. Here, we add a daily covariate d to capture smooth

changes in λ throughout each month, whilst recognising that the average exceedance

rate across a month is equal for all months. Let Vd be a binary random variable

representing whether a skew surge value exceeds its month-specific threshold uj or not,

so that Vd ∼ Bernoulli(λd). Therefore, we use a logit link function g(·) to model λd and

capture daily changes using a generalised linear model (GLM). To account for within
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month variations, we relate g(λd) to the day in month dj ∈ [1, 31], standardised by the

monthly mean day d̄j, so that (dj − d̄j) ∈ [−15, 15] approximately. We parametrise the

gradient using the day in year d to account for different gradients across the year using

a harmonic with periodicity f = 365. We refer to this model as Model R0 and this is

given by

g(λd) = g(λ) + (dj − d̄j)βλ sin

(
2π

f
(d− ϕλ)

)
, (3.4.7)

for βλ > 0, ϕλ ∈ [0, 365) which are parameters to be estimated and λ the exceedance

rate in a month (here λ = 0.05). Fitting this model to our data demonstrates there

is more variation in exceedance probabilities during spring and autumn compared to

summer and winter. At all sites, the greatest range in λd was ∼ 0.03 in April and

October. This agrees with our scale parameter model where the steepest gradient is

found in spring and autumn (see Figures 3.4.1 and A.9.4). At all sites, the fitted

model for λd has a negative gradient in months at the beginning of the year so that the

exceedance probability is higher earlier in the month (closer to winter). The slope is

positive later in the year.

Finally, we use a month-specific empirical distribution F̃
(j)
Y for skew surges below

the threshold. Bringing this together with the parameterisations of σd and λd (expres-

sions (3.4.6) and (3.4.7), respectively) for the upper tail model, the final full skew surge

distribution FY is dependent on month j and day of the year d, and is given by

F
(d,j)
Y (y) =


F̃

(j)
Y (y) if y ≤ uj

1− λd
[
1 + ξ

(y−uj
σd

)]−1/ξ

+
if y > uj.

(3.4.8)

As F
(d,j)
Y (y) changes with day d and d = h(j, i), it also changes for every tidal cycle i

and month j. Consequently, the estimated monthly and annual maxima distributions
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Table 3.4.2: Parameter estimates for the scale parameter for Models S2 and S4, and
the rate parameter for Model R1 with 95% confidence intervals, at each site.

Heysham Lowestoft Newlyn Sheerness

Model S2

ασ 0.14 (0.13, 0.15) 0.15 (0.14, 0.16) 0.076 (0.073, 0.080) 0.11 (0.10, 0.12)

βσ 0.060 (0.050, 0.070) 0.080 (0.070, 0.090) 0.024 (0.020, 0.028) 0.052 (0.043, 0.061)

ϕσ 271.51 (262.77, 280.23) 266.32 (260.01, 272.63) 273.58 (265.06, 282.10) 272.11 (262.66, 281.56)

ξ 0.002 (-0.042, 0.051) 0.024 (-0.023, 0.071) -0.040 (-0.074, 0.006) 0.037 (-0.029, 0.10)

Model S4

γ
(x)
σ 0.002 (-0.005, 0.009) -0.0051 (-0.040, 0.030) 0.0048 (-0.00048, 0.010) -0.012 (-0.026, 0.0011)

Model R1

βλ 0.0087 (0.0004, 0.017) 0.022 (0.015, 0.030) 0.024 (0.018, 0.030) 0.022 (0.014,0.032)

ϕλ 155.66 (100.74, 210.59) 175.16 (155.86, 194.46) 209.50 (195.48, 223.52) 184.31 (160.94,207.69)

α
(x)
λ -0.13 (-0.18, -0.079) -0.055 (-0.101, 0.009) -0.063 (-0.099, 0.108) -0.32 (-0.37,-0.26)

β
(x)
λ 0.14 (0.068, 0.21) -0.016 (-0.084, 0.051) 0.061 (0.014, 0.108) 0.23 (0.14, 0.31)

ϕ
(x)
λ 311.86 (281.78, 341.94) 359.95 (265.77, 454.15) 352.38 (299.32, 405.44) 278.54 (260.44, 293.63)

of sea levels are

Pr(Mj ≤ z) =
1

K

K∑
k=1

T
(k)
j∏
i=1

F
(d,j)
Y (z −X

(k)
ji

), (3.4.9)

Pr(M ≤ z) =
1

K

K∑
k=1

12∏
j=1

T
(k)
j∏
i=1

F
(d,j)
Y (z −X

(k)
ji

). (3.4.10)

3.4.4 Skew surge dependence on peak tide

In Section 3.3.3 we conclude that skew surge-peak tide independence is a reasonable

assumption at Heysham, Lowestoft and Newlyn, but not at Sheerness. Here, we describe

how we account for this dependence in our skew surge model. We do this for the upper

tail by adding a tidal covariate to the GPD scale and rate parameters, but not to the

shape parameter ξ to avoid additional uncertainty. For values below the threshold, we

use different empirical distributions of skew surges depending on their associated peak

tide band. This is a similar approach to Pugh and Vassie (1978).
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We first consider how the threshold exceedance probability varies with peak tide.

Here, we extend the GLM parametrisation of expression (3.4.7) by adding a peak tidal

covariate x to the rate parameter λd. We linearly standardise peak tide via (x− x̄)/sx,

where x̄ is the mean and sx is the standard deviation of all peak tide observations at

each site. We parametrise the gradient in the same way as expression (3.4.7), using

the day in year d and a harmonic with periodicity f = 365 to capture smooth daily

changes within a year. This captures the time varying dependence structure between

skew surge and peak tide (see Section A.2 of the Appendix A). We use the notation

λd,x and the following model, denoted R1,

g(λd,x) = g(λd) +

(
x− x̄

sx

)[
α
(x)
λ + β

(x)
λ sin

(
2π

f
(d− ϕ

(x)
λ )

)]
, (3.4.11)

for g(·) the logit link function, g(λd) defined by expression (3.4.7) and α
(x)
λ ∈ R, β(x)

λ > 0

and ϕ
(x)
λ ∈ [0, 365) being parameters to be estimated. The full model for λd,x has 5

parameters.

We fit this GLM to model the exceedance probabilities at each site and give parame-

ter estimates in Table 3.4.2. Figure 3.4.2 shows these results graphically at Sheerness for

March, June, September and December (see Figure A.9.10 for the other sites). As ex-

pected the estimated exceedance probability is lower at higher tides, this result is more

significant in months where we found skew surge-peak tide dependence to be stronger

(April - September). As in Section 3.4.3, λd,x changes most with day in spring and au-

tumn corresponding to the greatest range of skew surges within a month. Figure A.9.9

shows the gradient of the tidal covariate for each month, when averaged over days.

At Heysham, Newlyn and Sheerness, the gradients are greatest near the equinoxes; at

Lowestoft there is little variation across months.

We compare the Model R1 (3.4.11) with Model R0 (3.4.7) using AIC and BIC

scores. Model R1 minimises the AIC score at Heysham, Newlyn and Sheerness; this

is most notable at Sheerness with a reduction of 139. We obtain almost identical AIC
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Figure 3.4.2: Estimated exceedance probability λd,x (y-axis) under Model R1 in March,
June, September and December with respect to x being peak tide (x-axis in metres)
and dj being day in month at Sheerness. Darker (lighter) points represent days later
(earlier) in the month.

scores at Lowestoft. BIC is also minimised by Model R1 at Heysham and Sheerness,

but not at Lowestoft and Newlyn. We also compare Model R1 with the model in

expression (3.4.11) but with β
(x)
λ = 0, so that the gradient term for tide does not

vary with day. We found that AIC favoured Model R1 at all sites indicating that the

dependence structure varies seasonally.

We also investigate adding a tidal covariate x to the scale parameter of the GPD

for extreme skew surges, building on the existing parametrisation of Model S2 (3.4.6)

to give Model S4,

σd,x = ασ + βσ sin

(
2π

f
(d− ϕσ)

)
+ γ(x)σ x, (3.4.12)

for ασ > βσ > 0 , ϕσ ∈ [0, 365), γ
(x)
σ ∈ R parameters to be estimated, f = 365 the

periodicity and d the day in year. Since we found evidence that the dependence of

skew surge on peak tide changes within a year, we also considered parameterisations

that allow the tidal effect to vary with day or month but found no improvement in fit

relative to the loss of parsimony.

Table 3.4.2 gives estimates of γ̂
(x)
σ at each site; this tells us how σd,x changes with tide
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(see Table A.9.1 for all Model S4 parameter estimates). At Lowestoft and Sheerness

γ̂
(x)
σ < 0 which agrees with our results of Section 3.3.3 that extreme skew surges tend

to occur on lower tides, although their 95% confidence intervals contain 0. To formally

compare the fit of Model S4 with S2 we use AIC and BIC scores (see Table 3.4.1).

Model S4 is only favoured by the AIC at Sheerness, this suggests the simpler model

without a tidal covariate is preferred elsewhere. Given that our findings of skew surge-

peak tide dependence were different at Sheerness in comparison to the other sites,

we examined this further to check it wasn’t an artefact of the data measurement or

tide extraction processes. We explored the fits of Models R1 and S4 on a 483 year

data set from a hydrodynamical model driven by a regional climate model (Howard

and Williams, 2021). We find that adding peak tide covariates to the scale and rate

parameters improves fit, with similar estimates to the observations. See Section A.3 of

Appendix A for details. Therefore, we proceed with Model S4 for the scale parameter

at all sites.

Below the threshold, we found it sufficient to capture the dependence by splitting

the empirical distribution of skew surges into three associated peak tide bands, i.e.,

F̃j,x(y) = F̃
(1)
j (y) if x ≤ x

(j)
0.33, or F̃

(2)
j (y) if x

(j)
0.33 < x ≤ x

(j)
0.67, or F̃

(3)
j (y) if x > x

(j)
0.67,

(3.4.13)

where x
(j)
q is the q quantile of the peak tide distribution in month j and F̃

(l)
j for l = 1, 2, 3

is the empirical distribution of skew surges in month j which are associated with the

lowest (l = 1), medium (l = 2) and highest (l = 3) band of peak tides. The choice of 3

tidal bands is somewhat arbitrary, but appears sufficient given the weak dependence on

peak tide. We could have used a kernel smoother to ensure continuity across bands, as

in Bashtannyk and Hyndman (2001). Since our interest lies with the extreme values,

we did not explore this further as this would not have made a practical difference to

our return level estimates.
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So our skew surge model, that is dependent on peak tide, is given by

F
(d,j,x)
Y (y) =


F̃j,x(y) if y ≤ uj

1− λd,x
[
1 + ξ

(y−uj
σd,x

)]−1/ξ

+
if y > uj,

(3.4.14)

with F̃j,x(·), σd,x and λd,x defined in expressions (3.4.13), (3.4.12) and (3.4.11), respec-

tively.

3.4.5 Skew surge temporal dependence

So far, we have assumed that skew surges are independent. We now describe how

we account for their temporal dependence across tidal cycles. As discussed in Section

3.2.1, temporal dependence causes clusters of events above high thresholds; if this is

ignored, sea level return levels of annual maxima will be overestimated. The best

measure of dependence for the extreme values of a stationary sequence is the extremal

index θ. Tawn (1992) and Batstone et al. (2013) use the extremal index of the highly

non-stationary sea level series. We model the sub-asymptotic extremal index θ(y, r)

(defined by equation (3.2.2)) of skew surges using varying thresholds (levels) y with a

fixed run length r. Then the distribution of the monthly and annual maxima sea levels

are given by

Pr(Mj ≤ z) =
1

K

K∑
k=1

T
(k)
j∏
i=1

[
F

(d,j,x)
Y (z −X

(k)
ji

)
]θ̂(z−X(k)

ji
,r)
,

Pr(M ≤ z) =
1

K

K∑
k=1

12∏
j=1

T
(k)
j∏
i=1

[
F

(d,j,x)
Y (z −X

(k)
ji

)
]θ̂(z−X(k)

ji
,r)
. (3.4.15)

The empirical estimates θ̃(y, r) of the sub-asymptotic extremal index are shown in

Figures 3.4.3 and A.9.8 for Heysham and the remaining sites, respectively. These
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Figure 3.4.3: Estimates of the subasymptotic extremal index θ(y, r) for different skew
surge levels y and run length r = 2 at Heysham using the runs estimate (points) and
our model estimate (line) of expression (3.4.16). The dashed black line is the 0.99 skew
surge quantile.

demonstrate substantial variation with y. We are interested in θ(y, r) across all ranges of

skew surge, but particularly in values greater than those observed to allow extrapolation

for return level estimation.

We estimate θ(y, r) in two stages. For y ≤ v where v is a high threshold, we use the

empirical runs estimate θ̃(y, r) as this is smooth over y in this range. For computational

efficiency purposes, we evaluate θ̃(y, r) on a regular grid of y values in the range [yF , v]

where yF is the minimum observed skew surge. Then we linearly interpolate these for

any y < v of interest. For y > v, the empirical estimate is increasingly variable so we

adopt a parametric model for θ(y, r). We propose

θ̂(y, r) =


θ̃(y, r) if y ≤ v

θ − [θ − θ̃(v, r)] exp
[
− (y−v)

ψ

]
if y > v,

(3.4.16)

where ψ > 0 and θ̃(v, r) ≤ θ ≤ 1 are parameters to be estimated. This parametric form

ensures the estimate asymptotes to the extremal index θ and is continuous at v.

The parameters ψ and θ are estimated using a weighted least squares approach with

weight w(y) =
√
c(y, r)− 1 where c(y, r) is the number of clusters above y separated by

run length r. This gives a greater weight when there are more clusters, and a weight of
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zero for a single cluster. We choose v to be the 0.99 quantile of all skew surges but this

choice is subjective. The run length r represents the approximate duration of a storm

across a single site. We take r = 2, 10, 1 and 10 for Heysham, Lowestoft, Newlyn and

Sheerness, respectively. These choices are supported by estimating the run length using

the intervals estimator for each season, where we expect the stationary assumption to

be reasonably justified (Ferro and Segers, 2003). At Heysham, θ̂ = 1 and ψ̂ = 0.40;

the estimates for the other sites are given in Section A.4 of Appendix A. Figures 3.4.3

and A.9.8 show this model fit for Heysham and the remaining sites, respectively, com-

pared with the entirely empirical estimates.

3.5 Results

3.5.1 Introduction

Using the distribution of the monthly and annual maxima sea levels derived in Section

3.4, we estimate return levels by solving

Pr(Mj ≤ zj,p) = 1− p and Pr(M ≤ zp) = 1− p,

respectively for p ∈ [0, 1]. We are interested in return levels up to the 10,000 year level,

corresponding to annual exceedance probability p = 10−4. In the monthly case, this is

the level we expect the monthly maxima Mj to exceed, on average, every 1/p of that

particular month (for example, every 10,000 Januarys). Whilst in the annual case, this

is the level we expect the annual maxima to exceed every 1/p years, on average.

To assess the importance of each of the novel modelling steps in Section 3.4, we

derive return level estimates from each stage; accounting for non-stationarity in each

component, the dependence between them and skew surge temporal dependence. Each

stage is detailed below in a nested list numbered (i)-(vii), so that each model below
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builds on the previous method, except (iv) from (iii). We compare these to the current

approach used in practice and a baseline approach, both derived under simplifying and

false assumptions. We subsequently refer to each model by name, given below, using

italics. The notation follows from Section 3.4.

(i) Current : The methodology currently used in practice, where skew surges are

assumed to be IID and peak tides are stationary, with annual maxima distribu-

tion (3.4.4).

(ii) Baseline: As in (i) but we recognise interannual variations in the tide by averaging

over yearly tidal samples. The annual maxima distribution is given by

Pr(M ≤ z) =
1

K

K∑
k=1

T (k)∏
i=1

FY (z −X
(k)
i ), (3.5.1)

whereX
(k)
i , i = 1, . . . , T (k) represents an annual tidal sample for year k = 1, . . . , K,

where we choose K = 100 arbitrary but contiguous samples.

(iii) Seasonal surge: As in (ii) but we account for the within-year seasonality of skew

surges using the skew surge distribution (3.4.8).

(iv) Seasonal tide: As in (ii), but conversely to (iii) we account for within-year seasonal-

ity in peak tide and not in skew surge, so the skew surge model of expression (3.4.1)

is used in the monthly and annual maxima distributions (3.4.5).

(v) Full seasonal : As in (ii) but we account for within-year seasonality of both com-

ponents, with monthly and annual maxima distributions (3.4.9) and (3.4.10), re-

spectively.

(vi) (Skew surge-peak tide) interaction: As in (v) but with skew surge-peak tide de-

pendence captured, so that the skew surge distribution (3.4.14) is used.
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(vii) (Skew surge) temporal dependence: As in (vi) but accounting for temporal depen-

dence in the skew surge series, with annual maxima distribution (3.4.15).

We compare our model estimates to empirical estimates. These are restricted to

return periods within the range of data, but are useful for checking whether the model is

capturing the distributional properties of observed sea levels. The empirical estimates

act as a guide to the truth and we do not expect our model to fit these perfectly

since each empirical estimate is specific to a particular annual tidal regime, whereas

in our approaches (ii)-(vii) we account for tidal variations by averaging over different

samples. The empirical estimates are also sensitive to missing data and so can be

biased. In Sections 3.5.2 and 3.5.3, we make comparisons using point estimates to

assess sensitivity to the model choice; in each case our results identify statistically

significant differences between these models. Once the model choice is finalised we

present measures of uncertainty and assess model fit in Section 3.5.4. In Section 3.5.5

we use our model to find the probability that an extreme sea level occurs in a specific

month, given it is higher than some level with a given return period of interest.

3.5.2 Return levels: accounting for non-stationarity

We investigate how accounting for skew surge and peak tide seasonality influences sea

level return level estimates by comparing monthly return level estimates from the base-

line, seasonal surge, seasonal tide and full seasonal models. We are mainly interested

in differences between the baseline and full seasonal estimates. We do not expect the

full seasonal model to match the empirical estimates since we have not accounted for

skew surge-peak tide dependence and temporal dependence yet. The intermediate so-

lutions (seasonal surge and seasonal tide) allow us to understand which components’

non-stationarity is influencing the return levels most in different months.

Figures 3.5.1 and A.9.11 show monthly return level estimates at Lowestoft and the

other sites, respectively. At all sites and in all months, the empirical estimates lie
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Figure 3.5.1: Monthly maxima sea level return level estimates (y-axis in metres) for
different return periods (x-axis in years) at Lowestoft in March, June, September and
December (from left to right), estimated using the baseline (black solid), seasonal surge
(dot-dashed), seasonal tide (dotted) and full seasonal (dashed) models. Empirical es-
timates are shown by black points.

closer to full seasonal model than the baseline. The most noticeable feature is the

difference between the baseline and full seasonal model in June, this reaches 1.54m at

the 10,000 year level at Lowestoft. In June skew surges are particularly low relative

to the rest of the year, so ignoring their seasonality leads to significant overestimation.

This overestimation increases with return period. On the other hand, in December

when skew surges are relatively high compared to the other months, ignoring seasonality

results in underestimates of return levels. Since the tidal range at Lowestoft is narrow

compared to the range of skew surges, differences between seasonal tide and full seasonal

estimates are small relative to the differences between those from the seasonal surge

and full seasonal models. For example, when the tidal range is largest at the autumn

equinox in September, we observe a difference of 7cm at the 10,000 year level. Whereas

at Heysham, where the tidal range is large relative to other sites, we observe a difference

of 26cm at the 10,000 year level in September.

Figure 3.5.2 shows annual return level estimates from the current, baseline and full

sesaonal models, compared to empirical estimates at all sites, up to the 100 year level

(Figure A.9.12 shows these up to the 10,000 year level). The current method gives
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Figure 3.5.2: Annual maxima sea level return level estimates (y-axis in metres) for
different return periods (x-axis in years) at Heysham (top left), Lowestoft (top right),
Newlyn (bottom left) and Sheerness (bottom right), up to the 100 year level, estimated
using the current (dot-dashed), baseline (black solid), full seasonal (dashed), interaction
(dotted) and temporal dependence (blue solid) models. Empirical estimates are shown
by the black points.

similar results to the baseline approach for all return periods at all sites. This suggests

assuming each year is identically distributed is not unreasonable. Even at Heysham,

where year-to-year variations are large, the difference between the baseline and current

method is small, with the current method giving a 1 year return level 4cm higher than

the baseline. Since the full seasonal model lies closer to the empirical estimates than

models (i)-(iv) at all sites, this highlights the importance of accounting for both forms

of seasonality. At the 10,000 year level, the baseline gives a return level 6cm, 23cm

and 58cm lower than the full seasonal method at Heysham, Lowestoft, and Sheerness,

respectively, whereas it is 1cm higher at Newlyn.
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Figure 3.5.3: Monthly return level estimates (y-axis in metres) for different return peri-
ods (x-axis in years) at Sheerness in March, June, September and December, estimated
using the full seasonal (dashed) and interaction (solid) models when we account for and
ignore skew surge-peak tide dependence, respectively. Empirical estimates are shown
by the black points.

3.5.3 Return levels: accounting for dependence

Here, we build on the full seasonal model to capture skew surge-peak tide dependence

(interaction model) and skew surge temporal dependence (temporal dependence model).

We compare these with the empirical and full seasonal estimates. We present monthly

maxima return levels of the interaction model to demonstrate the changing skew surge-

peak tide dependence structure within a year, discussed in Section 3.3.3. Then we

compare annual maxima return level estimates from both models.

Figure 3.5.3 shows monthly return level estimates in March, June, September and

December for the full seasonal and interaction models, as well as the empirical estimates

at Sheerness. We illustrate the results for Sheerness because this dependence is stronger

compared to the other sites, as discussed in Section 3.3.3. Ignoring skew surge-peak tide

dependence overestimates return levels compared to the full seasonal model for return

periods greater than 10 years. At the 10,000 year level, these are overestimated by 15cm,

14cm, 17cm and 10cm in March, June, September and December, respectively, with

similar values down to the 1 year level. This is slightly surprising as in Section A.2 of

Appendix A we found evidence that it is reasonable to assume skew surge and peak tide
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are independent in March, September and December. For Sheerness the results from the

interaction model tend to lie closer to the empirical estimates than those from the full

seasonal model (see Figure 3.5.3); this suggests that accounting for this dependence is

important and better reflects the process properties. At the other sites, the return level

estimates from the full seasonal and interaction model are almost indistinguishable; this

echoes that adding peak tide covariates into the skew surge model when independence

is a reasonable assumption does not alter results significantly.

As skew surge temporal dependence is not yet accounted for in the interaction

model, its return level estimates are anticipated to slightly overestimate the empiricals.

Figure 3.5.2 and A.9.12 compares annual return level curves for the temporal dependence

and interaction models. These are very close for high return periods (>100 years). For

lower return periods (<10 years) the temporal dependence estimates lie closer to the

empiricals at all sites. This is a natural consequence of the extremal index model given

by expression (3.4.16) for temporal dependence, since the estimated extremal index is

closer to zero for lower skew surges, corresponding to shorter return periods. But for the

highest skew surges, and for those greater than observed, θ̂(y, r) → θ̂ ≈ 1 and y → yF ,

so the largest return level estimates remain unchanged. Accounting for temporal skew

surge dependence has the greatest influence at Heysham, where the acf estimates are

higher compared to the other sites (see Figure A.9.5). Here, the temporal dependence

model gives return values 10cm, 4cm and 2cm lower than the interaction model at the

1, 5 and 10 year return periods to better match the empirical estimates.

3.5.4 Assessment of fit and uncertainty

Figure 3.5.4 shows annual maxima return level estimates from the temporal dependence

model, judged our best model, at Heysham and Lowestoft (see Figure A.9.13 for the

other sites). We also add the estimated maximum and minimum year-specific return

levels, showing the effect of interannual peak tide variations, as given by (3.4.15) with-
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Figure 3.5.4: Return level estimates (y-axis in metres) for different return periods (x-
axis in years) from the final model (temporal dependence) (solid line), with the maximum
and minimum year-specific return level estimates (dashed line) and empirical estimates
(points) at Heysham (left) and Lowestoft (right).

out averaging over K years. Figure A.9.14 shows yearly estimates at each site. The

range of yearly estimates for Lowestoft is very narrow since the tidal range is small,

compared to Heysham which has the largest tidal range of the four sites. Interestingly,

year specific return levels at Newlyn appear to increase as the year also increases. Em-

pirical estimates may deviate away from the return level point estimates if that specific

value occurs in a year with particularly low or high tides compared to the average.

Figures 3.5.4 and A.9.13 show that the empirical estimates lie within the bounds for

each site, at most return periods. Enŕıquez et al. (2022) demonstrate that the 4.4 year

perigean cycle has a greater effect on modulations in return levels than the nodal cycle

in the UK. Our results are less clear (see Figure A.9.15), with Sheerness year-specific

return levels having an ∼ 20 year cycle.

We also assess goodness-of-fit by transforming the observed annual maxima to a uni-

form distribution using the probability integral transform with the distribution function

of the annual maxima for their respective year. We do this for three cases; the base-

line approach (3.5.1), our final model (3.4.15) and the year-specific final model. If

the model fits well we expect the transformed annual maxima to be Uniform(0,1) dis-

tributed. Figure 3.5.5 shows PP plots for Sheerness, and the remaining sites are shown

in Figure A.9.19; a good fit is indicated by the empirical and model probabilities being
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Figure 3.5.5: PP plots for the transformed annual maxima sea levels at Sheerness
through the baseline (left), final (temporal dependence) (centre) and year specific final
(right) distribution functions. The solid line shows the line of equality, y = x. 95%
tolerance bounds are shown by dashed lines (found by bootstrapping).

equal so that the line of equality lies between the tolerance bounds. Figure 3.5.5 demon-

strates the improvement in fit across the three models. We formally test this using the

Kolmogorov-Smirnov test at each site for the final model and obtain p values 0.0066,

0.51, 0.0044 and 0.10 at Heysham, Lowestoft, Newlyn and Sheerness, respectively. At

Heysham and Newlyn the p value is significant at the 5% level so we cannot conclude

a good fit, but it is much better than for the baseline fits.

We also assess the model fit uncertainty by estimating 95% confidence intervals on

the 1, 10, 100, 1000 and 10,000 year return levels using a stationary bootstrap procedure.

We first transform the skew surges using our final model with their corresponding

seasonal and tidal covariates, call this series {UY
i } for i = 1 . . . , T for T the total

number of observations, where UY
i = F

(d,j,x)
Y (Yi). This gives the basis for another

approach to assess model fit. If the model is ‘correct’, these transformed observations

will be Uniform(0,1) and we check this formally using the Kolmogorov-Smirnov test

over all years, and for each year. We discuss this further in Section A.8 of Appendix A.

To account for temporal dependence, we sample {UY
i } using a stationary bootstrap

with block length L ∼ Geometric(1/10), so the mean block length corresponds to 5

days (the maximum duration of a storm), and the total length of each sample is equal
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to that of the original data (Politis and Romano, 1994). Call this bootstrapped series of

uniform variables {UB
i }. Then we transform the bootstrap sample back to the original

scale using our final model, but preserving the original covariate information of {Yi},

i.e., {Xji , d, j}, call this series {Y B
i }. Then we fit our tail model to the {Y B} series

to re-estimate all of the parameters ασ, βσ, ϕσ, γ
(x)
σ , ξ, βλ, ϕλ, α

(x)
λ , β

(x)
λ , ϕ

(x)
λ , θ and ψ, as

well as the monthly empirical distributions and thresholds. These estimates are then

used to derive the annual maxima distribution of sea levels and estimate return levels.

We take 200 bootstrap samples and present 95% confidence intervals in Figures 3.5.6

and A.9.18 at Sheerness and the other sites, respectively. The uncertainty associated

with each return level increases with return period, as expected, since it becomes un-

certain as we extrapolate. Uncertainty at the largest return periods can be attributed

to the difficulty in accurately and precisely estimating the shape parameter of the GPD

using data. This arises from using data at only a single site. It is a well-known limita-

tion so a number of approaches have been developed to reduce the variation in estimates

without introducing bias, with the most prominent being spatial pooling methods (see

Section 3.6). We adopt a variant of this approach using the same strategy as Envi-

ronment Agency (2018). They use a Normal(0.0119, 0.03432) prior, derived from the

sample of site specific shape parameter estimates for skew surges from over the entire

UK network of coastal sites. We incorporate this prior information into our model,

using a penalised likelihood framework for parameter estimation. Our shape parameter

estimates are now -0.019 (-0.021, 0.059), 0.014 (-0.025, 0.052), -0.027 (-0.058, 0.004) and

0.008 (-0.039, 0.054) for Heysham, Lowestoft, Newlyn and Sheerness, respectively; 95%

confidence intervals are given in parentheses. First note that this additional informa-

tion is consistent with the data at each site since there is a close agreement in the point

estimates of the shape parameters before and after including this information, with the

point estimates all slightly closer to zero, whilst the scale and rate parameter estimates

remain unchanged. More critically, we now have narrower confidence intervals for the
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shape parameters. By incorporating this extra spatial information about skew surges,

we have reduced the uncertainty associated with shape parameter estimation and hence

in the return level estimates.

Figure 3.5.6 demonstrates how adding the penalty (prior) information reduces un-

certainty at Sheerness, since the distribution of ξ̂ over 200 bootstrap samples is much

narrower. Figure 3.5.6 also shows the corresponding return level estimates and 95%

bootstrap confidence intervals for this updated model; the return level curve is only af-

fected at large return levels, as expected, where the estimates are less bounded. There

is a dramatic reduction in the uncertainty associated with high return levels; at the

10,000 year level, adding prior information has reduced the range of confidence interval

by 2.5m. Clearly, adding prior information on the shape parameter is important. How-

ever, we didn’t do this sooner because it is important to allow the data to speak for

itself when trying to reflect the realism of the sea level process in other aspects of our

methodology. See Figure A.9.18 for the updated return level estimates and confidence

intervals at Heysham, Lowestoft and Newlyn.

In Section A.5 of Appendix A we compare return level estimates for the sea level

process from our final model across different quantiles used for the skew surge model to

define extreme values. We find that the uncertainty associated with threshold selection

is small compared to the other sources of uncertainty captured in the 95% confidence

intervals, both with and without the prior information on the shape parameter.

So far, assessing sea level return level estimates derived across different statistical

models has been restricted when comparing their agreement with empirical estimates,

which are noisy, subject to bias from missing data and the tidal window over which

they are observed, and the comparisons are limited to return periods up to the length

of observation series. To aid with comparison to more reliable empirical estimates for

short return periods and to enable comparison at longer return periods, we have also

used the 483 year numerical model data set for Sheerness developed by Howard and
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Figure 3.5.6: 95% bootstrap confidence intervals on the final (temporal dependence)
return level estimates at Sheerness (left) before (black) and after (blue) adding a prior
distribution to the shape parameter. Empirical estimates are shown by black points.
Histograms of the shape parameter estimates and their densities (right) for these two
models in their corresponding colours.

Williams (2021). Specifically, inference is based on repeated samples which are identical

in length to the observed data at Sheerness and are assessed relative to the inference

using the full 483 years of data. We find that our approach gives smaller RMSE values

than the SSJPM for all return periods.

3.5.5 Sea level seasonality

It is helpful to understand when in the year the most extreme sea levels might occur,

such as for coastal defence maintenance planning. We use our final model (temporal

dependence) to investigate the seasonality of extreme sea levels. We are interested in

the probability that a randomly selected sea level annual maxima M is from month j

given it is equal to some level z. We consider zp, a sea level with an associated annual

exceedance probability p ∈ [0, 1], so that zp is derived from expression (3.4.15). Then

the probability of interest is defined by,

P̂M(j; z) = P̂(m(M) = j|M = z), (3.5.2)
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Figure 3.5.7: Estimates of P̂M(j; z) for months j = 1−12 at Sheerness, for p = 1 (black
solid), 0.1 (long-dashed), 0.01 (dot-dashed), 0.001 (dotted), and 0.0001 (dashed). The
blue line is the empirical estimate P̃M(j; z1), 95% confidence intervals are for P̂M(j; z1).

where m(M) denotes the month of occurrence of M and P̂(·) is under our final model.

This is a similar metric to that used for assessing peak tide seasonality (Section 3.3.2),

however, since we have a model for the sea levels we condition on M = z because we

can obtain the form of the probability density function. Increasing z to rare return

levels uncovers the seasonal variations in extreme sea levels. For months where the

most extreme sea levels occur, P̂M(j; z) takes its largest values, with P̂M(j; z) → 0 for

months with the least extreme sea levels. We derive the form of P̂M(j; z) in Section A.7

of Appendix A.

Figure 3.5.7 shows the estimates P̂M(j; z) to demonstrate sea level seasonality of

extreme levels at Sheerness, as well as the empirical estimate for sea levels equal to the

1 year return level (see Figure A.9.20 for the remaining sites). These empirical estimates

tend to lie within the 95% confidence intervals for the corresponding model estimates,

at the 1 year return level. This demonstrates that our model for extreme sea levels is

capturing the seasonality well. Our model estimates allow us to extrapolate beyond

the observed data. At Sheerness, the empirical and model estimates at the 1 year

return level are influenced by the tidal seasonality since they peak near the equinoxes.

However, once we extrapolate to higher return levels, the sea level seasonality is almost

entirely influenced by skew surge seasonality. This is the case for all sites at high return
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levels, since tides are bounded above by HAT but this is less than the 10 year sea level

return level for all four sites. Therefore, extremely large skew surges are required to

exceed the highest return levels, which are most likely to occur in winter.

3.6 Discussion

We have developed a novel methodology for estimating extreme sea levels by accounting

for seasonality in skew surge and peak tide, the dependence between them, and temporal

dependence in skew surges. Our results show a significant improvement on current

methods, which ignored these features of the sea level processes and instead made

several simplifying assumptions. Our model also allows us to study the seasonality of

sea levels exceeding levels previously unobserved; this can be useful for coastal defence

maintenance planning. The return levels estimated from our model present a more

accurate representation of future extreme levels, and should be used for future coastal

defence upgrades. Our methodology can be applied to all UK National Tide Gauge

Network sites with a sufficient data record length, and is not limited to UK locations.

Our method could also be applied to estimate extreme sea currents distributions where

a similar style framework for dealing with tide and surge components is used (Robinson

and Tawn, 1997); this would provide substantial value for designing offshore structures

to ensure required levels of safety. Seasonal variations are a common feature of many

environmental variables and therefore should be accounted for when estimating return

levels; the methodology discussed in Section 3.4.3 is applicable to a range of variables.

We conclude by addressing some of the limitations with our model and suggest avenues

for further exploration.

Our method assumes a steady state climate, since the existing mean sea level rise

trend was removed before analysis, and we have not included any longer-term trends

in our model. Note the mean sea level trend must be added back onto the return level
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estimates presented in this paper when used in practice. It is fundamental that the

effects of anthropogenic induced climate change and sea level rise are accounted for.

Whilst most of this is captured by mean sea level rise, it has been suggested there is a

small, but different, trend in the extreme sea levels (Haigh et al., 2010; Menéndez and

Woodworth, 2010). There are two approaches to do this; the preprocessing model of

Eastoe and Tawn (2009) where trends are modelled and removed before analysis, then

covariates can be added to the extreme value model to explain trends in the tail of the

distribution that are different from that in the body. Alternatively, covariates can be

added to model parameters straight away without an attempt to remove any trends

from the data (Davison and Smith, 1990). D’Arcy et al. (2022) (see Chapter 4) adopt

this approach to study changes in extreme sea level relative to the much easier estimated

changes in mean sea levels. They extend the methodology developed here to incorporate

a global mean temperature (GMT) anomaly covariate. They find changes with GMT

increases are primarily experienced through an increased frequency of extreme skew

surges.

We have shown that skew surges clearly exhibit within-year seasonality. We used

a monthly threshold, defined as a quantile of the monthly skew surge distribution, to

define extreme values and develop our non-stationary model. Using a quantile ensures

there are a similar number of exceedances to model per month. This approach is

similar to that of Carter and Challenor (1981), where we first assume stationarity

within months and then build in the seasonal variation on a shorter temporal resolution

through covariates in the GPD parameters. This meant that we were able to capture

most of the non-stationarity, as well as skew surge-peak tide dependence, at the same

stage of the modelling process. However, we could have considered a smoother threshold

choice by using quantile regression (Northrop et al., 2016) but we did not try this as

our monthly threshold appeared sufficient.

Spatial pooling provides a promising framework to capture longer-term trends due
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to climate change; single site trends are subtle but sharing information across sites

could give more significant results. Spatial pooling also enables inference at locations

with limited or no data, where our current singe site model would not perform well. In

Section 3.5.4 we add a prior penalty for the shape parameter in our model, based on

spatial information; this is a first approach to spatial pooling and drastically reduced

the uncertainty associated with longer term return levels. Table A.9.1 shows that the

95% confidence intervals of ξ̂ for Model S4 (no penalty) overlap at all sites, therefore it

may be reasonable to fix the shape parameter across sites, as an alternative approach

for borrowing information. Fixing the shape parameter in homogeneous regions is a

crucial step in regional frequency analysis, originally introduced by Hosking and Wallis

(1997). This is also an assumption in the Bayesian hierarchical modelling framework

presented by Sharkey and Winter (2019) and a common assumption for spatial extreme

value theory (see Davison et al. (2019)). We refer the reader to Batstone et al. (2013),

Bernardara et al. (2011) and Haigh et al. (2010) for different approaches to spatial

pooling for extreme sea level estimation. Whilst spatial pooling is clearly an important

aspect of extreme sea level estimation, it is also fundamental that the marginal site

estimates are accurate; therefore our approach for capturing the realism of the sea level

process should be adopted within a spatial framework.
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Accounting for climate change in

extreme sea level estimation

4.1 Introduction

The UK coastline is one of the largest in Europe at approximately 8000km for mainland

Britain and is regularly subject to coastal flooding (Zsamboky et al., 2011). Coastal

flooding is defined as a natural phenomenon where coastal land is inundated by sea

levels above the normal tidal conditions. This has the potential to devastate coastal

towns, damage infrastructure and destroy habitats. In extreme cases, coastal flooding

has led to the loss of human life. The likelihood of coastal flooding is increasing with

anthropogenic induced climate change (see Figure 4.1.1 and Seneviratne et al. (2012,

2021)). Therefore it is increasingly important to protect coastline communities, or

at least have a well-founded scientific basis for the proposal for a managed retreat.

Coastal flood defences, such as a sea wall, protect against these consequences if they

are designed and built to withstand the most extreme sea levels. Estimates of sea

level return levels provide crucial information for this design process; a return level is

the value we expect the annual maximum sea level to exceed with probability p, i.e.,

80
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once every 1/p years, on average, for a stationary series. We estimate these levels for

p ∈ [10−4, 10−1] to cover a range of industry interests, from agricultural preservation to

nuclear power plant protection.

Coastal flooding is driven by a combination of tide, surge and waves. We are inter-

ested in the still water level, i.e., the sea level with waves filtered out, but for simplicity

we refer to this as sea level. Therefore, tide and surge are the only components of sea

levels that we consider. Tides are the regular and predictable changes in sea levels

driven astronomically; these changes are well understood and perfectly forecast (Eg-

bert and Ray, 2017). High tides generally occur once every 12 hours and 25 minutes,

although variations are possible. We refer to the maximum tide in this cycle as the

peak tide. Surges are stochastic, transient changes in sea levels often caused by strong

winds and low atmospheric pressure due to a storm, hence are often referred to as storm

surges. Surges are sometimes called the non-tidal residual as they define any departure

from the predicted tidal regime so can also include gauge recording errors, tidal predic-

tion errors and effects of the tide-surge interaction. These are often available at hourly

or 15 minute intervals on the UK National Tide Gauge Network. We refer the reader

to Pugh and Woodworth (2014) for a complete overview of sea level processes.

An alternative decomposition of sea levels is to consider the maximum level in a

tidal cycle that can be written as the sum of skew surge and peak tide. Skew surge

is the difference between the maximum observed sea level and the peak tide in a tidal

cycle, regardless of their timing. In this case, we have less data since observations are

available once every tidal cycle. However, skew surge and peak tide exhibit a much

weaker dependence than surge and tide (which has a complex dependence structure),

so they are often preferred. Williams et al. (2016) show that it is reasonable to assume

skew surge and peak tide are independent at most sites on the UK National Tide Gauge

Network; though there is physical evidence that this is not always true (Howard and

Williams, 2021).
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Figure 4.1.1: Global mean temperature anomalies from the HadCRUT5 dataset in 1915-
2020, relative to the period 1961-1990, with associated uncertainties in red (Morice
et al., 2021).

Long term changes in mean sea level have been widely studied (Woodworth and

Player, 2003; Wahl et al., 2013) via empirical assessments and using hydrodynamic

models linked to climate models. Typically linear models are fit to estimate these trends.

Similar statistical methods have been used for extreme sea levels using regression of

annual or monthly maxima data on either sea levels or skew surges. Interestingly

these methods find no significant evidence for the trend in extreme sea levels to differ

from that for mean sea levels (Calafat et al., 2022; Weiss and Bernardara, 2013; Wong

et al., 2022; Woodworth et al., 2011). Complications to these methods are the large

interannual variability, the presence of seasonality and the inefficient usage of extreme

event data (through the use of maxima rather than all large values). The difference

between extreme and mean sea level trends is likely to be of a smaller order than for

mean sea level trends, hence they are more difficult to estimate. Furthermore, only

trends in average extreme values are looked for, not changes in their variability over

time. As a consequence, inference for these properties at a single site is likely to be

overloaded by uncertainty, resulting in the hypothesis of identical trends in extreme

and mean sea levels not being rejected.

We propose a different approach which is integrated into sea level return level esti-

mation; this accounts for short term variations in skew surges such as seasonality, uses
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all extreme skew surges above a high month specific quantile, allows for the distribution

of the extreme skew surges, and enables pooling of information about the trend across

sites. Critically, we separately assess changes in the rate of which extreme skew surge

events occur and changes in the distribution (e.g., the mean) of these extreme events

once they have occurred.

The earliest methods for estimation of sea level return levels modelled the sea level

data directly, whilst the later approaches used a joint probabilities method to consider

surge and tide components. More recent approaches use skew surge and peak tides.

Section 4.2.3 gives an overview of the history of methodology developments. We extend

the most recent method, that of D’Arcy et al. (2023b) (see Chapter 3), to account for

the effects of climate change on extreme sea level estimation. They model skew surges

and combine this with the known peak tide regime. D’Arcy et al. (2023b) particularly

focus on the tail of the skew surge distribution, using a generalised Pareto distribution

(GPD) to model exceedances of a high threshold (Coles, 2001). Covariates are added

to this model representing day of the year and peak tide, to account for seasonality and

skew surge-peak tide dependence, respectively, as well as capturing the temporal depen-

dence of extreme skew surges. Their results demonstrate a considerable improvement

on previous approaches since the realism of the sea level processes are captured, and

significant improvements in goodness-of-fit are achieved. However, the model of D’Arcy

et al. (2023b) assumed that skew surges were identically distributed across years, after

a linear mean sea level trend was removed. If climate change impacts the within year

skew surge variance, or even its distribution in a more subtle way than simply chang-

ing its mean value, then the extreme sea levels relative to the mean sea level will also

change. Therefore we need a methodology that can incorporate such changes through

to the return level estimation. Here we develop methods to account for non-stationarity

in this mean adjusted skew surge data to help quantify any remaining non-stationarity

in extreme skew surges.
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In Sections 4.2.1 and 4.2.2 we introduce the data and relevant extreme value theory,

respectively. Section 4.2.3 reviews the existing methods used for extreme sea level

estimation, with a particular focus on that from D’Arcy et al. (2023b). In Section 4.2.4

we propose methods for investigating long term trends in extreme skew surges, with

respect to time and global mean temperature anomaly (GMT), at a single site. We

consider pooling information about the trends in the extreme value model across sites in

Section 4.2.5, and suggest methods for exploring pairwise extremal dependence in skew

surges across sites. We present the results for the single site model in Section 4.3.2 and

estimate sea level return levels from the proposed model in Section 4.3.3. The results

for the pooled method are given in Section 4.3.4. Section 4.4 concludes this paper with

a summary of our findings and suggestions for future work.

4.2 Materials and methods

4.2.1 Data

Sea level observations are taken from the UK National Tide Gauge Network maintained

by the Environment Agency. The data undergo rigorous quality control and can be

obtained from the British Oceanographic Data Centre (BODC). This network is part

of the National Tidal and Sea Level Facility where tidal elevations are recorded at 44

sites along the UK coastline. We consider data from Heysham, Lowestoft, Newlyn and

Sheerness, located on the west, east, south and east (at the Thames Estuary) coast of

England, respectively. Table 4.2.1 summarises information about each site. Each site

has missing data, but the amount of complete data is sufficient given the model we

introduce in Section 4.2.3 to account for smooth changes throughout the year.

We study these sites because they have different characteristics, are typically affected

by different storms and all have long observational periods. Heysham has the second

largest tidal range on the network and is tidally dominant, whereas Lowestoft is surge



CHAPTER 4. 85

Table 4.2.1: Location (latitude and longitude), observation period, percentage of miss-
ing data, highest astronomical tide (HAT) in metres and estimated mean sea level
(MSL) trend in mm/yr for Heysham, Lowestoft, Newlyn and Sheerness.

Location Observation period % missing HAT (m) MSL trend (mm/yr)

Heysham 54.03◦N, 2.92◦W 1964-2016 17 10.72 1.52

Lowestoft 2.47◦N, 1.75◦E 1964-2020 4 2.92 2.27

Newlyn 50.10◦N, 5.54◦W 1915-2016 17 6.10 1.73

Sheerness 51.45◦N, 0.74◦E 1980-2016 19 6.26 1.81

dominant. Sheerness is the only site we study where it is unreasonable to assume skew

surge and peak tide are independent (D’Arcy et al., 2023b). A linear mean sea level

trend was removed from the data at each site therefore all of our results are presented

relative to the mean sea level in the year 2017. Environment Agency (2018) details this

preprocessing stage and we report the estimated linear trend in Table 4.2.1 for each

site. Of course, these trends incorporate land level changes as well as climate caused

sea level changes, and also are based on different time periods as they correspond to

the sample record at each site.

4.2.2 Extreme value inference

Within extreme value inference, it is natural to first consider modelling the maximum

of a sequence Mn = max{Z1, . . . , Zn}. We first assume this sequence is independent

and identically distributed (IID) with marginal distribution F and upper end point xF .

If there exists sequences of constants {an > 0} and {bn} so that the rescaled block

maximum (Mn− bn)/an has a nondegenerate limiting distribution as n→ ∞, then the

distribution function G of the maximum must be of the form

G(z) = exp

{
−
[
1 + ξ

(
z − µ

σ

)]−1/ξ

+

}
, (4.2.1)
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where x+ = max{x, 0} whatever the distribution function F . This distributional model

G has three parameters µ ∈ R, σ ∈ R+ and ξ ∈ R representing the location, scale

and shape, respectively (Coles, 2001). This is known as the generalised extreme value

distribution (GEV). For ξ > 0 this corresponds to the Fréchet distribution, ξ < 0 the

Weibull and ξ = 0 the Gumbel (although ξ = 0 should be interpreted as the limit as

ξ → 0). This result, often referred to as the extremal types theorem, gives an asymptotic

justification to use the GEV as a model for block maxima, often taken to be annual

maxima in environmental applications. However, in these settings, an IID assumption

is usually unrealistic. A more commonly accepted assumption is stationarity, where the

series can exhibit mutual dependence, but the statistical properties are homogeneous

through time. If we now assume that Z1, . . . , Zn are from a stationary series that

satisfies a long range dependence condition, so that events far enough apart in time

are near independent. Under these conditions, this limiting distribution must be of the

form Gθ(z) with G(z) in expression (4.2.1) and θ ∈ (0, 1] the extremal index (Leadbetter

et al., 1983).

If a process exhibits dependence, values above a high threshold z form clusters, for

example during a storm that spans multiple days we might observe several extreme skew

surge values consecutively. We identify clusters as those separated by a run length r

defined as the number of consecutive observations below the high threshold z, i.e., non-

extreme values. Choosing this run length can be subjective, though Ferro and Segers

(2003) propose an automated selection procedure based on the distribution of all times

between consecutive exceedances of z. We can reasonably assume that observations

in different clusters are independent, but this is not the case for observations in the

same cluster. The extremal index θ provides information about clusters because it can

be empirically estimated (known as the runs estimate) as the reciprocal of the mean

cluster size (Smith and Weissman, 1994). These are both actually estimates of the
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subasymptotic extremal index

θ(z, r) = Pr(max{Z2, . . . , Zr} < z|Z1 > z). (4.2.2)

Then the extremal index is defined as the limit of expression (4.2.2) as z → zF and

r → ∞ in a related fashion (Ledford and Tawn, 2003).

An alternative, and more popular, approach to defining extreme values is as ex-

ceedances of a high threshold u. If the extremal types theorem holds, then for an

arbitrary term Z in the series Z1, . . . , Zn,

Pr(Z > bn + anz | Z > an + bnu) → Hu(z) where Hu(z) =

[
1 + ξ

(
z − u

σu

)]−1/ξ

+

,

for z > u as n → ∞, with {an > 0} and {bn} sequences of constants and Hu is non-

degenerate. This is known as the generalised Pareto distribution (GPD) and has two

parameters σu ∈ R+ and ξ ∈ R representing the scale and shape, respectively (Coles,

2001). Notice the scale parameter is threshold dependent since σu = σ + ξ(u − µ) for

µ and σ the GEV parameters; the shape parameter is the same as that for the GEV.

Assuming Z1, . . . , Zn are IID, exceedances of a high threshold u are also IID and have

limiting GPD tail model

Pr(Z > z) = λu

[
1 + ξ

(
z − u

σu

)]−1/ξ

+

,

for z > u where λu = Pr(Z > u). We can write the mean of excesses of the threshold

u as

E(Z − u|Z > u) =
σu

1− ξ
. (4.2.3)

However, if Z1, . . . , Zn are a dependent stationary series, a common approach is to iden-

tify clusters and decluster them (e.g., by considering cluster maxima only) to yield an

approximately independent sequence so that the asymptotic justification for the GPD
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remains valid (Smith et al. (1997), Fawcett and Walshaw (2007)). We subsequently

drop the u subscript on the scale σ and rate λ parameters.

4.2.3 Existing methodology

The earliest methods directly modelled sea levels, but this ignores the known tidal

component (Graff, 1978; Coles et al., 1999; Tawn, 1988b). Dixon and Tawn (1999)

demonstrate that these approaches underestimate return levels. Pugh and Vassie (1978)

were the first to exploit the components of sea levels in their joint probabilities method

(JPM) using surge and tide. Tawn (1992) presents the revised joint probabilities method

(RJPM) to address limitations associated with the JPM; mainly, they use an extreme

value distribution to model the upper tail of surges to allow extrapolation beyond

the range of observed values and, through a parametric model, attempt to account

for tide-surge dependence. The main pitfall with both of these approaches is that

surge and tide have a complex joint distribution which is difficult to model effectively.

Batstone et al. (2013) proposed the skew surge joint probabilities method (SSJPM) to

avoid this complexity. This uses skew surge and peak tide as two components of sea

levels, since they have a much weaker dependence and can be reasonably assumed to be

independent at most sites on the UK National Tide Gauge Network (Williams et al.,

2016). Baranes et al. (2020) build on this by accounting for interannual tidal variations

and considering separate distributions for summer and winter skew surges; this is the

quasi non-stationary skew surge joint probabilities method (qn-SSJPM).

We build on the sea level model presented by D’Arcy et al. (2023b) that uses skew

surge and peak tide as two components of sea levels in a joint probabilities framework.

This was the first approach to capture within year seasonality of each component and

the dependence between them by adding covariates to the model parameters. They

also account for skew surge temporal dependence which addresses previous issues of

overestimation at short return periods. We describe their model for the annual maxima
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sea level M . For a tidal cycle i, the peak sea level Zi can be written as the sum of the

deterministic peak tide Xi and stochastic skew surge Yi. We first present their skew

surge model, and then describe how this is combined with the known peak tides to

derive a sea level distribution. Lastly, we detail their model for the extremal index of

skew surges used to derive the annual maxima distribution.

Since extreme sea levels can occur with various combinations of skew surge and peak

tide, it is important to have a model for the entire skew surge distribution. To split

the distribution into the body and tail, D’Arcy et al. (2023b) use a monthly threshold

uj for j = 1, . . . , 12 to account for seasonality, with uj being a quantile, for a fixed

percentile, of month j’s skew surge distribution. This choice ensures a similar number

of exceedances for each month. They use the 0.95 quantile, this is chosen based on

monthly parameter stability plots (Coles, 2001). Skew surges below these thresholds

are modelled using the monthly empirical distribution F̃j,x to capture within year non-

stationarity, that is also dependent on peak tide x to account for skew surge-peak tide

dependence. This empirical distribution is split into three associated peak tide bands:

F̃j,x(y) =



F̃
(1)
j (y) if x ≤ x

(j)
0.33

F̃
(2)
j (y) if x

(j)
0.33 < x ≤ x

(j)
0.67

F̃
(3)
j (y) if x > x

(j)
0.67,

where x
(j)
q denotes the q quantile of the peak tide distribution for month j and F̃

(l)
j for

l = 1, 2, 3 is the empirical distribution of skew surges in month j which are associated

with the lowest (l = 1), medium (l = 2) and highest (l = 3) band of peak tides. Since

tide gauges on the UK National Tide Gauge Network usually have long observational

periods, this can reliably model the main body of the data. For exceedances of the
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monthly threshold uj, they use a non-stationary GPD dependent on day in year d =

1, . . . , 365, month j and peak tide x. Therefore, the full skew surge model is given by

F
(d,j,x)
Y (y) =


F̃j,x(y) if y ≤ uj

1− λd,x
[
1 + ξ

(y−uj
σd,x

)]−1/ξ

+
if y > uj,

(4.2.4)

where λd,x, σd,x and ξ are parametric functions to be estimated. Notice that the shape

parameter ξ does not vary with any covariate; this is kept fixed to avoid introducing

additional uncertainty associated with estimating this parameter. The rate and scale

parameters both depend on day and peak tide. They model the scale parameter using

a harmonic for seasonal variations and a linear trend in terms of tide,

σd,x = ασ + βσ sin

(
2π

f
(d− ϕσ)

)
+ γσx, (4.2.5)

for ασ > βσ > 0 , ϕσ ∈ [0, 365), γσ ∈ R parameters to be estimated and f = 365 the

periodicity. The rate parameter is modelled similarly, using a generalised linear model

with logit link function and a harmonic to capture seasonal variations. They also use a

harmonic to capture how skew surge-peak tide dependence changes with time; D’Arcy

et al. (2023b) show that this relationship varies throughout the year at Sheerness, with

the strongest dependence occurring in May. This parameterisation is given by

g(λd,x) = g(λ) + (dj − d̄j)β
(d)
λ sin

(
2π

f
(d− ϕ

(d)
λ )

)
+

(
x− x̄

sx

)[
α
(x)
λ + β

(x)
λ sin

(
2π

f
(d− ϕ

(x)
λ )

)]
, (4.2.6)

for g(·) the logit link function (selected to help our modelling of probabilities with

linear models), λ the constant exceedance probability in a month, dj ∈ [1, 31] the day

in month (standardised by the monthly mean day d̄j), x̄ is the mean and sx the standard
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deviation of peak tides, and α
(x)
λ ∈ R, β(d)

λ , β
(x)
λ > 0, ϕ

(d)
λ , ϕ

(x)
λ ∈ [0, 365) are parameters

to be estimated.

To derive a distribution for the sea levels, D’Arcy et al. (2023b) use a joint proba-

bilities method and the fact that peak tides are deterministic. So that

Pr(Zi ≤ z) = Pr(Xi + Yi ≤ z) = Pr(Yi ≤ z −Xi) = FY (z −Xi), for −∞ < z <∞.

Let T
(k)
j denote the number of tidal cycles in month j and year k. They capture within

and across year peak tide non-stationarity by using sequential monthly and yearly peak

tide samples X
(k)
ji

, so that ji denotes the ith peak tide in month j, where i = 1, . . . , T
(k)
j

and k = 1, . . . , K represents the year. Since peak tides are temporally dependent, the

samples {X(k)
ji

} are from contiguous peak tides. Then the distribution of the annual

maxima sea level M is

Pr(M ≤ z) =
1

K

K∑
k=1

12∏
j=1

T
(k)
j∏
i=1

F
(d,j,x)
Y (z −X

(k)
ji

)θ(z−X
(k)
ji
,r), (4.2.7)

where F
(d,j,x)
Y is the skew surge model (4.2.4) and θ(z − X

(k)
ji
, r) is a model for the

extremal index, dependent on skew surge level y = z − X
(k)
ji

and run length r, to

capture temporal dependence of skew surges. This model is given by

θ̂(y, r) =


θ̃(y, r) if y ≤ v

θ − [θ − θ̃(v, r)] exp
(
− y−v

ψ

)
if y > v,

where v is a high threshold (D’Arcy et al. (2023b) take the 0.99 quantile), ψ > 0

and θ̃(v, r) ≤ θ ≤ 1 are parameters to be estimated and θ̃(y, r) is the empirical runs

estimate. The run length reflects the approximate duration of a storm at each site,

these were selected by estimating the run length using the intervals estimator of Ferro

and Segers (2003) for each season, where we expect the stationary assumption to be
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reasonably justified.

4.2.4 Incorporating interannual variations in the skew surge

distribution

We provide a framework to explore long term trends in extreme skew surges that may

result from an increase in storm frequency and intensity. After removing the mean sea

level trend, we follow the approach of Eastoe and Tawn (2009) by adding yearly and

global mean temperature anomaly (GMT) covariates into the scale and rate parameters

to the GPD model for extreme skew surges of D’Arcy et al. (2023b). We do not consider

adding covariates to the shape parameter or the empirical distribution used for non-

extreme skew surges. Another option would be to add covariates to the threshold

choice, but it is difficult to account for uncertainty in threshold selection in extreme

value inference (Northrop et al., 2017; Wadsworth, 2016). Since we are interested in

temporal changes of extreme events, it seems problematic to allow the threshold to also

vary with time.

The model of D’Arcy et al. (2023b) already accounts for short term variations in the

threshold exceedance rate and the GPD scale parameter. So here we are focusing on

the additional long term changes in these two features, knowing that estimates of these

are not contaminated by short term features. Trends in the two features tell us about

different aspects of the occurrence of extreme skew surge events. An increase in the

threshold exceedance rate tells us simply that more extreme events are occurring over

time or with GMT increases. In contrast, increases in the scale parameter (when ξ ≈ 0)

inform us that the nature of the extreme events are changing, in that their average size

is getting larger. So it is of interest to explore both aspects. Our proposed models

for both parameters build on those presented in D’Arcy et al. (2023b) using additional

additive components in terms of year k and GMT anomaly in year k, denoted mk and

measured in ◦C. GMT is a potential causal covariate for climate change effects, whilst
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year is a non-causal covariate but may capture long term changes over time.

First, we consider a model for the threshold exceedance probability to understand

how the frequency of extreme skew surges is changing in response to climate change. We

refer to the model for λd,x introduced by D’Arcy et al. (2023b) as R0, given by (4.2.6).

We propose four model extensions of R0 to account for how the threshold exceedance

rate also changes with k (Models R1 and R2) and with mk (Models R3 and R4); with

the odd numbered models having a single trend across the year and the even numbered

models having a different linear trend per season, with seasons {Ss, s = 1, 2, 3, 4}

denoting winter (December, January, February), spring (March, April, May), summer

(June, July, August) and autumn (September, October, November), respectively. These

models are parametrised as follows,

Model R1: g(λd,x,k̃) = g(λd,x) + δ
(k̃)
λ k̃, (4.2.8)

Model R2: g(λd,x,k̃) = g(λd,x) +
4∑
s=1

δ
(k̃)
λ,s k̃1{d∈Ss},

Model R3: g(λd,x,mk
) = g(λd,x) + δ

(m)
λ mk,

Model R4: g(λd,x,mk
) = g(λd,x) +

4∑
s=1

δ
(m)
λ,s mk1{d∈Ss}, (4.2.9)

where g(·) is the logit link function, δ
(k̃)
λ , δ

(k̃)
λ,s, δ

(m)
λ , δ

(m)
λ,s ∈ R are parameters to be esti-

mated and k̃ ∈ R denotes the standardised year, defined as k̃ = (k − 1968)/53 where

k is the year of observation. This standardisation uses information for Newlyn since

it has the longest observation period where 1968 is the midpoint and 53 is half of the

range, but is used across sites so that parameter estimates are easily comparable. For

our study period, the covariates take values k̃ ∈ [−1, 1] and mk ∈ (−0.56, 0.94). Recall

GMT is an anomaly centred at the temperature in the period 1961-1990, so it has been

somewhat standardised.

We consider these four models to investigate whether time or GMT is the best linear
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predictor of extreme skew surge non-stationarity over our observation period, and to

explore if the long term trends are non-stationary within a year, for example, if extreme

skew surges are becoming more frequent in the winter but less so in summer. For Model

R1, we are particularly interested in the change in threshold exceedance probability over

the period 1920-2020 (100 years), this is given by ∆
(k̃)
λ = λd,x,b − λd,x,a, for a = −0.91

(1920) and b = 1 (2020). Similarly for Model R3, we define the change in exceedance

probability with an increase in GMT of 1◦C as ∆
(m)
λ = λd,x,1 − λd,x,0 = λd,x,1 − λd,x.

Next, we investigate how the GPD scale parameter changes with year and GMT to

understand if the magnitude of extreme events is changing due to climate change. We

extend the σd,x parameterisation (4.2.5) of D’Arcy et al. (2023b) (call this Model S0)

and consider four models to capture changes with year, GMT and season as we did for

the threshold exceedance rate,

Model S1: σd,x,k = σd,x + δ(k̃)σ k̃, (4.2.10)

Model S2: σd,x,k = σd,x +
4∑
s=1

δ(k̃)σ,s k̃1{d∈Ss},

Model S3: σd,x,mk
= σd,x + δ(m)

σ mk,

Model S4: σd,x,mk
= σd,x +

4∑
s=1

δ(m)
σ,s mk1{d∈Ss}, (4.2.11)

with parameters δ
(k̃)
σ , δ

(k̃)
σ,s , δ

(m)
σ , δ

(m)
σ,s ∈ R to be estimated and k̃, mk, Ss as in (4.2.8)-

(4.2.9).

4.2.5 Spatial pooling

Improved Inference by Pooling

So far we have described the modelling of extreme skew surges at a single site. However,

this approach can be very inefficient, particularly for sites with short records or where

the physical processes exhibit similar characteristics over the sites, e.g., the same storm
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events effect all of the different sites. In such cases, we anticipate certain parameters

of the extreme surge skew distribution to be similar, or even identical, in value across

sites. By imposing this feature into the inference and carrying out joint inferences across

sites, known as pooling, this can lead to large improvements in parameter estimation, by

effectively sharing information about extreme events across sites, which in turn reduces

estimation uncertainty resulting in narrower confidence intervals.

In the model of D’Arcy et al. (2023b) the benefits of pooling were illustrated for the

shape parameter. This parameter is known to be very difficult to estimate with much

precision, with the variability in its estimator being the primary source of uncertainty

in return level estimation. This parameter has been recognised across a wide spectrum

of problems as being very similar for a given process over large spatial regions, e.g., for

rainfall (Davison et al., 2012), sea levels (Dixon et al., 1998) and air temperature (Huser

and Genton, 2016) with different values for the shape parameter for plains and moun-

tains. D’Arcy et al. (2023b) use information from Environment Agency (2018) that the

shape parameter estimates, estimated separately from each site over the UK, followed

a normal distribution with mean 0.0119 and variance 0.03432. They account for this

in the likelihood inference, using this distribution as a prior penalty function. D’Arcy

et al. (2023b) obtained shape parameter estimates which were more similar over sites

with much reduced uncertainty, thus resulting in uncertainty reduction of high return

level estimates. For example, for the 10,000 year return level at Sheerness, the 95%

confidence interval was reduced by 2.5m, corresponding to a factor of 6.

In our context, the difficult parameters to estimate are those of the long term trends

in expressions (4.2.8)-(4.2.9) for the threshold exceedance rate and (4.2.10)-(4.2.11) for

the GPD scale parameter. Here we also want to share spatial information through

pooling. Given that we do not know if these trend parameters are identical over sites,

and we only are illustrating the method at four sites, we undertake a formal likelihood

testing method to assess the evidence to see if we can treat these trend parameters
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as constant over sites, without reducing the quality of the fit relative to the improved

parsimony.

The pooled inference procedure involves a combined likelihood function L(θ) which

combines the likelihood functions Lℓ(θℓ) from each of the ℓ = 1, . . . , 4 sites through

L(θ) =
4∏
ℓ=1

Lℓ(θℓ),

where θℓ are the parameters for site ℓ and θ = (θ1, . . . ,θ4). This likelihood enables hy-

pothesis testing to be carried out, to assess the evidence for whether certain parameters

are the same at all, or a subset of, the sites, i.e., is the time trend gradient parameter

the same at all sites. The joint likelihood function then enables the sharing of informa-

tion about this common parameter across sites whilst allowing the other parameters to

vary over sites. The choice of this joint likelihood function has potential restrictions;

since it is a product over sites, this implicitly implies that extreme skew surges are

being assumed to be independent across the sites. In cases where this assumption is

unreasonable, the point estimates of the parameters will still be good (asymptotically

consistent) but the variance of the estimates and the confidence intervals for the pa-

rameters will be underestimated. The degree of underestimation is dependent on the

level of ignored true dependence between skew surges at the different sites. Therefore

before exploiting the pooling strategy it is important to check that the independence

assumption, for the extreme values of skew surge, is a reasonable approximation.

Spatial Independence Diagnostics

We discuss how to check for pairwise dependence between skew surges at different sites.

Kendall’s τ correlation coefficient can be used to check for dependence skew surge

observations; this is a measure of rank correlation so is robust to outliers but it is a

measure across all values of the variables. However, since our interest lies with the
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dependence of the extreme values, it is natural to also study the two main measures of

extremal dependence χ and χ̄ (Coles et al., 1999), as described next.

Let Y A and Y B denote skew surge random variables at two different sites A and

B, in the same tidal cycle with marginal distribution functions FA and FB respectively.

The simplest measure of dependence is to see how the joint probability of Y A and Y B

both being above their respective (1−p)th marginal quantiles, compares to p (the value

of this probability under perfect dependence of Y A and Y B) and relative to p2 (the value

under independence of Y A and Y B). Under positive dependence we would expect that

p2 < Pr{Y A > F−1
A (1− p), Y B > F−1

B (1− p)} < p. (4.2.12)

Coles et al. (1999) formalise this intuition to define the measure of extremal dependence

as p→ 0, i.e., as we look above increasing quantiles. Specifically, they take

χ = lim
p→0

Pr{Y B > F−1
B (1− p) | Y A > F−1

A (1− p)},

where χ ∈ [0, 1]. Increasing values of χ correspond to stronger extremal dependence,

and χ = 1 corresponds to perfect dependence between Y A and Y B. Thus χ is the

limiting probability of one variable being extreme given that the other is equally ex-

treme. If χ ∈ (0, 1], we say Y A and Y B are asymptotically dependent, with there being

a non-zero probability of Y B being large when Y A is large at extreme levels. Though

the class of extremal dependence where χ > 0 is widely studied, this only corresponds

to cases where the joint probability in (4.2.12) is of O(p), i.e., decays as a multiple of

p as p → 0. We find that χ = 0 in all other dependence cases as well as when Y A and

Y B are actually independent, this class of variables is known as being asymptotically

independent, and χ doesn’t give us any information on the level of asymptotic indepen-

dence. We need a more refined measure of extremal dependence than χ to enable us to

separate between when there is some dependence of large values and independence of
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Y A and Y B. Coles et al. (1999) also define

χ̄ = lim
p→0

2 log Pr{Y A > F−1
A (1− p)}

log Pr{Y B > F−1
B (1− p), Y A > F−1

A (1− p)}
− 1.

where χ̄ ∈ (−1, 1]. Here χ̄ = 1 and −1 < χ̄ < 1 correspond to asymptotic dependence

and asymptotic independence, respectively. When χ̄ = 0 this shows there is no de-

pendence in the tails of (Y A, Y B) as it arises when Y A and Y B are independent, with

0 < χ̄ < 1 and −1 < χ̄ < 0 indicating positive and negative dependence in the joint

tails of Y A and Y B, respectively.

To assess inter-site dependence in extreme skew surges we evaluate these dependence

measures using empirical estimates of the associated probabilities using the texmex R

package (Southworth et al., 2020). Specifically, we use skew surge daily maxima for

each pairwise combination of the four study sites, using data on the same day and with

lags of ±1 day to account for time lags between the peak of surge reaching each site,

when events last multiple days. Here we have lags t = 1 and t = −1 so that site A

is one day ahead or behind site B, respectively. Since the variables are not identically

distributed, due to seasonality for example, this can affect the evaluation of χ and

χ̄. We address this potential concern by also using the marginal distributional model

of D’Arcy et al. (2023b) F
(d,j,k)
Y , given by expression (4.2.4), to account for this through

a transformation of the variables to identical uniform margins and then re-evaluate

these measures. These results are discussed in Section 4.3.4.

4.3 Results

4.3.1 Introduction

We now present the results from applying the extreme skew surge models discussed in

Sections 4.2.4 and 4.2.5, in Sections 4.3.2 and 4.3.4, respectively to data from our four
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study sites. In Section 4.3.3, we estimate sea level return levels using the best fitting

model from Section 4.2.4 under a single-site analysis using the annual maxima distribu-

tion in expression (4.2.7). Here we define extreme skew surges as being exceedances of

the monthly 0.95 quantile, as in D’Arcy et al. (2023b). All models are fit in a likelihood

framework, with 95% confidence intervals provided for parameter estimates based on

the hessian, i.e., using asymptotic normality of maximum likelihood estimators. The

likelihood is constructed under the assumption that extreme skew surges are temporally

independent for single site inference, but also that observations at different sites are

independent for spatial pooling. These are not unreasonable assumptions for model se-

lection, the former being found as a reasonable approximation in D’Arcy et al. (2023b)

as the extremal index is near one for large levels and the validity of the latter being

assessed before we apply any spatial pooling. We compare models using Akaike and

Bayesian information criteria (AIC and BIC, respectively) scores; these are commonly

used measures of the quality of a statistical model for a particular data set relative

to the parsimony of the model. The chosen best fitting model should minimise these

scores. It should be noted that all estimates presented here are after the mean sea

level trends have been removed. An estimated change here means that the change is

additional to the mean sea level, so negative trend estimates correspond to the extreme

sea levels not rising as fast as the mean level at the site.

4.3.2 Single-site analysis

We fit the models of Section 4.2.4 to the GPD rate and scale parameters for extreme

skew surges individually at each site. We start with the threshold exceedance probabil-

ity parameter, λ, fitting Models R0−4. AIC/BIC scores and estimates of δ
(k̃)
λ , δ

(k̃)
λ,s, δ

(m)
λ,s

and δ
(m)
λ are given in Table 4.3.1. Since the parameter estimates are not intuitive, we

consider the change in exceedance probability with the particular covariate of interest

for the annual trends in Models R1 and R3.
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Table 4.3.1: Parameter estimates for the Models R0 − R4 with AIC and BIC scores
for each model fit at each site. The minimum AIC and BIC scores are highlighted
in red and blue, respectively, for each site. The 95% confidence intervals are given in
parentheses for parameter estimates.

Heysham Lowestoft Newlyn Sheerness
Model R0
AIC 12234.21 15312.08 24498.77 9286.58
BIC 12275.89 15354.88 24543.93 9326.94
Model R1

δ
(k̃)
λ 0.091 (-0.008, 0.191) -0.061 (-0.150, 0.028) 0.215 (0.154,0.276) -0.114 (-0.219, -0.010)
AIC 12232.89 15312.26 24453.12 9283.96
BIC 12282.91 15363.61 24507.31 9332.40
Model R2

δ
(k̃)
λ,1 0.161 (-0.033, 0.335) 0.063 (-0.106, 0.232) 0.114 (-0.011, 0.238) -0.032 (-0.228, 0.164)

δ
(k̃)
λ,2 0.034 (-0.161, 0.230) -0.141 (-0.322, 0.040) 0.197 (0.077, 0.316) -0.250 (-0.468, -0.032)

δ
(k̃)
λ,3 0.207 (0.013, 0.400) -0.094 (-0.266, 0.078) 0.209 (0.089, 0.328) -0.189 (-0.405, 0.026)

δ
(k̃)
λ,4 -0.047 (-0.261, 0.167) -0.081 (-0.264, 0.102) 0.338 (0.217, 0.460) -0.021 (-0.221, 0.178)

AIC 12235.30 15315.29 24452.52 9286.48
BIC 12310.32 15392.33 24533.80 9359.14
Model R3

δ
(m)
λ 0.204 (0.074, 0.334) -0.012 (-0.12, 0.427) 0.336 (0.245, 0.427) -0.164 (-0.304, -0.024)
AIC 12227.14 15314.04 24451.34 9283.20
BIC 12277.16 15365.39 24505.53 9331.64
Model R4

δ
(m)
λ,1 0.256 (-0.002, 0.514) 0.103 (-0.107, 0.312) 0.135 (-0.058, 0.329) -0.079 (-0.340, 0.181)

δ
(m)
λ,2 0.111 (-0.143, 0.365) -0.067 (-0.282, 0.149) 0.322 (0.144, 0.501) -0.374 (-0.672, -0.076)

δ
(m)
λ,3 0.416 (0.167, 0.665) -0.048 (-0.259, 0.163) 0.393 (0.212, 0.574) -0.273 (-0.568, 0.022)

δ
(m)
λ,4 0.010 (-0.274, 0.293) -0.040 (-0.262, 0.182) 0.478 (0.300, 0.655) 0.008 (-0.253, 0.269)

AIC 12227.92 15318.49 24450.27 9284.69
BIC 12302.94 15395.53 24531.56 9357.34

We find that Model R3 minimises AIC at Heysham, Lowestoft and Sheerness, whilst

at Newlyn Model R4 is preferable. The BIC is minimised by Model R3 at Newlyn, but

elsewhere Model R0 is favourable. This suggests that if any long term trends are

included in the model to capture changes in the rate of extreme events (relative to

mean sea level), GMT should be used as a covariate as opposed to the year.

We look at Models R1 and R3 in more detail, these have a fixed trend parameter

within the year with respect to year and GMT, respectively. At Newlyn we find a

significant increasing trend for both models, since the confidence intervals do not contain

zero. We also find positive trends at Heysham, but only the GMT trend in Model R3 is
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Figure 4.3.1: Histograms of (a) ∆
(k̃)
λ over 100 years and (b) ∆

(m)
λ with a 1◦C increase

in GMT, as percentages, for all day d and peak tide x combinations at each site.

significant. Neither trend is significant at Lowestoft, but we find a significant decreasing

trend for both models at Sheerness. Figure 4.3.1 shows histograms of the estimates

of ∆
(k̃)
λ and ∆

(m)
λ (defined in Section 4.2.4), based on all combinations of day d and

peak tide x, so these do not account for uncertainty in δ
(k̃)
λ or δ

(m)
λ estimates but are

simply a reflection that the rate of threshold exceedance varies over the short term. For

Model R1, we find an increase in λd,x,k̃ over 100 years at Newlyn, with max∆
(k̃)
λ = 3%,

so that the exceedance probability almost doubles from 3.5% to 6.5% in 1920-2020.

However, we observe decreases in exceedance probability at Sheerness. For Model R3,

we also find an increase in exceedance probability with a 1◦C increase in GMT at

Newlyn, where max∆
(m)
λ = 3%, but a negative trend at Sheerness. If the trends were

statistically significant at Heysham and Lowestoft, the exceedance probability would

increase and decrease with both trend parameters, respectively.

Next we look at Models R2 and R4 with season-specific trend parameters for year

and GMT, respectively. The trends at Newlyn are significant in both models, except for

winter, whilst at Heysham only the increasing trends in summer are significant. None

of the seasonal trends are significant at Lowestoft but we find a significant decreasing

trend for spring in both models at Sheerness. As for Models R1 and R3, we obtain a
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Figure 4.3.2: Confidence intervals for parameter estimates (a) δ̂
(k̃)
λ,s and (b) δ̂

(m)
λ,s at

Newlyn for s = 1, 2, 3, 4 denoting winter, spring, summer and autumn, respectively.

variety of results across sites; Newlyn has an increasing exceedance probability with year

and GMT in all seasons. However, for Lowestoft and Sheerness we obtain a mixture of

positive and negative parameters throughout the year for both models. The confidence

intervals for the four parameter estimates in Models R2 and R4 at Heysham, Lowestoft

and Sheerness overlap, suggesting that there isn’t significant within-year variation of

the long term trend parameters so that the simpler Models R1 and R3 are sufficient.

Whilst at Newlyn, this overlap is small (see Figure 4.3.2). Here, we find the greatest

trend in autumn, which is not too concerning for extreme sea level estimation since

the most extreme sea levels tend to occur in winter (D’Arcy et al., 2023b), but using

Models R1 and R3 with common trend parameters across the year could overestimate

the trends in winter, hence influencing sea level return level estimation.

Next, we consider models for the scale parameter at each site individually (Mod-

els S0− 4, introduced in Section 4.2.4). Table 4.3.2 shows the parameter estimates for

each model, along with AIC and BIC scores. We do not report the corresponding shape

parameter estimates here as there is no significant difference in these estimates across

models. Models S1 and S3 have a single parameter denoting a common long term trend

across the year, but neither of these is an improvement on Model S0 (without a long
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Table 4.3.2: Parameter estimates for the Models S0 − 4 with AIC and BIC scores
for each model fit at each site. The minimum AIC and BIC scores are highlighted
in red and blue, respectively, for each site. The 95% confidence intervals are given in
parentheses for parameter estimates.

Heysham Lowestoft Newlyn Sheerness
Model S0
AIC -3091.53 -3672.07 -10152.63 -2974.317
BIC -3064.77 -3644.20 -10122.42 -2948.854
Model S1

δ
(k̃)
σ -0.009 (-0.032, 0.013) -0.006 (-0.024, 0.011) 0.001 (-0.003, 0.005) 0.016 (-0.013, 0.044)
AIC -3088.558 -3670.55 -10150.80 -2973.05
BIC -3056.448 -3637.11 -10114.54 -2942.50
Model S2

δ
(k̃)
1 0.022 (-0.034, 0.078) -0.041 (-0.090, 0.007) 0.004 (-0.009, 0.016) 0.023 (-0.032, 0.078)

δ
(k̃)
2 0.022 (-0.014, 0.059) -0.030 (-0.055, -0.006) 0.006 (-0.002, 0.014) -0.001 (-0.036, 0.035)

δ
(k̃)
3 -0.025 (-0.051, 0.001) 0.012 (-0.010, 0.034) -0.003 (-0.009, 0.003) 0.023 (-0.010, 0.055)

δ
(k̃)
4 -0.035 (-0.079, 0.008) -0.015 (-0.053, 0.023) 0.001 (-0.008, 0.011) 0.008 (-0.039, 0.054)
AIC -3095.28 -3674.12 -10146.27 -2971.19
BIC -3047.12 -3623.96 -10091.89 -2925.36
Model S3

δ
(m)
σ -0.011 (-0.033, 0.011) -0.008 (-0.026, 0.009) -0.001 (-0.008, 0.006) 0.006 (-0.020, 0.032)
AIC -3088.42 -3670.90 -10149.07 -2972.43
BIC -3056.32 -3637.46 -10112.82 -2941.87
Model S4

δ
(m)
1 0.036 (-0.027, 0.099) -0.050 (-0.105, 0.004) -0.0003 (-0.021, 0.020) 0.025 (-0.042, 0.091)

δ
(m)
2 0.029 (-0.012, 0.070) -0.037 (-0.061, -0.012) 0.005 (-0.008, 0.018) -0.015 (-0.054, 0.023)

δ
(m)
3 -0.027 (-0.054, -0.00009) 0.017 (-0.006, 0.039) -0.003 (-0.013, 0.006) 0.013 (-0.018, 0.045)

δ
(m)
4 -0.030 (-0.081, 0.021) -0.024 (-0.066, 0.017) -0.005 (-0.021, 0.010) -0.006 (-0.053, 0.040)
AIC -3093.73 -3677.95 -10145.39 -2970.79
BIC -3045.56 -3627.79 -10091.01 -2924.96

term trend) at any site. All of the 95% confidence intervals for δ
(k̃)
λ or δ

(m)
λ estimates

contain zero, suggesting these trends are not significant. If we ignore this uncertainty,

the point estimates suggest small changes in the scale parameter. At Heysham and

Lowestoft our results show a decrease with both year and GMT, suggesting that the

magnitude of extreme skew surge events are getting smaller with anthropogenic climate

change effects. In the 100 year period 1920-2020 at Newlyn, the point estimate δ
(k̃)
σ cor-

responds to an increase in mean excesses (see expression (4.2.3)) of 2mm (relative to a

mean of 94mm in 1920), whilst at Sheerness in the years of observation 1980-2016 this

corresponds to an increase of 10mm relative to a mean of 125mm in 1980. Notice there
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(a) (b)

Figure 4.3.3: Confidence intervals for parameter estimates (a) δ̂
(k̃)
λ and (b) δ̂

(k̃)
σ for all

sites.

is overlap in the parameter estimates for δ
(k̃)
σ and δ

(m)
σ across sites; in Section 4.3.4 we

fit similar model with these trend parameters common across sites (see Figure 4.3.3).

Models S2 and S4 have four additional parameters relative to Model S0, these

denote a separate trend for each season with respect to year and GMT. AIC and BIC

are still minimised by Model S0, except AIC scores for Heysham and Lowestoft, which

favour Models S2 and S4, respectively. However, the four confidence intervals overlap

at each site, suggesting a fixed trend within a year is sufficient. At Heysham, the overlap

across all seasons is small but there is considerable overlap between winter and spring,

with positive trend parameters, and likewise for summer and autumn with negative

trend parameters for both models. If these trends were statistically significant it would

suggest that the magnitude of extreme skew surges is increasing with increases in GMT

in December-April, but decreasing for the rest of the year. Given the timing of the

most extreme events, this could be important if statistically significant.

4.3.3 Return level estimation

Using Models S0 (4.2.5) and R4 (4.2.9) for the scale and rate parameter, respectively,

we estimate sea level return levels from the annual maxima distribution in expres-
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sion (4.2.7). Recall Model R4 for the GPD rate parameter has a linear seasonal trend

with respect to GMT in year k, denoted mk. Solving

Pr(M ≤ z|mk = m) = 1− p,

for p ∈ [0, 1] gives us the level we expect the annual maxima M to exceed once every

1/p years, on average, when the GMT covariate is fixed at some value m. We estimate

return levels for temperatures in 1915, 2020 and for a year when the GMT anomaly

value is 1◦C higher than that in 2020; these correspond to anomalies of -0.19, 0.92 and

1.92◦C, respectively.

Table 4.3.3 gives the sea level return level estimates for the 1, 100 and 10,000 year

level at each site. These are relative to the mean sea level in 2017 since the linear mean

sea level trend was removed when preprocessing the data, so these trends are in excess

to those already observed in the mean or will occur as GMT increases. Return level

estimates increase with temperature anomaly for all sites at all return periods. The 1

year level increases similarly (∼3-4cm) over the four sites, with the greatest difference

of 10cm observed at Heysham for the 10,000 year return level; this is a significant

difference for coastal flood defence design. Return levels will be underestimated if the

long-term trends in extreme skew surge occurrence are not accounted for and instead

only estimated changes in mean sea level are used to update return level estimates.

At Lowestoft, Newlyn and Sheerness, the 10,000 return level increases by 4, 3 and

2cm, respectively, when GMT increases from -0.19 to 1.92◦C. Therefore, even when

some of the parameter estimates of Model R4 for the seasonal GMT trend (δmλ,s for

s = 1, 2, 3, 4) were negative, the resulting return level estimates still increase with GMT.

This outcome depends on which seasons have which trends. For annual maximum sea

levels, it is only the winter and autumn trends that are influential. Although the

seasonal changes seem non-homogeneous in the GPD model for extreme skew surges,

our results show that, when combined with tidal information, the sea level return levels
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Table 4.3.3: Estimates of the 1, 100 and 10,000 year sea level return levels (in metres),
relative to the mean sea level in 2017, using Models R4 and S0 for the GPD rate and
scale parameters, respectively, for skew surges with GMT as a fixed covariate equal to
anomalies of -0.19◦C (as in 1915), 0.92◦C (as in 2020) and 1.92◦C.

Heysham Lowestoft Newlyn Sheerness
1 100 10,000 1 100 10,000 1 100 10,000 1 100 10,000

−0.19◦C 10.61 11.52 12.45 3.47 4.60 5.81 6.07 6.55 6.94 6.41 7.17 7.98
0.92◦C 10.63 11.56 12.50 3.49 4.61 5.83 6.09 6.57 6.95 6.42 7.18 7.99
1.92◦C 10.65 11.60 12.55 3.50 4.63 5.85 6.11 6.60 6.97 6.44 7.19 8.00

exhibit much more consistent behaviour with GMT changes across sites.

4.3.4 Spatial pooling

We present the results from pooling information across sites, for the long term trend

parameters, when refitting the models of Section 4.2.4. Before pooling information,

we use the dependence measures discussed in Section 4.2.5 to check if it is reasonable

to assume each pair of sites are independent in their extreme skew surge values. We

estimate the dependence measures for the daily maximum observed skew surges and a

standardised transformation of them to remove sources of within-year non-stationarity

via mapping to uniform margins through the distribution function (4.2.4). The results

are shown in Table 4.3.4. For most combinations of sites at lags t = −1, 0, 1 (days)

the dependence is weak, except for Newlyn with each of the east coast sites where

Kendall’s τ is near 0, whilst for Lowestoft and Sheerness this value is approximately

0.5. The effect of de-seasonalising the data (by transforming to uniform margins) has

typically decreased dependence. With the exception of Lowestoft and Sheerness, it is

not unreasonable to make an independence in extremes approximation for the data.

We find χ̄ < 1 for all pairs, giving evidence of asymptotic independence with weak

dependence in the observed tails of the variables. The strongest dependence is found

between Lowestoft and Sheerness at lag t = 0. This is not surprising since these sites

are close in proximity, with extreme skew surges progressing south down the east coast

through Lowestoft onto Sheerness. Therefore they are highly likely to be affected by
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Table 4.3.4: Kendall’s τ , χ and χ̄ measures of dependence for daily maximum skew
surge observations at pairs of sites. We show the dependence over lags -1 (LHS site is
1 day behind RHS), 0 and 1 (LHS site is 1 day ahead of RHS); in bold we show the
largest dependence over these lags. χ and χ̄ are measures of extremal dependence for
exceedances of the 0.95 quantile.

Heysham-Lowestoft Heysham-Newlyn Heysham-Sheerness Lowestoft-Newlyn Lowestoft-Sheerness Newlyn-Sheerness
lag -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1
Observations
τ 0.133 0.160 0.309 0.287 0.322 0.259 0.153 0.149 0.298 0.089 0.040 0.034 0.155 0.510 0.238 0.137 0.168 0.196
χ 0.095 0.129 0.270 0.127 0.145 0.076 0.092 0.111 0.259 0.017 0 0 0.145 0.509 0.200 0.054 0.077 0.121
χ̄ 0.200 0.251 0.424 0.249 0.276 0.160 0.195 0.224 0.412 0.040 -0.018 -0.055 0.274 0.645 0.344 0.120 0.158 0.237
Transform to Uniform(0,1)
τ 0.103 0.130 0.289 0.285 0.318 0.244 0.108 0.102 0.262 0.086 0.036 0.028 0.143 0.523 0.228 0.139 0.173 0.200
χ 0.026 0.040 0.180 0.103 0.122 0.053 0.056 0.036 0.173 0 0 0 0.095 0.494 0.174 0.003 0.016 0.050
χ̄ 0.069 0.100 0.321 0.215 0.236 0.114 0.123 0.084 0.313 -0.012 -0.107 -0.134 0.198 0.634 0.316 0.003 0.035 0.114

the same storms. Despite this pair of sites giving clear evidence of dependence, we

continue under the belief that it is reasonable to assume skew surge daily maxima at

all pairs of sites are sufficiently close to being independent for the purposes of spatial

pooling.

Firstly, we focus on pooling information across sites regarding the long term trend

parameters with respect to year k and GMT mk for the rate parameter. Figure 4.3.3

shows there is considerable overlap in the confidence intervals for δ̂
(k̃)
λ at Lowestoft

and Sheerness; similarly, there is some overlap for Heysham and Newlyn. Although

pooling information across randomly selected subsets of sites should be discouraged,

here we note that the pairs of sites with similarities are on different coastlines, so we

explore pooling over sites on the east coast (Lowestoft and Sheerness) and separately

on the west coast (Heysham and Newlyn). Here, we consider refitting Models R1

and R3 (i.e., a fixed trend parameter within a year) with common trend parame-

ters δ
(k̃)
λ and δ

(m)
λ between the pairs of sites. We obtain negative trends parameters

δ̂
(k̃)
λ = −0.084 (−0.151,−0.016) and δ̂

(m)
λ = −0.070 (−0.156, 0.015) for Sheerness and

Lowestoft, whilst at Newlyn and Heysham we obtain statistically significant positive

trend parameters δ̂
(k̃)
λ = 0.180 (0.128, 0.231) and δ̂

(m)
λ = 0.285 (0.208, 0.359). Note 95%

confidence intervals are given in parentheses here. Both of these models are an im-

provement on the previous results, where a separate long term trend parameter is used
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for each site; the model with a yearly trend parameter reduces AIC by 48 and the BIC

by 0.5, whilst the model with a GMT parameter reduces AIC and BIC by 54 and 6,

respectively. This highlights the importance of sharing information spatially.

There is also information to be gained from sharing spatial information about long

term trends in the scale parameter since there is considerable overlap in the confidence

intervals for δ̂
(k̃)
σ (see Figure 4.3.3) and δ̂

(m)
σ (see Table 4.3.2). We refit the models

of Section 4.2.4 for the scale parameter with common long term trend parameters

across sites, but neither parameter estimates are significant. We find that δ̂
(k̃)
σ = 4.8×

10−4, corresponding to an increase in scale parameter of 0.48mm over 1915-2020. For

GMT δ̂
(k̃)
σ = −0.0024, i.e., a 24mm decrease in scale parameter with a 1◦C increase in

temperature. Neither of these models improve the fit relative to having no long term

trends (in addition to those in the mean sea level), although the AIC scores are close.

We also fit a model similar to that of Models S2 and S4 so there is a common seasonal

trend across sites, with respect to year and GMT but find that neither of these improve

model fit. This agrees with our single-site results of Section 4.3.2 where we found no

evidence of changes in the magnitude of extreme skew surge events with respect to year

or GMT.

4.4 Discussion

We have presented a framework to investigate the effects of anthropogenic climate

change on extreme skew surges as any increases in the magnitude or frequency in

these events can have catastrophic consequences if not included in extreme sea level

estimation for coastal flood defence design. These trends can be different to those

observed in the main body of the data, such as mean sea level rise. We use year and

GMT as covariates in our statistical model for extreme event occurrence, building on

a model developed by D’Arcy et al. (2023b) that accounts for seasonality and skew
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surge-peak tide dependence. Recall that our results are relative to the mean sea level

trend in 2017 so this would need to be added onto any sea level return level estimates

when used in practice. We show that there is evidence of an increase in the probability

of an extreme skew surge event with GMT increases at Heysham and Newlyn, but

evidence of both increases and decreases in the likelihood of these events at Lowestoft

and Sheerness across the year. We do not find any significant changes in the magnitude

of extreme skew surges, i.e., in the scale parameter, and hence in the mean of the

skew surge excesses of the threshold. Accounting for seasonal changes in extreme skew

surge occurrence with GMT in sea level return level estimation shows that return levels

increase with GMT. For a 2.1◦C increase in GMT, the 10,000 year return levels increased

by 10, 4, 3 and 2cm at Heysham, Lowestoft, Newlyn and Sheerness, respectively. The

ideas presented in this paper could be applied to more locations, but also to other

environmental variables to investigate trends in extreme values.

We demonstrate the advantages of pooling information across sites, although this is

only primarily illustrative since we consider just four sites here. There are 44 sites on

the UK National Tide Gauge Network where this methodology could be extended. It

would be interesting to apply our methodology within a spatial framework, for example

in regional frequency analysis where sites in a homogeneous region not only have a

common shape parameter, but also common long term trends due to anthropogenic

climate change.

Skew surges are also believed to change over decadal time scales with climate indices.

For example, the North Atlantic Oscillation index (NAO) describes such time scale

changes in regional weather systems, so is believed to impact storm surges, and thus

skew surge. Araújo and Pugh (2008) find a negative correlation between storm surge

and air pressure patterns, using NAO. It would be interesting to explore how adding

an NAO covariate into the GPD for extreme skew surges would change model fit.
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Simulating extreme skew surge for

coastal management

5.1 Introduction

Coastline communities face a complex array of risks from natural hazards, exacerbated

by human activities and climate change. Mainly, these communities are vulnerable to

coastal flooding and erosion which are intrinsically linked (Pollard et al., 2019). Coastal

erosion is a natural geological process that gradually wears away coastal landforms

threatening buildings, roads and other forms of infrastructure near the coastline. Storm

surges are temporary rises in sea levels caused by intense storms, that can lead to

coastal flooding, causing damage to infrastructure and homes. Over 520,000 properties

in England are at risk of coastal flooding and erosion, and the cost of these hazards

to the UK economy is estimated to be around £1.1 billion each year (Committee on

Climate Change, 2018).

Coastal erosion occurs over various timescales, from hours to millennia, but can be

accelerated by human activities and environmental factors. Typically, erosion is caused

by waves exerting forces on the coastline, currents and tidal movements transporting

110
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sediment along the shoreline and severe weather events causing heightened storm surges

and water levels (Masselink and Russell, 2007). Increases in storminess resulting from

anthropogenic climate change have increased levels of erosion, along with sea level rise

and changes in human activities at the coastline (Masselink et al., 2020). Severe storms

bring extreme storm surges to the coastline that accelerate rates of coastal erosion; this

is exacerbated when the storm event lasts multiple days with prolonged levels of high

storm surge. Therefore, understanding the temporal structure of extreme storm surges

is fundamental for effective coastal management.

Coastal flooding is also becoming increasingly complex to manage due to sea level

rise and increases in storminess (Seneviratne et al., 2021). Storm surge barriers are an

attractive and economical solution for flood protection in densely populated estuarine

regions. These are made up of fully or partly movable gates that are closed before a

storm to prevent flooding behind the barrier, then they subsequently reopen to facilitate

shipping and allow the natural movement of tides (Mooyaart and Jonkman, 2017).

There are more than 50 storm surge barriers globally, contributing to the protection

of millions of people collectively. For example, the Thames Barrier in London (UK)

protects 1.3 million people and £200 billion worth of property (Environment Agency,

2021).

With accelerating rates of sea level rise and increases in storminess resulting from

anthropogenic climate change, surge barriers are closing more frequently and are closing

in months when previously not required. Figure 5.1.1 shows closure rates of the Thames

Barrier since it opened in 1982 (Environment Agency, 2021). From July 1982 to June

2002 the Thames Barrier in London closed 63 times to protect the city from flooding

but closed 130 times over the next 20 years (July 2002 to June 2022), so closures more

than doubled since the first 20 years. In 2020, the Thames Barrier closed in May

for the first time; historically all other closures have occurred between September and

April (Environment Agency, 2021).
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Figure 5.1.1: Thames Barrier closures by flood season (i.e., winter). This figure is taken
from Environment Agency (2023b).

Increased use of barriers has critical implications for barrier management, mainte-

nance and operation. This affects the integrity and reliability of a barrier and their

projected life expectancy. Changes in the closure times (i.e., the months when the bar-

rier closes) impact the maintenance, upgrading and testing that is typically scheduled

over the low-risk period, which is crucial for ensuring the barrier can continue in oper-

ation. As barrier closure rates continue to rise, it is vital that their operators adapt the

barrier management and maintenance to account for climate change effects, and plan

for inevitable barrier upgrades.

We aim to simulate future time series of skew surges that reflect their temporal de-

pendence structure and non-stationarity. Our simulations are useful for coastal flood-

ing and erosion management, and for predicting barrier closure rates/times. We use

the model of D’Arcy et al. (2023b) (outlined in Chapter 3) for modelling skew surges

that accounts for their seasonality and dependence on peak tide, identified at Sheer-

ness (Williams et al., 2016). In this model, temporal dependence of extreme events
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was captured using the extremal index which summarises the clustering time of ex-

treme values (Smith and Weissman, 1994). However, we propose a more sophisticated

approach that captures temporal dependence in the entire range of data, whilst repro-

ducing the extremal dependence similarly to the extremal index. We assume that skew

surges follow a kth order Markov process and model the pairwise dependence of values

separated by κ observations (where κ < k) using a Gaussian copula (Joe, 2014). We

investigate the non-stationarity of temporal dependence in skew surges and capture this

by incorporating a regression model on the parameters of the Gaussian copula.

We first summarise the methods for modelling extreme skew surges that were ini-

tially derived in Chapter 3; this was the first approach to account for seasonality,

skew-surge peak tide dependence and temporal dependence. This was then extended

in Chapter 4 to account for longer-term changes resulting from anthropogenic climate

change. For simplicity of presentation, coupled with the finding that trends in extreme

skew surges are minimal relative to trends in mean sea level, we do not consider climate

change effects in the tail here. Here, the approach for capturing extremal dependence

was extended to allow for simulation, so that the simulated data reflects the temporal

dependence structure in both the body and the tail. We outline each of these existing

approaches in Section 5.3 before detailing our proposed extensions in Section 5.4. We

present our resulting simulations at four UK coastal locations in Section 5.5.

5.2 Background

5.2.1 Extreme value methods

We are interested in modelling extreme values of the skew surge series {Yt} and use

techniques from extreme value statistics to do so; we detail these methods in this section.

Assume, for now, that the series {Yt} is independent and identically distributed (IID).

One way of defining extreme observations is to consider the block maximum Mn of
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the sequence Y1, . . . , Yn, i.e., Mn = max{Y1, . . . , Yn}. The sequence {Yt} is assumed

to have a continuous marginal distribution function F and upper end point yF . If

there exists sequences of constants {an > 0} and {bn}, so that the rescaled block

maximum (Mn − bn)/an has a nondegenerate limiting distribution as n → ∞, then

the cumulative distribution function G of this limit is the generalised extreme value

distribution (GEV), defined in Section 2.2.1 of Chapter 2. The GEV has parameters

(µ, σ, ξ) ∈ R× R+ × R representing the location, scale and shape, respectively (Coles,

2001). This result provides asymptotic motivation for using the GEV as a parametric

model for observed block maxima.

We relax the independence assumption, so that Y1, . . . , Yn is a stationary sequence

with the same marginal distribution function F . The limiting distribution of the

rescaled block maxima of a stationary process satisfying a long-range dependence con-

dition (see Section 2.3 of Chapter 2) is Gθ(y) with G(y) as above and θ ∈ (0, 1] the

extremal index (Leadbetter et al., 1983; O’Brien, 1987). For an independent series

θ = 1, but the converse is not true. Based on the limiting expression for θ of O’Brien

(1987), Ledford and Tawn (2003) propose the threshold-based extremal index θ(y) as

a measure of temporal dependence for exceedances of some threshold y as

θ(y) = Pr(max{Y2, . . . , Yr} < y|Y1 > y), (5.2.1)

where r is termed the run length (Smith and Weissman, 1994).

A more popular approach for modelling extremes is to define them as exceedances

of a high threshold u. If Y1, . . . , Yn are IID, then exceedances of a high threshold u are

also IID and have limiting GPD tail model

Pr(Y > y) = λu

[
1 + ξ

(
y − u

σu

)]−1/ξ

+

,

for y > u where λu = Pr(Z > u) and (σu, ξ) ∈ R+ ×R are the scale and shape parame-
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ters, respectively (Coles, 2001). If Y1, . . . , Yn are dependent but stationary, a common

approach is to identify independent clusters above a high threshold and evaluate the

cluster maxima as a method of declustering; the run length r of equation (5.2.1) is used

for identifying different clusters (Fawcett and Walshaw, 2007).

The extremal index is not the only measure of temporal dependence for extremes.

Coles et al. (1999) define the following measure of asymptotic dependence

χκ = lim
y→yF

Pr(Yt+κ > y|Yt > y),

where κ ∈ N and yF is the upper end-point of the common marginal distribution of Yt

and Yt+κ. We say that Yt and Yt+κ are asymptotically dependent, or exhibit extremal

dependence, when χκ > 0. When χκ = 0, we say that Yt and Yt+κ are asymptotically

independent, whilst perfect extremal dependence corresponds to χκ = 1. Since χκ fails

to signify the level of asymptotic independence, Coles et al. (1999) also define the

measure χ̄κ as

χ̄κ = lim
y→yF

2 log Pr(Yt > y)

log Pr(Yt > y, Yt+κ > y)
− 1,

where χ̄κ ∈ (−1, 1]. Asymptotic dependence and asymptotic independence correspond

to χ̄κ = 1 and χ̄κ < 1, respectively, whilst 0 < χ̄κ < 1 and −1 < χ̄κ < 0 correspond to

positive and negative association, respectively, and χ̄κ = 0 corresponds to near inde-

pendence. To summarise extremal dependence at lag κ, the pair of measures (χκ, χ̄κ)

is needed.

A variety of approaches exist for modelling non-stationary processes, where it is

common to allow the parameters of a stationary statistical model to vary with time or

another covariate. We discuss the methodology of Chapter 3 for capturing the non-

stationarity of skew surges in Section 5.3.
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5.2.2 Data

We use data from the UK National Tide Gauge Network at Heysham, Lowestoft, Newlyn

and Sheerness (BODC, 2020). Observations of skew surge are at an approximate twice

daily temporal resolution (specifically, every 12 hours and 26 minutes, i.e., one tidal

cycle). Heysham is located on the west coast of England and has records from 1964-

2016, with 17% missing. Lowestoft is on the east coast of England, with data available

from 1964-2020 (4% missing). Sheerness is at the Thames Estuary, also on the east

coast, with data available from 1980-2016 and 9% missing. Newlyn is located on the

south coast of England and has records from 1915-2020, with 17% missing. The data

are in metres relative to chart datum. Sheerness and Lowestoft are both surge dominant

sites, whilst Heysham and Newlyn are tidally dominant.

5.2.3 Exploratory analysis

Chapter 3 conducts a thorough exploratory analysis to explore the non-stationarity of

extreme skew surges at Heysham, Lowestoft, Newlyn and Sheerness. Here, we focus on

analysing skew surge temporal dependence which is present because observations are

driven by meteorological conditions which often span multiple tidal cycles. Therefore,

we expect to observe temporal dependence in the main body and the tails. We investi-

gate the relationship between values separated by κ = 1, . . . , 6 time lags where a lag of

1 corresponds to a tidal cycle of ∼ 12.5 hours, so our choice of κ ranges from adjacent

values to those separated by ∼ 3 days.

We look at the dependence in the main body of the data, using Kendall’s τ mea-

sure. This is a measure of rank correlation, so is robust to outliers and any marginal

distributional features, but it is a dependence measure across all values of the variables.

However, since our interest lies with the dependence of the extreme values, it is natural

to also study the two main measures of extremal dependence χκ and χ̄κ defined in

Section 5.2.1 for values separated by lag κ.
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Heysham Lowestoft Newlyn Sheerness

κ 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Kendall’s τ

Obs 0.51 0.42 0.35 0.31 0.25 0.24 0.31 0.12 0.10 0.12 0.08 0.06 0.62 0.50 0.43 0.39 0.33 0.31 0.28 0.13 0.11 0.13 0.08 0.07

Uniform 0.50 0.42 0.34 0.30 0.23 0.23 0.30 0.12 0.09 0.12 0.07 0.06 0.61 0.49 0.42 0.38 0.30 0.29 0.28 0.13 0.10 0.13 0.07 0.07

χκ

Obs 0.14 0.09 0.06 0.06 0.05 0.06 0.17 0.04 0.05 0.06 0.03 0.03 0.31 0.14 0.12 0.13 0.12 0.12 0.08 0.05 0.04 0.06 0.04 0.04

Uniform 0.11 0.05 0.04 0.04 0.03 0.02 0.16 0.03 0.02 0.03 0.01 0.00 0.30 0.11 0.07 0.08 0.06 0.07 0.10 0.05 0.03 0.03 0.02 0.01

χ̄κ

Obs 0.41 0.32 0.26 0.24 0.23 0.24 0.45 0.20 0.23 0.25 0.16 0.15 0.60 0.41 0.37 0.39 0.38 0.38 0.31 0.22 0.18 0.25 0.20 0.20

Uniform 0.36 0.22 0.20 0.18 0.16 0.12 0.43 0.16 0.09 0.15 0.07 0.02 0.59 0.35 0.29 0.29 0.27 0.27 0.34 0.19 0.15 0.16 0.12 0.07

Table 5.2.1: Kendall’s τ , χ and χ̄ empirical estimates for lags κ = 1, . . . , 6 at each site,
for the observed data and a transform to uniform margins. The 0.99 quantile is used
for estimating χ and χ̄.

Table 5.2.1 shows these measures for the observed data and a standardised trans-

formation to remove sources of within-year non-stationarity via mapping to uniform

margins through the seasonal skew surge model of Chapter 3; we discuss their method

further in Section 5.3.1. At all sites, the lag 1 Kendall’s τ measure is stronger than

for κ = 2, . . . , 6, as expected. Newlyn exhibits the strongest dependence for all lags,

followed by Heysham; the dependence for the east coast sites (Lowestoft and Sheerness)

is much weaker at all lags. All values of χκ lie close to zero (i.e., less than 0.18) whilst

χ̄κ lies between 0 and 1, suggesting asymptotic independence but positive association.

The effect of de-seasonalising the data (by transforming to uniform margins to remove

marginal seasonality) has typically decreased dependence, suggesting that some of the

temporal dependence identified directly from the observations is driven by seasonal

variations.

Figure 5.2.1 shows estimates of Kendall’s τ , χ and χ̄ for each season, for the trans-

formed series onto uniform margins at Sheerness. The seasons are defined as winter

(December, January, February), spring (March, April, May), summer (June, July, Au-

gust) and autumn (September, October, November). For each year, we estimate each

dependence measure and show a box plot of the estimates over all years. This shows

that summer has the strongest dependence in both the body and the tail, with the

largest estimates of Kendall’s τ and χ1, on average. We make the same conclusions for
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Figure 5.2.1: Seasonal Kendall’s τ (left), χ (centre) and χ̄ (right) empirical estimates
for lags κ = 1 at Sheerness for the data transformed to uniform margins, for each
year. The seasons are defined as DJF (winter: December, January, February), MAM
(spring: March, April, May), JJA (summer: June, July, August) and SON (autumn:
September, October, November).

higher order κ, although the differences across seasons are smaller as we increase the

lag κ, since they are closer to zero. We also find stronger dependence in summer for the

remaining sites so make similar conclusions about the seasonal structure of temporal

dependence.

5.3 Existing methods

An extreme sea level can either occur from a combination of a moderate tide and a large

skew surge, or a combination of a moderate skew surge with a large tide. Therefore,

it is fundamental that the extremes of both variables are accounted for within a sea

level model. Since tides are deterministic, they have a known upper bound and do not

require statistical modelling. However, skew surges are stochastic so we want to build

a model for all the data, specifically focusing on the upper tail.

The earliest method to estimate extreme sea levels by decomposing the water level

into skew surge and peak tide was the skew surge joint probabilities method (SSJPM)

of Batstone et al. (2013). They assume skew surge-peak tide independence, and that

both processes are IID. The generalised Pareto distribution (GPD) is used for modelling



CHAPTER 5. 119

the upper tail of skew surges, and the empirical distribution for the main body of the

distribution.

In Chapter 3, we extend the SSJPM to account for seasonality in both skew surge

and peak tide, as well as their dependence; we discuss this model in Section 5.3.1. In

Section 5.3.2, we review our approach from Chapter 3 for capturing temporal depen-

dence in skew surges.

5.3.1 Marginal modelling

We summarise the marginal skew surge model developed in Chapter 3. To split the

distribution into the body and tail, we use a monthly threshold uj for j = 1, . . . , 12 to

account for seasonality, with uj being the 0.95 quantile of month j’s skew surge distri-

bution. Skew surges below these thresholds are modelled using the monthly empirical

distribution, that is dependent on the associated peak tide x, denoted F̃j,x. The em-

pirical distribution is split into three associated peak tide bands corresponding to the

lowest, medium and highest thirds of observed peak tides. This means that both skew

surge-peak tide dependence and skew surge seasonality in the body are accounted for.

For exceedances of the monthly threshold, we use a non-stationary GPD dependent

on the day in year d = 1, . . . , 365, month j and associated peak tide x. The shape

parameter is kept fixed whilst the rate and scale parameters both depend on day and

peak tide. We model the scale parameter using a harmonic for seasonal variations,

using day in year d, and a linear trend in terms of tide x,

σd,x = ασ + βσ sin

(
2π

f
(d− ϕσ)

)
+ γσx, (5.3.1)

for ασ > βσ > 0 , ϕσ ∈ [0, 365), γσ ∈ R parameters to be estimated and f = 365

the periodicity. The rate parameter λ ∈ [0, 1] is modelled similarly, using a generalised

linear model with logit link function, a harmonic to capture seasonal variations and a
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second harmonic to capture skew surge-peak tide dependence. This parameterisation

is given by

g(λd,x) = g(λ)+(dj−d̄j)β(d)
λ sin

(
2π

f
(d−ϕ(d)

λ )

)
+

(
x− x̄

sx

)[
α
(x)
λ +β

(x)
λ sin

(
2π

f
(d−ϕ(x)

λ )

)]
,

(5.3.2)

for g(·) the logit link function, λ is the constant exceedance probability in a month,

dj ∈ [1, 31] is day in month (standardised by the monthly mean day d̄j), x̄ is the

mean and sx is the standard deviation of peak tides, and α
(x)
λ ∈ R, β(d)

λ , β
(x)
λ > 0,

ϕ
(d)
λ , ϕ

(x)
λ ∈ [0, 365) parameters to be estimated.

Then, the skew surge model of Chapter 3 is given by,

F
(d,j,x)
Y (y) =


F̃j,x(y) if y ≤ uj

1− λd,x
[
1 + ξ

(y−uj
σd,x

)]−1/ξ

+
if y > uj,

(5.3.3)

where F̃j,x(·) is the empirical distribution and σd,x and λd,x are defined by expressions

(5.3.1) and (5.3.2), respectively.

Each sea level observation Zt for t = 1, . . . , n, where n is the total number of

observations, can be written as the sum of skew surge Yt and peak tide Xt. Therefore, in

Chapter 3 we use the joint probabilities method to derive the distribution of Zt. Let T
(k)
j

denote the number of tidal cycles in month j and year k. We capture within and across

year peak tide non-stationarity using sequential monthly and yearly peak tide samples

Y
(k)
ji

, so that ji denotes the ith peak tide in month j, and k = 1, . . . , K represents the

year, forK years of observation. Since peak tides are temporally dependent, the samples

{Y (k)
ji

} are from contiguous peak tides. Then, assuming skew surges are independent,

the distribution of the annual maxima sea level M is

Pr(M ≤ z) =
1

K

K∑
k=1

12∏
j=1

T
(k)
j∏
i=1

F
(d,j,x)
Y (z −X

(k)
ji

), (5.3.4)
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where F
(d,j,x)
Y is the skew surge model (5.3.3).

5.3.2 Temporal dependence

To capture in skew surge temporal dependence in skew surges in Chapter 3, we use

the extremal index. This is incorporated in the annual maximum sea level distribution

of (5.3.4) as follows

Pr(M ≤ z) =
1

K

K∑
k=1

12∏
j=1

T
(k)
j∏
i=1

F
(d,j,x)
Y (z −X

(k)
ji

)θ(z−X
(k)
ji
,r), (5.3.5)

where F
(d,j,x)
Y is the skew surge model (5.3.3) and θ(z − X

(k)
ji
, r) is a model for the

extremal index, dependent on skew surge level y = z − X
(k)
ji

and run length r, to

capture temporal dependence of skew surges. This model is given by

θ̂(y, r) =


θ̃(y, r) if y ≤ v

θ − [θ − θ̃(v, r)] exp
(
− y−v

ψ

)
if y > v,

where v is a high threshold (taken to be the 0.99 quantile), ψ > 0 and θ̃(v, r) ≤ θ ≤ 1

are parameters to be estimated and θ̃(y, r) is the empirical runs estimate (Smith and

Weissman, 1994).

This extremal index model only accounts for temporal dependence in the tail of the

distribution. However, in Section 5.2.3 we find strong temporal dependence in the main

body of skew surges. Since extreme sea levels can result from a high tide and moderate

skew surge observation, temporal dependence must be also captured for non-extreme

events. Since coastal erosion and flooding rates are accelerated during prolonged peri-

ods of high water levels, it is fundamental to capture temporal dependence across the

range of data, since a single extreme event is potentially less damaging than a series

of high values that are not considered extreme (Masselink and Russell, 2007). Addi-
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tionally, when simulating from the skew surge model (5.3.3), the temporal dependence

is not yet accounted for as it only comes into play in the sea level maxima model,

see expression (5.3.5). Therefore, in the following sections, we propose an alternative

approach.

5.4 Methodology

In this section, we detail our methodology for accounting for skew surge temporal

dependence using Markov models and copulas. Assuming that the observed skew surges

{Yt}, for t = 1, . . . , N , where N is the total number of observations, follow a kth order

Markov process, we can then model the dependence between Yt and Yt+κ for all t

and κ ≤ k using copulas. Copula functions provide an appropriate model for the

dependence structure between variables and are classically applied in the multivariate

setting. In Section 2.3.4 of Chapter 2 we discuss how this framework can be applied in

the univariate setting, as is necessary here. We refer the reader to Joe (2014) and Nelsen

(2006) for a detailed review of copulas.

Copulas can be used to model temporal dependence in a univariate setting for

observations separated by time lag κ, for κ ∈ N. For simplicity, assume that the skew

surge series {Yt; t = 1, . . . , N} is stationary, with marginal distribution function FY ,

and that it follows a kth order Markov chain. Winter and Tawn (2017) show that the

joint density of Y1:n = (Y1, . . . , Yn), denoted f1:n for n > k, can be written as

f1:n(y1:n) = f1:k(y1:k)
n−k∏
t=1

fk+1|1:k(yt+k | yt:(t+k−1)) = f1:k(y1:k)
n−k∏
t=1

f1:k+1(yt:t+k)

fk+1(yt+k)
,

(5.4.1)

where fk+1|1:k is the conditional density of Yk+1 given Y1:k, and the subscript i : j

corresponds to variable indices (i, i + 1, . . . , j) for i ≤ j. A stationarity assumption is
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required so that the joint marginal distribution satisfies

fi:j(yi:j) = fi+κ:j+κ(yi:j), (5.4.2)

for i ≤ j, any κ ∈ N and all yi:j ∈ Rj−i+1. Copula models can be used for modelling

the joint distribution f1:k+1, with joint distribution function F1:k+1 satisfying

F1:k+1(y1:k+1) = C1:k+1{FY (y1), . . . , FY (yk+1)},

where C1:k+1 is the copula for (k + 1) successive variables in the Markov chain. The

Markov process inherits the stationary condition (5.4.2) if the copula C1:k+1 has the

property that it’s m-dimensional marginal distribution, for all m < k + 1, satisfies

Ci1,...,im(y1:m) = Ci1+κ,...,im+κ(y1:m),

for κ ∈ N, ij ∈ N for j = 1, . . . ,m with 1 ≤ i1 < . . . < im + κ ≤ k + 1, and y1:m ∈ Rm.

The joint density f1:k+1 of (5.4.1) can be rewritten as the density of the copula, so that

we can obtain the joint marginal density f1:n in terms of a product of copula densities.

In Section 5.4.1 we test two different copula models with contrasting extremal depen-

dence structures: asymptotic independence and asymptotic dependence (Coles et al.,

1999). Since the strength of temporal dependence varies across the year, as discussed in

Section 5.2.3, we investigate a non-stationary dependence model by allowing the copula

parameters to vary with time in Section 5.4.2.

5.4.1 Stationary dependence model

We consider the Gaussian and bivariate logistic extreme value distribution (subse-

quently referred to as the logistic) copulas as these capture contrasting extremal de-

pendence structures through a single parameter. The Gaussian copula is suitable for
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asymptotically independent data whilst the logistic copula is useful for asymptotically

dependent data.

Let U and V be uniform random variables in (0,1), i.e., Yt and Yt+κ transformed

through the marginal model of Section 5.3.1. The bivariate Gaussian copula with

correlation parameter ρ ∈ (−1, 1) is given by

C(u, v, ρ) = Φ2(Φ
−1(u),Φ−1(v); ρ), u, v ∈ (0, 1),

where Φ2(·, ·) is the bivariate standard normal distribution and Φ−1(·) the inverse of the

univariate standard normal distribution function. Then the Gaussian copula density

can be written as

c(u, v; ρ) =
1√

1− ρ2
exp

{
−ρ

2x2 + ρ2y2 − 2ρxy

2(1− ρ2)

}
, u, v ∈ (0, 1),

where x = Φ−1(u) and y = Φ−1(v). For the Gaussian copula, χ = 0 so this copula is

suitable for asymptotically independent variables (Heffernan, 2000).

The logistic copula, introduced by Émile and Gumbel (1960), with parameter 0 <

α ≤ 1 is given by

C(u, v;α) = exp
{
−
[
(− log u)1/α + (− log v)1/α

]α}
, u, v ∈ (0, 1).

When α = 1, U and V are clearly independent, with C(u, v; 1) = uv. The logistic

density is written as

c(u, v;α) =
C(u, v;α)

uv
(xy)1/α−1

(
x1/α + y1/α

)α−2
[(
x1/α + y1/α

)α
+ α−1 − 1

]
,

for x = − log(u) and y = − log(v). For this copula, χ = 2 − 2α with dependence

strengthening as α decreases to the limit so that χ = 1 when α = 0, therefore this is

suitable for asymptotically dependent variables. Whereas when α = 1, χ = 0 so as
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Heysham Lowestoft Newlyn Sheerness

AIC BIC AIC BIC AIC BIC AIC BIC

Gaussian 64704 64712 96049 96057 102161 102169 62608 62616

Logistic 75699 75707 106078 106086 122039 122048 69198 69206

Table 5.4.1: AIC and BIC scores (rounded to the nearest integer) for the Gaussian and
logistic copula model for lag κ = 1, assuming a 6th order Markov process.

stated above, U and V are independent (Heffernan, 2000).

Table 5.4.1 compares the fit of these bivariate Gaussian and logistic copula to the

series Yt and Yt+κ for κ = 1 at all sites. A 6th order Markov assumption is used to

allow comparison with models defined later, since κ = 6 is the highest value we consider.

Model comparison is based on Akaike and Bayesian information criteria (AIC and BIC,

respectively). The Gaussian copula performs best at each site (i.e., minimises AIC

and BIC). This is unsurprising since our exploratory analysis of Section 5.2.3 suggests

that the data separated by lag κ = 1 are asymptotically independent. Therefore,

since we find that observations separated by lags κ = 2, . . . , 6 are also asymptotically

independent, it follows only to consider the Gaussian copula when developing a temporal

dependence model for skew surges.

Table 5.4.2 compares values of κ, i.e., how many bivariate Gaussian copulas we

consider at each site for sequences Yt and Yt+κ. We denote the best value of κ by

κS ∈ N for each site S = {HEY,LOW,NEW,SHE} denoting Heysham, Lowestoft,

Newlyn and Sheerness, respectively. Again, each model is fit under a 6th order Markov

assumption to allow comparison using AIC and BIC scores, which are used to choose

the best value κS at each location. Our results suggest that κHEY = 6 and κNEW = 5.

At Heysham, we tested κ > 6 also but found that κHEY = 6 still minimised AIC and

BIC. The choice of κS is less obvious for Lowestoft and Sheerness since AIC and BIC

scores suggest differing values; AIC suggests κLOW = 5 and κSHE = 6 whilst BIC says

that κLOW = κSHE = 4.
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5.4.2 Non-stationary dependence model

We focus on the bivariate Gaussian copula for modelling temporal dependence in skew

surges separated by lag κ = 1, . . . , 6 where we assume that skew surges follow a 6th

order Markov process. This means that we can compare model fit using AIC and BIC

scores as all models are fit to the same data as in Section 5.4.1. We allow the copula

dependence parameter ρ to vary with day in year d, so that the temporal dependence

model is non-stationary within a year. We investigate several ways to do this, and

compare these approaches against the stationary model of Section 5.4.1.

Under a 6th order Markov process assumption, we consider the following models for

κ = 1, . . . , 6, which are subsequently referred to as the name in italics, as follows:

• Model 1 : This is the standard Gaussian copula model, where the dependence

parameters {ρκ} are fixed across time of year,

• Models 1W and 1S : The Gaussian copula with a different dependence parameter

{ρκ} for winter (1W ) and summer (1S ) data, defined as October - March and

April - September, respectively. These parameters are denoted {ρ(W )
κ } and {ρ(S)κ }

for winter and summer, respectively. This allows the two seasons to have different

order Markov process assumptions and copula models. By assuming a 6th order

Markov process at this stage for both seasons, the AIC and BIC scores for these

models are constructed so that different κ can be used for each season but we can

sum the scores to be comparable with the remaining models,

• Model 2 : The Gaussian copula dependence parameters {ρκ(d)} are time depen-

dent on the day of the year d ∈ [1, 365], characterised by a harmonic trend, so

that ρκ(d) = αk + βk sin
(

2π
365

(d− ϕk)
)
where we estimate parameters ακ, βκ, ϕκ,

• Model 3 : The Gaussian copula dependence parameters {ρκ} are time dependent

for κ = 1, 2 but are fixed across time, as in Model 1, for κ > 2. The harmonic of

Model 2 is used for ρ1(d) and ρ2(d).
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Our exploratory analysis shows that empirical estimates of χ1 and χ2 vary the most

with day in year d, compared with χκ for κ > 2. This motivates our modelling choice

for Model 3 but of course, other parameters could be fixed or allowed to vary with day.

We discuss this further in Section 5.6.

Table 5.4.2 shows AIC and BIC scores for each model above, under a 6th order

Markov assumption, for each site. This suggests that, at least, ρ1, . . . , ρ4 are required

to describe the temporal dependence structure for all sites, so that a 4th order Markov

assumption is needed at a minimum. At Newlyn, the AIC and BIC scores are in

agreement that Model 2 is the best fit with κNEW = 6. However, the scores suggest

different models for Heysham, Lowestoft and Sheerness. AIC suggests Model 2 for

these sites with κHEY = 6, κLOW = 5 and κSHE = 6, whilst BIC suggests Model 3 with

κHEY = 6, κLOW = 4 and κSHE = 6. Where κS = 6, we test κ > 6 (and adjust the

Markov assumption accordingly) for these sites but find that the information criteria

were still minimised for κS = 6; the details are omitted. The choices of κS under BIC

agree with our exploratory analysis of Section 5.2.3 where we find strong dependence

at all lags κ = 1, . . . , 5 for Heysham and Newlyn, but the dependence diminishes for

κ > 4 at Lowestoft and Sheerness. We use BIC to indicate our best performing model

going forward.

5.4.3 Formulation of conditional parameters

In Sections 5.4.1 and 5.4.2 we follow the approach of Winter and Tawn (2017) to fit

the Gaussian copula models, outlined in Section 5.4. Before model fitting, the data are

transformed to standard Gaussian margins, using the probability integral transform

(PIT): since Y is a continuous random variable with distribution function F
(d,j,x)
Y as in

equality (5.3.3), we can apply the PIT to transform between margins by obtaining a

Uniform(0,1) random variable via U = F
(d,j,x)
Y (Y ) with U ∼ Uniform(0,1). Then, from

a Uniform(0,1) random variable U , we can obtain a standard Gaussian random variable
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Model 1 Model 1S Model 1W Model 2 Model 3

AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC

Heysham

κ =1 65006 65015 32753 32760 32229 32236 64951 64976 64951 64976

κ =2 63571 63588 32079 32094 31465 31482 63530 63579 63530 63579

κ =3 63470 63495 31927 31949 31443 31465 63329 63404 63326 63383

κ =4 63304 63338 31896 31926 31295 31325 63155 63254 63143 63201

κ =5 63299 63340 31866 31904 31312 31350 63126 63250 63162 63237

κ =6 63220 63270 31824 31870 31289 31331 63064 63213 63084 63167

Lowestoft

κ =1 96224 96233 48524 48531 47578 47586 96059 96085 96059 96085

κ =2 96097 96114 48387 48403 47554 47570 95884 95935 95884 95935

κ =3 95837 95863 48203 48227 47462 47485 95621 95698 95621 95681

κ =4 95423 95456 48009 48040 47238 47268 95211 95313 95206 95266

κ =5 95419 95462 48010 48049 47236 47275 95193 95321 95208 95285

κ =6 95429 95480 48068 48115 47180 47227 95202 95355 95216 95301

Newlyn

κ =1 102334 102343 53032 53041 49027 49035 101860 101887 101860 101887

κ =2 101944 101962 52761 52777 48856 48872 101404 101458 101404 101458

κ =3 101369 101396 52018 52043 48830 48854 100622 100703 100747 100810

κ =4 100967 101003 51724 51757 48679 48712 100208 100315 100249 100311

κ =5 100917 100962 51633 51674 48695 48736 100166 100300 100253 100333

κ =6 100931 100984 51620 51670 48737 48787 100093 100253 100271 100361

Sheerness

κ =1 62568 62576 33014 33021 29377 29385 62321 62346 62321 62346

κ =2 62551 62567 33017 33032 29344 29359 62290 62338 62290 62338

κ =3 62447 62472 32983 33005 29289 29311 62218 62290 62229 62286

κ =4 62210 62242 32866 32896 29169 29198 61977 62074 61989 62045

κ =5 62228 62268 32877 32914 29172 29209 61988 62109 62002 62075

κ =6 62194 62243 32865 32909 29144 29188 61952 62096 61964 62045

Table 5.4.2: AIC and BIC scores (rounded to the nearest integer) for the seasonal
Gaussian copula model, assuming a 6th Markov process, with dependence parameters
ρκ where κ = 1, . . . , 6 for skew surges at Heysham, Lowestoft, Newlyn and Sheerness.
The bold values show the minimised score for each model (i.e., the best value of κ) and
the bold red/blue indicates the minimum AIC/BIC scores across all models.
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T with standard Gaussian distribution function Φ and inverse distribution function Φ−1

using T = Φ−1(U).

Under the Markov assumption, we use the joint distribution of observations as

in expression (5.4.1) for model fitting. This means the {ρ̂κS} parameter estimates are

interpreted as the correlation of values separated by some lag κS. However, the estimate

ρ̂κ could be influenced by the correlation at shorter lags, i.e., (ρ̂κ−1, . . . , ρ̂1). Therefore,

for interpretability, we instead focus on the conditional correlation parameters defined

by

ρ(C)
κ = corr(Ti, Ti−κ|Ti−1, . . . , Ti−(κ−1)),

for i = 1, . . . , N and κ = 1, . . . , κS. We find the forms of these conditional parameters

using the expectation of the conditional distribution Ti|Ti−1, . . . , Ti−κS , which can be

written as a linear combination of the conditioning terms,

E(Ti|Ti−1 = ti−1, . . . , Ti−κS = ti−κS) =

κS∑
κ=1

ρ(C)
κ ti−κ,

where ρ
(C)
κ = ϕκ(ρ1, . . . , ρκ) for some function ϕκ. Here, we show how to get the exact

form of the conditional distributions for the kth order Markov process of interest.

Let (T1, . . . , TN) be the standard normal marginal variables, assumed to follow a kth

order Markov process with Gaussian copula and dependence parameters (ρ1, . . . , ρκS) for

κS ≤ k. So that the joint distribution is given by Ti, . . . , Ti−κS ∼ MVNκS+1(0κS+1,ΣκS+1)

where 0κS+1 = (0, · · · , 0) ∈ R(κS+1) and

ΣκS+1 =



1 ρ1 · · · ρκS

ρ1 1
...

...
. . .

1 ρ1

ρκS · · · ρ1 1


∈ R(κS+1)×(κS+1). (5.4.3)
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Then Ti|(Ti−1 = y1, . . . , Ti−κS = yκS) ∼ N(µ̄, Σ̄), where

µ̄ = Σ1κSΣ
−1
κSκS

y with y = (y1, . . . , yκS) and Σ̄ = Σ1κSΣ
−1
κSκS

ΣκS1,

where the variance terms are defined as

Σ1κS =
(
cov(Ti, Ti−1), · · · , cov(Ti, Ti−κS)

)
= (ρ1, . . . , ρκS),

ΣκS1 =
(
cov(Ti, Ti−1), · · · , cov(Ti, Ti−κS)

)T
= (ρ1, . . . , ρκS)

T ,

where the power T denotes the transpose of the vector, and

ΣκSκS =



var(Ti) cov(Ti, Ti−1) · · · cov(Ti, Ti−κS−1)

cov(Ti, Ti−1) var(Ti−1)
...

... var(Ti−(κS−1)) cov(Ti, Ti−1)

cov(Ti, Ti−κS) · · · cov(Ti, Ti−1) var(Ti−κS)



=



1 ρ1 · · · ρκS−1

ρ1 1
...

... 1 ρ1

ρκS−1 · · · ρ1 1


.

For example, consider a 2nd order Markov process and κS = 2, so with parameters

(ρ1, ρ2), on Gaussian margins. Then the conditional distribution is given by

Ti|(Ti−1 = ti−1, Ti−2 = ti−2) ∼ N

(
(ρ1 − ρ1ρ2)ti−1 + (ρ2 − ρ21)ti−2

1− ρ21
,

1− 1

1− ρ21
(ρ21 − 2ρ21ρ2 + ρ22)

)
,

so that the conditional correlation parameters are given by ρ
(C)
1 = (ρ1 − ρ1ρ2)/(1− ρ21)

and ρ
(C)
2 = (ρ2 − ρ21)/(1− ρ21).
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Figures 5.4.1 and 5.4.2 show the estimates of the parameters ρ̂κ and ρ̂κ
(C), respec-

tively, for κ = 1, . . . , κS for the best performing Gaussian copula models outlined in

Section 5.4.2 for each site S. We illustrate how the parameters change with day of year

d. Whilst the parameters for κ > 2 are fixed for Model 3, the corresponding conditional

parameters will vary with d as they also depend on time-varying, lower order correla-

tion parameters. Here the series is assumed to follow a kth order Markov process where

k = κS at each site S, rather than k = 6 everywhere as in Sections 5.4.1 and 5.4.2.

Figure 5.4.1 shows that ρ̂1 > maxκ=2,...,6{ρ̂κ}, as expected, so that the strongest

dependence exists for adjacent observations. The parameter estimates typically de-

crease as the lag κ increases; when some parameters vary with day d, we find that

maxd∈[1,365]{ρ̂κ(d)} < maxd∈[1,365]{ρ̂κ′(d)} for any κ < κ′. Parameter estimates that

vary with day d tend to peak in the central 6 months of the year, rather than the

first/final 3 months; this agrees with parameter estimates from Models 1W/S and our

exploratory analysis of Section 5.2.3. Newlyn is an exception to this since ρ̂1(d) and

ρ̂2(d) peak in spring whilst ρ̂κ(d) for κ = 3, . . . , 6 peak in winter. Also at Newlyn, ρ̂6(d)

varies the most with day and this variability decreases as we decrease κ from 6. These

results suggest fixing ρ̂1(d) across time since there is little variability with d, however,

when doing so we did not find an improvement in fit according to AIC and BIC scores.

Figure 5.4.2 shows that ρ̂
(C)
1 (d) > maxκ{ρ̂(C)

κ (d)} for all d and across all sites; ρ̂
(C)
1 (d)

also takes the greatest range of values compared to the remaining parameter estimates.

For κ > 3, there is little variation with day d at all sites, except for Newlyn where there

is still substantial variation for κ = 4 and 5.

5.5 Simulations

In this section, we simulate from the copula models identified as the best for each site.

The procedure for doing so is outlined in Section 5.5.1. We first replicate patterns in
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Figure 5.4.1: Dependence parameter estimates (y-axis) changing with day (x-axis) for
the best fitting model at Heysham (top left), Lowestoft (top right), Newlyn (bottom
left), Sheerness (bottom right): ρ̂1 (black), ρ̂2 (blue), ρ̂3 (red), ρ̂4 (green) and ρ̂5 (orange)
and ρ̂6 (magenta).



CHAPTER 5. 133

0 100 200 300

0.
0

0.
2

0.
4

0.
6

0.
8

Day

ρ̂(C
)

0 100 200 300

0.
0

0.
2

0.
4

0.
6

0.
8

Day
ρ̂(C

)

0 100 200 300

0.
0

0.
2

0.
4

0.
6

0.
8

Day

ρ̂(C
)

0 100 200 300

0.
0

0.
2

0.
4

0.
6

0.
8

Day

ρ̂(C
)

Figure 5.4.2: Conditional dependence parameter estimates (y-axis) changing with day
(x-axis) for the best fitting model at Heysham (top left), Lowestoft (top right), Newlyn

(bottom left), Sheerness (bottom right): ρ̂
(C)
1 (black), ρ̂

(C)
2 (blue), ρ̂

(C)
3 (red), ρ̂

(C)
4 (green)

and ρ̂
(C)
5 (orange) and ρ̂

(C)
6 (magenta).
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the historic data, so that the covariates previously observed (i.e., the observed tidal

regime) are used for simulations; this allows comparison with the true, observed data.

These comparisons are given in Section 5.5.2.

5.5.1 Simulation procedure

We describe the procedure for simulating a series of length n ∈ N (equal to the length

of the observed data), denote this sequence by {Ỹt}nt=1. Let ρ̂1, . . . , ρ̂κS denote the fitted

dependence parameters of the best fitting Gaussian copula model of Section 5.4.2 for

any site S; note that some of these may depend on day in year d but we omit this in

the notation for simplicity. We first aim to simulate a stationary Markov process with

order k = κS on standard Gaussian margins. To do so, we simulate (T1, . . . , Tk) from

the joint (multivariate) normal distribution given by expression (5.4.3) using parameter

estimates (ρ̂1, . . . , ρ̂κS). Then for each Tt where t ≥ κS, we simulate from the conditional

(univariate) normal distribution detailed in Section 5.4.3, using conditional parameter

estimates (ρ̂
(C)
1 , . . . , ρ̂

(C)
κS ).

Then we have a sequence of stationary standard Gaussian random variables {Tt}nt=1

that follow a κSth order Markov process with a Gaussian copula to describe the temporal

dependence. Next, we use the PIT to transform the simulations from Gaussian to

uniform margins and then to the margins of the skew surge model in Chapter 3 to reflect

non-stationarity and peak tide dependence; we refer to this as skew surge margins.

We use normal distribution function Φ to obtain Uniform(0,1) random variables Ut =

Φ(Tt) ∼ Uniform(0,1) for all t = 1, . . . , n. Then to obtain the simulations on skew surge

margins, we invert the distribution function of equation (5.3.3) and denote this Q
(d,j,x)
Y ,

i.e., the quantile function, so that Ỹt = Q
(d,j,x)
Y (Ut) is our final simulated series.



CHAPTER 5. 135

5.5.2 Simulating historic data

We simulate B = 200 realisations of length n using the historic tidal regime and de-

note each series as {Ỹ (b)
t }nt=1 for b = 1, . . . , B. We compare these simulations with the

observed data, in terms of seasonality and temporal dependence in the body and tail

of the data. We are particularly interested in the extremal dependence of our simula-

tions, which we assess by estimating the extremal index θ (via the runs estimate, with

run length 10) and measures of extremal dependence, χτ and χ̄τ for τ = 1, . . . , 5; all

measures are defined in Section 5.2.1.

Figure 5.5.1 compares a traceplot of observations, on a day-in-year temporal res-

olution, with simulations from four samples for a single year. This shows that the

simulated seasonal and dependence structure is similar to the observed series, but we

investigate this further. To study the seasonality in more detail, we compare monthly

boxplots of the observations and simulations; Figure 5.5.2 shows this for one simulation

sample at Heysham. This demonstrates that we have captured the seasonal structure

well, and have simulated observations bigger than those observed within the data. At

the remaining sites, we are also able to reproduce the seasonal structure but omit the

supporting figures as this is not the main focus of this chapter.

Next, we investigate temporal dependence in our simulations. Figure 5.5.3 compares

autocorrelation function (acf) values at all sites for the observations and one realisa-

tion of simulations; although the results are similar across our 200 samples. Some

dependence will be attributable to seasonal variations since we have not transformed

to uniform margins here, as we did in Section 5.2.3. At all sites, we capture the site-

specific dependence behaviour across lags and our simulations have almost identical acf

values at Heysham, Lowestoft and Sheerness, especially at the earlier lags. However,

at Newlyn, acf values for the simulations are higher than the observed data at almost

all lags; this difference is most noticeable for lags 10-20.

To study extremal dependence, we first compare empirical runs estimates of the
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Figure 5.5.1: Top: Traceplots of observed skew surges (y-axis in metres) across the year
(x-axis, in terms of day in year d) for a given year (black) and all year years (grey) at
Heysham. Bottom: Traceplots of a single year (x-axis) from four different simulated
series (indicated by four different colours) of skew surges (y-axis in metres) at Heysham.
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Figure 5.5.2: Monthly boxplots of skew surge observations from observations (top) and
one realisation of simulations (bottom) at Heysham.
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Figure 5.5.3: Autocorrelation function (acf) plots of skew surge observations (black)
and one realisation of our simulations (red) at Heysham (top left), Lowestoft (top right),
Newlyn (bottom left) and Sheerness (bottom right) on the original data scale.
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extremal index θ across different quantiles in Figure 5.5.4. At Heysham, Newlyn and

Sheerness, we obtain good agreement between estimates for the observed series and

over our 200 simulations, with the observed estimates falling within the range of the

simulated ones. Although for the higher quantiles, we obtain a slight underestimate in

the simulated series at Heysham and Newlyn, but a slight overestimate at Sheerness.

The boxplots at these three sites lie within the 95% confidence intervals for the empirical

estimates, found using a bootstrap procedure. At Lowestoft, the overestimation of θ

for our simulations is more significant, with no overlap between the confidence intervals

on the empirical estimates and the range on the boxplots for the simulated estimates.

Figures 5.5.5 and 5.5.6 compare empirical estimates of χ1 and χ5 across different

thresholds, for the observed data, with 95% confidence intervals found via the delta

method, and over all 200 simulated series for each site. Overall, estimates of χ5 are

better matched across the data sets than those for χ1. Estimates of both χ1 and χ5

are most similar for observations and simulations at Heysham and Newlyn. Whilst at

Lowestoft and Sheerness, our simulations give lower estimates of χ1 and χ5 than the

observed data, especially for the lower quantiles. Although, at the higher quantiles,

there is an overlap in the confidence intervals on the empirical estimates and the range

on the boxplots for the simulated estimates. This means our simulations will have

weaker extremal dependence than the observed data. We also show the same results

for estimates of χ̄5 in Figure 5.5.7, and make the same conclusions; there are more simi-

larities with the estimates at Heysham and Newlyn, but the simulated series have lower

estimates at Lowestoft and Sheerness. Overall, we capture the extremal dependence

structure well at all sites but discuss areas for improvement in Section 5.6.

Since Sheerness is located close to the Thames Barrier, we use these simulations to

estimate historic closure rates of the barrier and compare these to closure rates from

the observed data. The decision to close the barrier is guided by a matrix based on

forecast water levels at Southend (a tide gauge not on the UK National Tide Gauge



CHAPTER 5. 140

0.2

0.4

0.6

0.7 0.8 0.9 1.0
Quantile

θ̂

0.2

0.4

0.6

0.8

0.7 0.8 0.9 1.0
Quantile

θ̂

0.1

0.2

0.3

0.4

0.5

0.7 0.8 0.9 1.0
Quantile

θ̂

0.2

0.4

0.6

0.8

0.7 0.8 0.9 1.0
Quantile

θ̂

Figure 5.5.4: Empirical estimates of the extremal index θ with the threshold set as
different quantiles (x-axis) of the data set of interest, for the observed data (red line),
with 95% confidence intervals (red-dashed lines), and over 200 simulations (box plots) at
Heysham (top left), Lowestoft (top right), Newlyn (bottom left) and Sheerness (bottom
right).
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Figure 5.5.5: Empirical estimates of χ1 with the threshold set as different quantiles (x-
axis) of the data set of interest, for the observed data (red line), with 95% confidence
intervals (red-dashed lines), and over 200 simulations (box plots) at Heysham (top left),
Lowestoft (top right), Newlyn (bottom left) and Sheerness (bottom right).
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Figure 5.5.6: Empirical estimates of χ5 with the threshold set as different quantiles (x-
axis) of the data set of interest, for the observed data (red line), with 95% confidence
intervals (red-dashed lines), and over 200 simulations (box plots) at Heysham (top left),
Lowestoft (top right), Newlyn (bottom left) and Sheerness (bottom right).
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Figure 5.5.7: Empirical estimates of χ̄5 with the threshold set as different quantiles (x-
axis) of the data set of interest, for the observed data (red line), with 95% confidence
intervals (red-dashed lines), and over 200 simulations (box plots) at Heysham (top left),
Lowestoft (top right), Newlyn (bottom left) and Sheerness (bottom right).
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Network, located ∼6 miles across the estuary from Sheerness) and river flow measured

at Teddington Weir. The closure matrix is confidential, so the true values are unknown

to us. Here, we use data from Sheerness as opposed to Southend and focus on closures

from water levels. We can add the known, historic tidal regime onto our simulated

series to obtain synthetic water level series for the period 1980-2022, without trends in

mean sea level which would be included in practice.

We compare the closure rates using simulations from our proposed method, where

temporal dependence is accounted for in the entire range of data, with those from the

marginal skew surge model of Section 5.3.1 where temporal dependence is ignored. Fig-

ure 5.5.8 shows the estimated number of barrier closures, if the threshold for closure is

3.5m (relative to the mean sea level), from the observed data and 500 replicates of sim-

ulated series from both models (i.e., with and without temporal dependence). We say

that exceedances of this threshold separated by less than 6 tidal cycles (since κSHE = 6)

correspond to a single barrier closure. We find that the true number of closures over the

observation period under this threshold is 49. Our proposed model replicates the clo-

sure rates well across our simulations, with the estimates centred around the true value.

However, simulating from the model of Section 5.3.1, where temporal dependence is not

accounted for, tends to overestimate compared to the observed data. Overestimation

means that closures will be planned more regularly than required, taking up valuable

time needed for barrier maintenance. Our proposed model estimates more than 60

closures just 5% of the time, whilst ignoring temporal dependence does so 19% of the

time. Additionally, Figure 5.5.8 shows that our proposed method estimates the correct

closure rates more often than when temporal dependence is ignored.
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Figure 5.5.8: Histogram of the number of barrier closures, for a closure threshold of
3.5m, across the simulated samples at Sheerness, with the corresponding number of
closures in the observed data indicated by the blue line, for our proposed model (left)
and using the marginal model of Section 5.3.1 where temporal dependence is ignored
(right).

5.6 Discussion

We have presented a procedure for simulating skew surges that replicates their season-

ality, temporal dependence and extreme values, and provide simulations at four UK

National Tide Gauge Network sites. These simulations are useful for coastal man-

agement; where understanding the temporal dependence is fundamental as prolonged

storm events that span multiple tidal cycles accelerate erosion rates. Our simulations

can also be useful for predicting the life expectancy of a surge barrier, such as the

Thames Barrier, as future simulations provide information about future barrier closure

rates. The novelty of our approach lies with modelling the temporal dependence of

skew surges using a copula framework, assuming the data follows a Markov process.

We found that the temporal dependence structure is not constant throughout the year,

with stronger dependence found in the summer months, and we captured this using

harmonics for the copula dependence parameters.

We used the Gaussian copula for modelling the temporal dependence as this can
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capture the asymptotic independence structure exhibited by skew surges. We chose

this copula as it has a single dependence parameter in the bivariate case, however,

other choices are available: the Frank, Clayton and Inverted Logistic copulas capture

asymptotic independence through a single parameter also (Nelsen, 2006; Joe, 2014).

Further work could investigate these copulas and compare them against the Gaussian

copula, to investigate if they improve our simulation results.

When incorporating non-stationarity into the dependence parameter of the Gaussian

copula, we used harmonics as these provide an easily interpretable and parsimonious

way to capture smooth changes throughout the year. However, alternative approaches

could be taken such as using generalised additive models (Chavez-Demoulin and Davi-

son, 2005) or splines (Youngman, 2019).

For choosing the order k of the Markov process we used AIC and BIC, however,

we found that these information criteria disagree in some instances. An alternative

approach could be used to select the order k. For example, using the partial autocor-

relation function (pacf) to identify the largest lag at which the pacf differs from zero,

however, this focuses on dependence in the body and not the tail. Winter and Tawn

(2017) present a diagnostic approach similar to the threshold stability plots for thresh-

old selection in univariate extreme value analysis (Coles, 2001), but using their derived

cluster functionals.

Uncertainty quantification is a crucial part of statistical modelling of any kind. By

replicating simulations over 200 samples, we obtained measures of uncertainty for our

simulations that will be useful in practice. However, it would be insightful to have

confidence intervals for the dependence parameters given in Figures 5.4.1 and 5.4.2.

This can be done using a block bootstrap procedure to preserve the temporal depen-

dence (Politis and Romano, 1994), however, care would need to be taken in choosing

the block length as if this is too small, the dependence in the series would be disrupted.

Alternatively, since likelihood inference is used, the asymptotic normality of the maxi-
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mum likelihood estimates could be exploited to obtain confidence intervals based on the

Hessian. Obtaining confidence intervals would be a necessary step in the next stages of

this work; identifying when confidence intervals overlap or contain zero could help sim-

plify the model to achieve parsimony by sharing information across ρκ for κ = 1, . . . , κS

or setting ρκ = 0, respectively.

In Chapter 4, we shared information across sites regarding the parameter esti-

mates associated with increases in global mean temperature anomaly (GMT). A simi-

lar approach could be taken here to pool information across sites that share temporal

dependence characteristics. For example, Sheerness and Lowestoft are both located

on the east coast and are likely to be affected by similar storms, therefore we ex-

pect them to have a similar dependence structure. Our exploratory analysis of Sec-

tion 5.2.3 demonstrated this, as similar estimates of Kendall’s τ , χκ and χ̄κ were found.

When fitting the Gaussian copula models in Section 5.4.2, we obtain different values

of κS, however the parameter estimates shown in Figure 5.4.1 are very similar for{
ρκ : κ = 1, . . . ,min{κLOW , κSHE}

}
. This suggests that sharing spatial information

would be sensible, and this would reduce the uncertainty associated with dependence

parameter estimation. However, we only study four sites here so continuing with the

single site analysis for a larger set of sites located nearby would be a necessary first

step.

In Section 5.5.2 we simulated data corresponding to a historic period but in practice,

simulations of future records are more interesting. Using the predicted tidal regime, it

is straightforward to use the procedure outlined in Section 5.5.1 however, our marginal

model of Section 5.3.1 assumes a steady state climate which is, of course, unrealistic.

Increasing trends in mean sea level can be added back onto the simulations for historic

simulations, and for future simulations, predicted trends under different climate scenar-

ios can be used. As identified in Chapter 4, there exist longer term trends in extreme

skew surges that differ from those in the mean; we capture these by adding a GMT
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covariate into the GPD model of Section 5.3.1. Then, simulations can be obtained

under different scenarios of future GMT increases.



Chapter 6

Extremal properties of

max-autoregressive moving average

processes for modelling extreme

river flows

6.1 Introduction

Any stationary time series that exhibits large peaks or sudden bursts of extreme ob-

servations is a candidate for modelling by a max-autoregressive moving average, Max-

ARMA(p, q), process for p ∈ N and q ∈ {N∪0} (Davis and Resnick, 1989). This process

is a non-linear version of the well-known ARMA models (Box and Jenkins, 1970) where

a maxima replaces the summation. Max-ARMA(p, q) models are suitable for data with

shock noise behaviour, where the process broadly descends exponentially from each

spike and then fluctuates around small values until the next major spike.

River flow is an example where a Max-ARMA process is a suitable candidate for

modelling its behaviour, particularly in extreme states. A large precipitation event

149
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can cause river levels with sizeable catchments to remain high for days after, as the

spatially distributed large volume of water takes time to propagate down the river and

travel through underground systems. By adjusting the order and parameter values of

the process, the frequency, width and detailed structure of the spikes can be altered.

Figure 6.1.1 (left) shows daily maximum river flow trace plots from the River Thames

(gauge at Kingston-upon-Thames) during four different winter seasons. Two of the sea-

sons shown correspond to the worst flood events on record for the Thames: November

1894 and February 1928. The plot shows that river flow has features of heavy tails and

non-linearity, with rapid rises and slower falls around the peaks. Figure 6.1.1 (right)

shows estimates of the asymptotic dependence coefficients χκ (see Section 6.3.2) at

different lags κ ∈ [1, 100], which provides a similar type of information as for an auto-

correlation function, but here with a metric to measure extremal dependence across

time. The estimated χκ values demonstrate strong temporal dependence until approx-

imately lag 14, corresponding to 2 weeks, after which the dependence steadily decays.

Estimates of χκ vary with the threshold used to define an extreme event, with illustra-

tions of estimates using three possible thresholds (see Section 6.4 for further discussion

of these estimates). Figure 6.1.1 (right) also shows Pearson’s correlation coefficient

over time lags κ to illustrate the differing dependence structure in the body and tail

of the data; dependence is stronger in the body until approximately lag 90. Similar to

the estimates of χκ, there is a change in the rate that the dependence measure decays

beyond lag 14, after which the correlation coefficient decays at a steadier rate than for

κ ≤ 14, although the decay is much quicker than for χκ across all lags.

Modelling sea levels and river flow is fundamental for forecasting future closures of

flood barriers, such as the Thames Barrier, in both the short- and long-term. Short-

term predictions are fundamental for anticipating closure times and durations to ensure

preparedness (Dale et al., 2014; Environment Agency, 2021). We are interested in

longer-term forecasts to explore the impacts of climate change on the number of barrier
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Figure 6.1.1: Left: River flow time series of the River Thames for the winter season
(October - March) in 1894/95 (black), 1927/28 (dark blue), 1973/74 (light blue) and
2019/2020 (green) (Environment Agency, 2023a). Right: Pearson’s correlation coeffi-
cient (dashed line) and empirical estimates of χκ(u) (solid lines; see Section 6.3.2) for
the Thames data over different lags, κ (in days). Quantiles of u = 0.9 (black), 0.95
(dark blue) and 0.975 (light blue) are used for estimating χκ(u).

closures. Increases in barrier closures, in turn, require an increase in the number of

maintenance and safety checks. This affects the reliability of the barrier because during

these checks, the barrier cannot be used and, due to time constraints, the number of

checks per year is restricted. Under climate change conditions, the number of times

the barrier can close each year is likely to be exceeded soon (Environment Agency,

2021). Further measures must be taken to ensure the barrier can remain in operation,

but if this is not possible, to plan for barrier updates or replacement. Therefore, by

forecasting changes in future closure rates in the long term, one can provide critical

information to barrier operators about barrier management and provide insight into its

life expectancy (Trace-Kleeberg et al., 2023).

The barrier closes when sea levels and/or river flows exceed pre-determined, con-

fidential, thresholds. Therefore, it is fundamental that we focus on modelling the ex-

tremes of both variables as these values are more likely to contribute to barrier closures.

A novel method for estimating extreme sea levels was recently developed by D’Arcy

et al. (2023b) for tide gauge data at Sheerness, located at the mouth of the River
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Thames. Using a Max-ARMA(p, q) process, our aim is to develop a similar method

for estimating extreme river flow. Simulations for river flow and sea levels can then be

combined to determine closure rates, however, one would need to investigate if these

are, in fact, independent (Svensson and Jones, 2004; Hendry et al., 2019). Of course,

the Max-ARMA(p, q) model for river flow is not restricted to flood barrier and estuary

locations, but can be applied to all river flow data in no-drought areas.

Processes with Max-ARMA behaviour exhibit unique temporal dependence struc-

tures that we aim to explore at extreme levels. Davis and Resnick (1989) derive con-

ditions on the parameters of a Max-ARMA(p, q) process for it to be stationary and

under which each of the parameters of the model is identifiable. We derive further con-

ditions for all parameters to be identifiable and present a simplified parameter space

that is useful for inference. We are interested in deriving the well-known extremal in-

dex θ (Leadbetter et al., 1983) and the coefficient of asymptotic dependence χκ at lags

κ ∈ Z; the latter is a special case of the extremogram defined by Davis and Mikosch

(2009). The Max-ARMA(1,0) process has been studied previously: Robinson and Tawn

(2000) and Ferreira (2011) derived the form of the θ and χκ, respectively. However, to

the best of our knowledge, these measures have not yet been derived for a general Max-

ARMA(p, q) process. We illustrate how these measures can be used for moments-based

inference using the River Thames data as an example.

Max-ARMA(p, q) processes are defined on specific margins, for example, we use unit

Fréchet margins. This can be thought of as in copula theory where the margins can

be changed using the probability integral transform (Nelsen, 2006). Therefore we need

an additional transformation from the observed series {Yt} to the Max-ARMA(p, q)

series {Xt}, via Xt = T (Yt), for all t ∈ Z, where T is defined in Section 6.5.3. This

transformation allows us to compare the observed series in their extreme states, such

as those in Figure 6.1.1, with simulated Max-ARMA(p, q) realisations.

In Section 6.2 we formally define the Max-ARMA(p, q) process and derive conditions
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on its parameters for this to be an identifiable process. In Section 6.3 we detail the

form of the extremal index and the coefficient of asymptotic dependence. In Section 6.4

we explain how to simulate from a Max-ARMA process and provide examples of such

simulations. Davis and Resnick (1989) find super-efficient estimators of the parameters

for known (p, q); in Section 6.5 we take a different inference approach, as we believe that

the Max-ARMA(p, q) process is only an approximation to the true generating process (of

river flows) and when they are in an extreme state. We propose a generalised moments-

based inference procedure for the joint behaviour of exceedances of a high threshold.

In Section 6.6 we illustrate this inference method on data from the River Thames. All

proofs are given in Section 6.7. We conclude with a discussion in Section 6.8.

6.2 Model definition and parameter constraints

Davis and Resnick (1989) define a discrete-time stochastic process {Xt} for −∞ < t <

∞ as following a Max-ARMA(p, q) model if,

Xt = max{α1Xt−1, . . . , αpXt−p, β0Zt, β1Zt−1, . . . , βqZt−q}, (6.2.1)

where α = (α1, . . . , αp) and β = (β0, . . . , βq) are parameters of the model, for p ∈ N

and q ∈ {0,N}, and {Zt} is an independent and identically distributed (IID) innovation

process on Fréchet(γ) margins, so that FZ(z) = exp(−γ/z) for z > 0 and γ > 0. For

the model to be well-defined the parameters must satisfy the constraints αi ≥ 0 for

i = 1, . . . , p − 1 and αp > 0, β0 = 1, βj ≥ 0 for j = 1, . . . , q − 1 and βq > 0. Despite

the restriction on β0, we use the more general β0 notation throughout for mathematical

convenience for expressing results. By construction (6.2.1), Xt and Zs are independent

for all s > t.

We make further restrictions on the parameters αi for i = 1, . . . , p to ensure the

process is stationary and derive the form of γ, the scale parameter for the innovation
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process, such that {Xt} has a specific marginal form, in the remark below.

Remark 6.2.1. A Max-ARMA(p, q) process is a stationary process with Fréchet(σ)

marginal distribution if and only if 0 ≤ αi < 1 for i = 1, . . . , p− 1 and 0 < αp < 1, and

the scale parameter γ > 0 of the Fréchet distribution for the innovation process {Zt} is

given by

γ := σ

(
∞∑
τ=0

max
Sτ

{
βj

∏
i=1,...,p:
αi>0

αaii

})−1

<∞, (6.2.2)

for 0 < σ <∞, where

Sτ =
{
(i, j, ai) ∈ {1, . . . , p} × {0, . . . , q} × {0, 1, . . . , τ} :

p∑
i=1

iai + j = τ

}
. (6.2.3)

Remark 6.2.1 is a reformulation of the result in Davis and Resnick (1989) into a simpler

expression, and we explicitly state the marginal distribution for {Xt}. The formula-

tion of Davis and Resnick (1989) means that the Max-ARMA parameters determine

both marginal and dependence parameters, whereas our standardisation of the margins,

through the choice of γ, makes the dependence parameters independent of the marginal

distribution, which is particularly useful for copula style inferences, which is required

in Section 6.5.2. Stationarity requires no further restrictions on β. From this point

onwards in our theoretical developments, we take σ = 1.

For a Max-ARMA(1,0) process, defined by Xt = max{α1Xt−1, Zt}, to have unit

Fréchet margins with stationary constraints given in Remark 6.2.1, i.e., 0 < α1 < 1, we

obtain that 0 < γ < 1, with

γ =

(
∞∑
τ=0

ατ1

)−1

= 1− α1. (6.2.4)

Next, we impose further restrictions on (α,β), to ensure that the parameters are

identifiable, i.e., in the sense that they have some effect on the feasible sample paths of

the {Xt} process. Remark 6.2.2 presents a result by Davis and Resnick (1989), with a



CHAPTER 6. 155

minor adaptation to allow for elements of α to be zero.

Remark 6.2.2. For a stationary Max-ARMA(p, q) process with p ≥ 2, αk is identifiable

only if

max
Rk

{ ∏
i=1,...,(k−1):

αi>0

αaii

}
< αk < 1,

for k = 2, . . . , p, where

Rk = { (i, ai) ∈ {1, . . . , (k − 1)} × {0, 1, . . . , k} :
k−1∑
i=1

iai = k}.

Since β0 = 1, it is always identifiable. For j ∈ 1, . . . ,min{p, q}, βj is identifiable if

βj > αj; and when q > p if βj > 0 it is identifiable if j ∈ {p+ 1, . . . , q}.

Note that Rk is defined similarly to Sτ in expression (6.2.3) for a Max-ARMA(k −

1, 0) process, so that there are no β parameters. In the following proposition, we extend

Remark 6.2.2, which gives a condition for the marginal identifiability of αi, to derive

a condition under which all αi for i = 1, . . . , p are identifiable. We prove this result in

Section 6.7.

Proposition 6.2.3. For a stationary Max-ARMA(p, q) process with p ≥ 2, if αi for all

i = 1, . . . , (k − 1) < p are identifiable, then αk is identifiable if

max
i=1,...,⌊k/2⌋

{αiαk−i} < αk,

where ⌊·⌋ denotes the floor function. Therefore, all αi for i = 1, . . . , p are identifiable

if the above holds for all i.

Remark 6.2.4. All parameters α2, . . . , αp are not identifiable if αi ≤ αi1 for i =

2, . . . , p.

Remark 6.2.5. If α1 = 0 and p ≥ 3, then by Proposition 6.2.3, if min{α2, α3} > 0, both

α2 and α3 are identifiable. However, for all remaining α parameters to be identifiable,
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Proposition 6.2.3 must hold, with this simplifying, for all i = 4, . . . , p, to

max
j=2,...,⌊i/2⌋

{αjαi−j} < αi.

In Section 6.6 we discuss the implications of imposing these stationarity and iden-

tifiability constraints on parameter inference for the Max-ARMA process.

6.3 Estimating extremal measures

6.3.1 Extremal index

Consider the maximumMn of a sequence of IID unit Fréchet random variables X1, . . . ,

Xn, i.e., Mn = max{X1, . . . , Xn}. If there exist sequences of constants {cn > 0}

and {dn}, so that the rescaled block maximum (Mn − dn)/cn has a nondegenerate

limiting distribution G as n → ∞, then G is a member of the generalised extreme

value distribution (GEV) family (Leadbetter et al., 1983). In this case, for unit Fréchet

random variables, using cn = n and dn = 0, G is also unit Fréchet so that G(x) =

exp(−1/x) for x > 0; this is a member of the GEV family.

Now consider X1, . . . , Xn as a stationary sequence, still with unit Fréchet margins,

but satisfying the long-range dependence condition, D(un) of Leadbetter et al. (1983)

with un = cnx + dn for any x in the domain of G, which ensures events long apart in

time are near independent but does not impose any bounds on the local dependence

conditions. The limiting distribution of (Mn − dn)/cn of this stationary process when

it exists, with cn and dn as for the IID case, is Gθ(x) with G(x) = exp(−1/x) for x > 0

and θ ∈ (0, 1] the extremal index. For an independent series θ = 1, but the converse is

not true, so θ captures the effect of the temporal dependence on the distribution of the

maximum.

For dependent sequences, clusters of extreme events form above high thresholds.
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Extreme observations in different clusters are assumed to be independent, whilst events

within the same cluster exhibit dependence. Let Npn(un) denote the number of obser-

vations of X1, . . . , Xpn to exceed the threshold un, where pn = O(n). Then a cluster

occurs when Npn(un) > 0, so the cluster size distribution π is defined by

π(m) = lim
n→∞

Pr(Npn(un) = m|Npn(un) > 0),

for m ∈ N (Hsing et al., 1988). The extremal index, defined by Leadbetter et al. (1983),

is characterised as the reciprocal of the limiting mean cluster size, where limiting refers

to exceedances of an increasing threshold tending to the upper endpoint. O’Brien

(1987) gives an alternative definition of the extremal index, based on the number of

down-crossings in clusters of threshold exceedances, i.e.,

θ = lim
n→∞

Pr(X2 ≤ un, . . . , Xpn ≤ un|X1 > un), (6.3.1)

where {pn} is an increasing sequence with pn = O(n). They give an alternative long-

range dependence condition to that of Leadbetter et al. (1983), known as the asymptotic

independence of maxima condition. The well-known runs method of estimation for the

extremal index (Smith and Weissman, 1994) is strongly related O’Brien’s definition,

where clusters are defined as those separated by pn non-extreme values, where pn is

termed the run length.

For a Max-ARMA(1,0) process, Robinson and Tawn (2000) show that θ = 1 − α1.

They also show that for this particular process, the cluster sizes are geometrically

distributed, with distribution function π(m) = αm−1
1 (1 − α1) for m ∈ N. This is

a suitable model as the number of exceedances determines a cluster, whilst a non-

exceedance would terminate a cluster. To the best of our knowledge, the extremal

index of a Max-ARMA(p, q) process has not been derived before. We prove the following

result in Section 6.7.
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Proposition 6.3.1. The extremal index of a stationary Max-ARMA(p, q) process is

θ = γmax{β0, β1, . . . , βq}, (6.3.2)

where γ > 0 is the scale parameter of the innovation Zt distribution, defined by expres-

sion (6.2.2).

As β0 = 1, then max{β0, . . . , βq} ≥ 1 > max{α1, . . . , αp} due to stationarity. Hence

if βJ = max{β0, . . . , βq}, then βJ > αJ and hence it is identifiable by Remark 6.2.2, so

the result in Proposition 6.3.1 is well defined. According to the above proposition, a

Max-ARMA(1,0) process with βj = 0 for all j and γ = 1− α1, as identified by expres-

sion (6.2.4), has extremal index θ = 1 − α1. This agrees with the results of Robinson

and Tawn (2000).

6.3.2 Extremal dependence measure

An alternative measure of extreme temporal dependence to the extremal index is the

coefficient of extremal dependence χκ for specific lags κ (Coles et al., 1999; Heffernan

et al., 2007). When used for a stationary time series context, this is a similar type of

pairwise dependence measure to the auto-correlation function used for classic ARMA

models. This is defined as

χκ = lim
u→xF

Pr(Xt+κ > u|Xt > u), (6.3.3)

for k ∈ Z and a threshold u, where xF is the upper endpoint of the marginal distribution

function FX , so for a Max-ARMA process with Fréchet margins xF = +∞. If χκ ∈

(0, 1], we say that Xt and Xt+κ are asymptotically dependent; this means there is a

non-zero probability of Xt+κ being large when Xt is large at all extreme levels. Whereas

χκ = 1 and χκ = 0 correspond to perfect dependence in the extremes and asymptotic

independence, respectively. Ferreira (2011) derives χκ for the Max-ARMA(1,0) process
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with Pareto(ξP ) margins, as χκ = α
|κ/ξP |
1 where ξP > 0 is the tail index of the Pareto

distribution. Here, we derive χκ for a general Max-ARMA(p, q) process which has not

been done before, to the best of our knowledge.

A similar measure of serial extremal dependence is the extremogram, defined by Davis

and Mikosch (2009). For a regularly varying stationary series {Xt}, the extremogram

is defined for two sets A and B, that are bounded away from zero, by the limit

ρAB(κ) = lim
n→∞

P(c−1
n Xt ∈ A | c−1

n Xt+κ ∈ B),

for cn → ∞ such that P(|Xt| > cn) ∼ n−1. By defining A and B as bounded away from

zero, the events {c−1
n Xt ∈ A} and {c−1

n Xt+κ ∈ B} become extreme in the limit. The

extremogram becomes the extremal dependence measure above when A = B = (1,∞)

and cn = n, with the expression of cn given by {Xt} having Fréchet margins.

For τ ∈ N we define

γτ := max
Sτ

{
βj

∏
i=1,...,p:
αi>0

αaii

}
, (6.3.4)

where Sτ is defined by expression (6.2.3). Then 0 ≤ γτ ≤ max{β0, β1, . . . , βq}. If

max{β1, . . . , βq} > 1, then γτ > 1 for some τ but γτ → 0 always as τ → ∞ for a

stationary Max-ARMA process, since max{α1, . . . , αp} < 1 and for each τ there exist is

at least one i = 1, . . . , p such that ai → ∞ as τ → ∞. This gives us the final notation

required for the following proposition about χk for a Max-ARMA(p, q) process, which

we prove in Section 6.7.

Proposition 6.3.2. The extremal dependence measure χκ for observations separated

by κ ∈ N time lags, for a stationary Max-ARMA(p, q) process {Xt}, is

χκ = γ
∞∑
δ=0

min{γδ, γδ+κ}, (6.3.5)

where γδ is defined by expression (6.3.4), and χ−κ = χκ.
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Remark 6.3.3. It follows from the formulation of γτ in expression (6.3.4) that γ(q+1)τ+j

decays at a geometric rate for each j = 1, . . . , q each converging to zero as τ → ∞. So

limκ→∞ χκ = 0.

Remark 6.3.4. When 1 > α1 > . . . > αp > 0 and β0 = 1 > β1 > . . . > βq > 0, γτ is a

strictly decreasing function for all τ ∈ N. Then the form of χκ for κ ≥ 0 simplifies as

follows,

χκ = γ

∞∑
τ=0

γτ+κ = γ
∞∑
τ=κ

γτ = γ

(
∞∑
τ=0

γτ −
κ−1∑
τ=0

γτ

)
= γ

(
1

γ
−

κ−1∑
τ=0

γτ

)
= 1− γ

κ−1∑
τ=0

γτ ,

where the infinite sum is equal to 1/γ by Remark 6.2.1.

For the stationary Max-ARMA(1,0) process, γ = 1 − α1 from expression (6.2.2),

and as β0 = 1, γτ = ατ1 from expression (6.3.4) so, for κ ≥ 0, we obtain that

χκ = 1− (1− α1)
κ−1∑
δ=0

αδ1 = ακ1 ,

which agrees with the result of Robinson and Tawn (2000).

6.4 Simulation of Max-ARMA(p, q) processes

Davis and Resnick (1989) simulate from a stationary Max-ARMA(1,0) process, which

is straight-forward as X1 can be generated from the marginal distribution. and then

expression (6.2.1) can be used recursively for t > 2. However, they are not specific

about how to generate X1, but calculating γ in this case is straightforward using ex-

pression (6.2.4). Extending this method to a higher order, particularly with q ≥ 1 is

more complex; we illustrate how to do so in this section.

We aim to simulate a series of length n ∈ N, denoted by {X̃t}nt=1, from a stationary

Max-ARMA(p, q) process. Since the Max-ARMA process is driven by an IID innovation

process Zt ∼ Fréchet(γ), we first simulate m+ n values from this distribution, denoted
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by {Z̃t}nt=−m, with scale parameter γ > 0 determined by the parameters of the Max-

ARMA process, as stated in Remark 6.2.1, to ensure stationarity. Here, we have m

values linked to the requirement for a burn-in period; see below for the reasons why.

The first step is to derive the value of γ, which is given by an infinite sum (6.2.2)

of terms, where the τth term itself is the maximum over a complex set Sτ . Given

parameter values α and β, we approximate the infinite sum by a partial sum up to

the Nth term, for large N . We find that N = 100 gives a suitable approximation for

a wide range of α and β, but larger values may be necessary when max{α1, . . . , αp} is

very close to 1.

For each step τ = 0, . . . , N there is a need to find a solution set that satisfies the

conditions of Sτ . We achieve this by trying all possible combinations and keeping only

the feasible set. Specifically, we check for all possible combinations of ai ∈ {0, . . . , τ :

αi > 0} for i = 1, . . . , p and j ∈ {0, 1, . . . , q} that satisfy the properties of Sτ outlined

in (6.2.3), for each iteration of τ . We then find which element of this feasible solution

set maximises βj
∏

i=1,...,p : αi>0 α
ai
i .

First, consider how to simulate forward given the process is already in a stationary

state. At time t ∈ N, with p ≤ t ≤ n, we can easily simulate X̃t using expression (6.2.1)

since the past values (X̃t−1, . . . , X̃t−p) and (Z̃t−1, . . . , Z̃t−q) are available. However, for

the earliest terms in the simulated X̃t sequence where t < p, the past values are un-

known so the joint distribution for X̃t is complex. Instead, we simulate these early

terms X̃1, . . . , X̃p from a unit Fréchet distribution. These observations have the correct

marginal distribution but are independent of one another. Therefore a burn-in period

of length m ≥ q − min{p, q} is required to ensure that the simulated series has the

correct stationary dependence structure.

We illustrate the extremal properties of a stationary Max-ARMA(p, q) process

through four examples, labelled series 1-4, where a burn-in period of length m = 1000

is discarded. Series 1 and 2 are Max-ARMA(3,0) processes whilst series 3 and 4 are
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Series Extremal properties

(p, q) α β γ θ χ1 χ2 χ3

1 (3, 0) (0.85, 0.77, 0.7) (0, 0, 0) 0.11 0.11 (0.11) 0.88 (0.88) 0.79 (0.80) 0.70 (0.71)

2 (3, 0) (0.3, 0, 0.1) (0, 0, 0) 0.65 0.65 (0.58) 0.35 (0.36) 0.16 (0.19) 0.1 (0.14)

3 (3, 3) (0.85, 0.77, 0.7) (2, 1, 0.9) 0.05 0.11 (0.10) 0.89 (0.88) 0.8 (0.79) 0.72 (0.72)

4 (3, 3) (0.85, 0.77, 0.7) (50, 10, 5) 0.002 0.11 (0.11) 0.89 (0.87) 0.79 (0.78) 0.70 (0.70)

Table 6.4.1: Values of γ, θ and χκ for κ = 1, 2, 3 of different Max-ARMA processes
derived from Remark 6.2.1 and Propositions 6.3.1 and 6.3.2, respectively. Empirical
estimates of θ(u) and χκ(u), derived using a simulation of length 106 and the 0.95
marginal quantile as the threshold u, are given in parentheses. All values are given to
2 decimal places, where appropriate.

Max-ARMA(3,3) processes. The values of (α,β) are given in Table 6.4.1 and are chosen

to ensure identifiability, except for series 2 where we explore the effect of α2 = 0 with

α1, α3 identifiable. This table also presents the values of γ, θ and χκ (κ = 1, 2, 3) for

each series, where these are evaluated using the limiting theoretical expressions given

by Remark 6.2.1 and Propositions 6.3.1 and 6.3.2, respectively. Series 2 exhibits less

extremal dependence than the remaining series due to its smaller α parameters. Series

1, 3 and 4 have similar values for θ and χκ; this shows that adding β parameters to

series 1 hasn’t changed the extremal dependence structure and neither has increasing

the magnitude of the β parameters, as in series 4. The values of θ indicate a cluster

size of 9 for processes 1, 3 and 4. The values of χκ decay with increasing lag κ in all

cases.

To gain further insight into temporal trajectories of series 1-4, we simulated realisa-

tions from each series, with Figure 6.4.1 showing a segment of 1000 consecutive values

from each of these processes (after burn-in). To avoid the largest events dominating the

image, each series presented in Figure 6.4.1 is on a standard Gumbel marginal scale,

i.e., we show the time series of logXt. For all four series the dominating feature of

the plots is the repeated spikes - sudden jumps up in values - followed by an approxi-

mate linear decay (an exponential decay on unit Fréchet margins becomes linear on this

Gumbel marginal scale). Despite all four series having identical choices of p and, for
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series 1, 3 and 4, similar values of θ, their trajectories differ: series 2 has more sporadic

behaviour with frequent spikes that instantly decay, whereas series 4 has larger jumps

from a typical value to an extreme event due to the β parameters being much larger

than for the other series.

Simulation from these Max-ARMA processes also provides an independent assess-

ment of the theoretically derived properties of θ and χκ. To obtain Monte Carlo esti-

mates with limited noise we use simulations of length 106 and estimate θ(u) and χκ(u)

using empirical values based on expressions (6.3.1) and (6.3.3). These values are given

in Table 6.4.1. For estimates of θ(u), we have un = u equal to the 0.95-marginal quan-

tile and pn = 1 for all series. Empirical estimates of χκ(u) decrease as κ increases so the

choice of pn = 1 is sufficient. Table 6.4.1 shows an excellent agreement between these

Monte Carlo estimates and the true values for all four series, despite our threshold not

being very extreme.

6.5 Inference

6.5.1 Model parameterisation

In Section 6.2 we show that the parameters α and β of a Max-ARMA(p, q) process

need to satisfy the conditions of Remarks 6.2.1 and 6.2.2 to achieve stationarity and

identifiability, respectively, with the conditions of Remark 6.2.2 on the α parameters ex-

pressed more parsimoniously in Proposition 6.2.3. In particular, if for any k = 2, . . . , p,

we have that α1, . . . , αk−1 all satisfy the identifiability conditions of Remark 6.2.2, then

if αk is less than or equal to the lower bound of the constraint (6.2.5) then αk plays

no role in determining the sample path of the Max-ARMA process, so it is equivalent

to setting αk = 0. Similarly, if for any j = 1, . . . , q we have βj ≤ αj then βj also

does not affect the sample paths, so has no difference from taking βj = 0. However,

for a Max-ARMA(p, q) process to be well-defined we need both the αp and βq terms
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Figure 6.4.1: Simulations from stationary Max-ARMA(p, q) processes {Xt}, presented
on Gumbel margins, i.e., for logXt, with sample sizes n = 1000: (p, q) = (3, 0) (top
row) and (p, q) = (3, 3) (bottom row) with parameters α = (0.85, 0.77, 0.7) (top left),
α = (0.3, 0, 0.1) (top right), α = (0.85, 0.77, 0.7) and β = (2, 1, 0.9) (bottom left), and
α = (0.85, 0.77, 0.7) and β = (50, 10, 5) (bottom right).
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to be identifiable, and for statistical inference we cannot allow for multiple points in

the parameter space to give processes with identical sample paths if they have identical

realisations of the innovation sequence {Zt}. Thus, for stationary processes, without

any redundancy for lack of identifiability, and for (p, q) to both be uniquely defined, we

must further restrict the parameter space, identified in Section 6.2, to the parameter

space Θp,q given by

Θp,q =

{
(α,β) : 0 ≤ α1 < 1, max

j=1,...,⌊i/2⌋
{αjαi−j} ≤ αi < 1 ∀ i = 2, . . . , (p− 1),

max
j=1,...,⌊p/2⌋

{αjαp−j} < αp < 1, β0 = 1, βj ≥ αj ∀j = 1, . . . ,min{p, q − 1},

and for q > p, βj ≥ 0 for j = (p+ 1), . . . , (q − 1), βq > 0,

whilst for p ≥ q, βq > max{αq, 0}
}
.

This novel formulation for Θp,q has the benefit of the parameter space being con-

tinuous whilst allowing for any combination of the parameters α−p for p ≥ 2 (since α1

is always identifiable) and β−(0,q) (since β0 = 1 is always identifiable) not to affect the

sample paths; this is achieved when they satisfy the equal conditions in their respective

bounds in the specification of Θp,q. Imposing the parameter space Θp,q on the Max-

ARMA(p, q) process has no effect on either γ, θ or χτ in expressions (6.2.2), (6.3.2)

and (6.3.5) respectively, and is key for inferences in Sections 6.5.2 and 6.6.

Due to the complexity of the parameter space defined above, we reparameterise

α and β to achieve a more orthogonal parameter space so that inference is easier.

Consider the parameters δ = (δ1, . . . , δp) and ϵ = (ϵ1, . . . , ϵq) defined by

δi =


α1 for i = 1

αi −maxj=1,...,⌊i/2⌋{αjαi−j} for i = 2, . . . , p,

(6.5.1)
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and

ϵj =


βj − αj for j = 1, . . . ,min{p, q}

βj for j = (p+ 1), . . . , q if q > p.

(6.5.2)

Thus, when δi = 0, for any i = 1, . . . , p − 1 (or when ϵj = 0 for any j = 1, . . . , q − 1)

then αi (or βj) has no impact on the sample path of the Max-ARMA(p, q) process.

With this transformation, the new parameter space becomes

Θ̃p,q =
{
0 ≤ δi < ∆i for i = 1, . . . , (p− 1), 0 < δp < ∆i,

ϵj ≥ 0 for j = 1, . . . , (q − 1), ϵq > 0
}
, (6.5.3)

where ∆i expresses the bound αi < 1−maxj=1,...,⌊i/2⌋{αjαi−j} in terms of (δ1, . . . , δi−1).

Although ∆i is complex for a general i, the condition is easily checked after transforming

δ into α and is simple when p is small, e.g., ∆1 = 1,∆2 = 1 − δ21. Though at first

sight Θ̃p,q may not seem much simpler than Θp,q, in practice it is much easier to use

in optimisations such as in Section 6.5.2. This is because the constraints between the

ith components of the parameters α and β have been removed for i = 1, . . . ,min{p, q},

as has the complex inequality maxj=1,...,⌊i/2⌋{αjαi−j} < αi for all i = 2, . . . , p. The

new constraint with upper bound ∆i is typically satisfied for most trial values of δ in

an optimisation as it would be unlikely for the true parameters to be very close to the

upper limits on αi, i.e. corresponding to non-stationarity. Thus we found that using

(δ, ϵ) ∈ Θ̃p,q is a major simplification to using Θp,q.

6.5.2 Inference strategy

Davis and Resnick (1989) considered inference issues in theory for a Max-ARMA(p, q)

process. They find super-efficient estimators of the α and β parameters when (p, q) are

known. To illustrate this, it can easily be shown that for a Max-ARMA(1,0) process

{Xt}, if Xt > u for large u and any t ∈ N, then Xt+1 = αXt for some α ∈ (0, 1) with
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probability tending to 1 as u → ∞. More generally, for a Max-ARMA(p, q) process,

they show that if αi is identifiable, then Pr(Xt = αiXt−i) > 0 and that Xt/Xt−i ≥ αi

for all i = 1, . . . , p; and they find some similar features involving the β parameters. So,

for a sample of size n, they proposed the following estimator, for all i = 1 . . . , p,

α̂i = min
t=i+1,...,n

{
Xt

Xt−i

}
,

with a positive probability that α̂i = αi, and this probability tending to 1, with a

geometric rate, as n→ ∞.

The pseudo-deterministic behaviour of the Max-ARMA(p, q) process will not be

observed exactly in practice for any real-world system. So, our inference strategy differs

from that of Davis and Resnick (1989) as we consider the Max-ARMA(p, q) process to

be only an approximation to the actual process generating the data (e.g., river flow

data) and we believe this model is useful only when the process is in an extreme state.

So, we only assume the Max-ARMA model provides an approximate formulation of the

process for extreme observations, i.e., when max{Xt−1, . . . , Xt−p} > u, for some high

threshold u. Given this perspective, likelihood inference is not suitable for fitting a

Max-ARMA(p, q) process of specified orders p and q to observational data as we do not

view that the data actually comes from this precise model. Furthermore, we treat (p, q)

as unknown, and therefore they also need estimating.

Instead of likelihood inference, we take a moments-based inference approach for

fitting the model to the extremes of observational data. Our strategy is motivated

by the approach proposed by Rodriguez-Iturbe et al. (1988) for rainfall models and

continued through a series of extensive work, with a recent example being Kaczmarska

et al. (2015). In this approach, key properties of the process are derived in closed form

and then the model parameters are estimated using a method of generalised moments;

this minimises a weighted sum of squared differences between empirical properties of

interest and the parametric estimates under the model. In the rainfall context, the
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generalised moments include features of the body of the process, such as correlations,

mean length of dry periods and means of aggregated rainfall over different time windows.

Here, as extremes are of most interest, we follow a similar approach but use extremal

properties of the process to ensure a good fit, such as θ and χk for k ∈ N.

To estimate α and β for a Max-ARMA(p, q) process we use p+ q+2 moments. Let

M̂m andMm denote the empirical and true extremal dependence measures, respectively,

for m = 1, . . . , (p + q + 2). Then the moments are formally defined, for the empirical

measures, as

M̂m =



θ̂(u) for m = 1

χ̂1(u) for m = 2

χ̂Tm(u) for 2 < m < (p+ q + 2)

χ̂T (u) for m = p+ q + 2,

(6.5.4)

where θ̂(u) and χ̂κ(u) are estimates of the sub-asymptotic empirical estimates for a

threshold u, given in Sections 6.3.1 and 6.3.2, respectively. Furthermore, T ≥ p +

q, is chosen as the value κ for which the rate of decay of χ̂κ(u) first changes (i.e.,

decelerates), and then Tm = ⌊T (m − 2)/(p + q)⌋ ensures that the lags of χ̂Tm(u) used

are equally spaced for 2 ≤ m ≤ p + q + 2. In this way, we use values of χκ with

not necessarily consecutive lags and spread over all lags with the strongest temporal

dependence. The true measuresMm are defined analogously, with the parametric forms

for extremal dependence measures θ and χκ for a Max-ARMA(p, q) process derived in

Propositions 6.3.1 and 6.3.2, respectively.

As there is a strong dependence between the estimates of χκ for different κ values,

we found it necessary to add additional features to improve model fit. We combine the

simple estimators for αi (i = 1, . . . , p) of Davis and Resnick (1989) with our inference

strategy, exploiting this information into our generalised moment structure as an addi-

tional moment to Mm (m = 1, . . . , p+ q+2), but using only extreme observation pairs,
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i.e., when min{Xt, Xt−i} > u. By combining it with the other generalised moments,

we can let our estimate of αi be the same as the Davis and Resnick (1989) estimator,

if that were restricted to a fit on only the largest values, but only if the fit to the other

generalised moments is not compromised.

As discussed in Section 6.5.1, we reparametrise (α,β) in terms of (δ, ϵ) to simplify

the parameter space we are working with. However, the extremal dependence measures

derived in Propositions 6.3.1 and 6.3.2, that are required for the method of moments,

are defined in terms of α and β. It is straightforward to obtain expressions for these in

terms of the new parameters δ and ϵ using the inverse of expressions (6.5.1) and (6.5.2),

respectively. We minimise the objective function,

M(δ, ϵ; p, q) =
ω

p+ q + 2

p+q+2∑
m=1

(M̂m −Mm)
2 +

1− ω

p

p∑
i=1

min
t∈T (u,i)

{(
Xt

Xt−i
− αi

)2}
,

(6.5.5)

where T (u, i) = {t = 1, . . . , n : min{Xt, Xt−i} > u}, over (δ, ϵ) ∈ Θ̃p,q for fixed (p, q),

where Θ̃p,q is defined by the set (6.5.3). Here we have weighting terms ω/(p + q + 2)

and (1 − ω)/p for 0 < ω < 1, so that as (p, q) are changed M(δ, ϵ; p, q) should be

reasonably stable as the two different terms are averaged over their values for (m, i)

respectively, and that greater importance is given to the extremal generalised moments

as ω is increased.

For a given pair (p, q), minimising M(δ, ϵ; p, q) gives our estimated values (δ̂p,q, ϵ̂p,q)

of (δ, ϵ) and equivalent of (α,β). However, we cannot minimise M(δ̂p,q, ϵ̂p,q; p, q) over

(p, q) to find the best values for these indices. By our construction of M(δ, ϵ; p, q) to

use averages in the objective function, over (p + q + 2)- and p-terms respectively, we

should see a form of stability in the values of M(δ, ϵ; p, q) once p ≥ p0 and q ≥ q0 for

true values (p0, q0), but for smaller values of (p, q), increasing either should result in

M(δ̂p,q, ϵ̂p,q; p, q) decreasing. This suggests a form of elbow plot for order selection, as

used in many areas, such as in determining k in a k-mean clustering algorithm (Syakur
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et al., 2018).

6.5.3 Marginal inference

Since we define Max-ARMA(p, q) processes on unit Fréchet margins, we require an

additional transformation from the observed stationary process {Yt} to the stationary

Max-ARMA(p, q) process {Xt} for inference. We assume that the marginal upper tail

of {Yt} has heavy tailed margins, since we believe that any process for which the Max-

ARMA process will be suitable to model its dependence structure will have heavy tails,

and this is the case for the River Thames data that we analyse in Section 6.6.

We model the upper tail of the distribution {Yt}, above a marginal threshold uM ,

using a Pareto distribution where uM is within the sample of observed {Yt} values.

Specifically, we have that the survival function is modelled by

Pr(Yt > y) = d

(
uM
y

)c
for y ≥ uM , (6.5.6)

for c ∈ R+ and d ∈ (0, 1). To estimate (c, d) we use maximum likelihood methods,

making the working assumption that the observations {Yt > uM} are independent,

which gives the estimates

ĉ =

(
1

nu

nu∑
j=1

log
yj
uM

)−1

and d̂ =
nu
n
,

where y1, . . . , ynu are the nu observations of Yt that exceed uM . Here ĉ is identical

to the Hill estimator (Hill, 1975), corresponding to the reciprocal of the mean of the

exceedances of uM on a log scale, and d̂ is the sample proportion above uM . Below the

threshold uM we have no theoretical basis for the form of the distribution of {Yt}, so

we estimate the distribution function function FY (y), for y < uM , using the empirical

distribution of {Yt}. As defined, the two components of the estimated distribution for

{Yt}, denoted as a combined function F̂Y , are continuous at uM .
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We use the probability integral transform to map from {Yt} to {Xt}. Specifically,

we use the transformation Xt = T (Yt) for all t, where T (y) = −1/ log(F̂Y (y)). Like-

wise, after simulating realisations {X∗
t } of the fitted Max-ARMA model, we back-

transform to give simulated realisations on the original margins, denoted by {Y ∗
t },

where Y ∗
t = F̂−1

Y (exp(−1/X∗
t )). Here F̂

−1
Y (v) is well-defined for d ≤ v < 1 from invert-

ing expression (6.5.6), whereas for 0 < v < d we linearly interpolate F̂Y between jumps

to obtain a one-to-one function with a unique inverse.

6.6 Illustrative analysis of River Thames extreme

flows

We illustrate the inference procedure set out in Section 6.5 for fitting a Max-ARMA(p, q)

process and selecting (p, q) for the UK River Thames daily maximum river flow data,

for which four winter segments of the series are shown in Figure 6.1.1. We apply a

greater weight to the generalised extremal moments component than that of Davis and

Resnick (1989) parameter estimation by setting ω = (p + q + 2)/(2p + q + 2) so that

when rescaled by the number of moments in each component, the weights are equal;

see expression (6.5.5). The extremal moments θ and χκ, derived in Propositions 6.3.1

and 6.3.2, respectively, are defined in terms of an infinite sum which we find is reasonably

approximated by a sum up to 100, as discussed in Section 6.4.

Before fitting the Max-ARMA model, which has unit Fréchet margins, the observed

river flow series {Yt}must be transformed componentwise to also have unit Fréchet mar-

gins. We do so using the Hill estimator (Hill, 1975) and probability integral transform,

as outlined in Section 6.5.3, giving the series {Xt}. We use a threshold uM = 270.4

(equivalent to the 0.98 quantile) and obtain a Hill estimate of ĉ = 5.1, so the data has

much lighter tails than a unit Fréchet series where c = 1. Figure 6.6.1 shows a QQ

plot for the data exceedances of uM , after using the fitted Pareto tail model to trans-
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form the data to Gumbel margins, i.e., the same as logXt. The plot shows evidence

that our marginal model fits reasonably well in the upper tail, especially for the less

extreme values but with a slight overestimation for the largest observations; changing

the threshold uM could improve the fit. The log transformation of the series is also

shown in Figure 6.6.1 (i.e., on Gumbel margins) for the same winter seasons as given

in Figure 6.1.1, so that the two largest winter events and two randomly selected winter

periods are shown. The data are now on the same marginal scale as our simulations

for various Max-ARMA(p, q) processes shown in Figure 6.4.1, where the data and sim-

ulations have a broadly similar structure in terms of spikes and decays. The largest

increase from a typical event to an extreme event is similar to that of simulated series

4, suggesting a large βj parameter, for some 1 ≤ j ≤ q, might be required to capture a

change of this magnitude. The observed data in Figure 6.6.1 has stronger dependence

than these simulated series which can be seen by the longer decays following a spike.

Additionally, the spikes in our simulations occur instantly, going from a typical value

to an extreme in 1 or 2 time lags, whilst the observed data takes much longer to reach

a spike due to the large catchment size of the River Thames of ∼16,200km2.

To obtain the moments of expression (6.5.4) for inference of the river flow series we

must find the value of T (the maximum lag κ for χκ that we use) where the estimate of

χT (u) is small and the rate of decay of χ̂κ(u) slows down for κ > T . Figure 6.1.1 shows

that T = 14 (i.e., 2 weeks) for both the 0.9 and 0.95 quantile. So, for example, for

fitting a Max-ARMA(2,0) we would be interested in extremal moments of θ, χ1, χ7, χ14.

We fit Max-ARMA(p, q) models for all combinations of p = 1, 2, 3 and q = 0, . . . , 4

to two sets of the River Thames data: exceedances of the 0.9 and 0.95 quantiles, so

that the threshold u in expression (6.5.5) is set equal to these quantiles. By using these

high quantiles, most of the observations we use for inference will be from the winter

months when the largest events occur due to the seasonality of river flows. We tested

thresholds higher than those shown here but omit the details as the results were noisy so
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Figure 6.6.1: Left: River flow trace plot of the River Thames on Gumbel margins for
the winter season (October - March) in 1894/95 (black), 1927/28 (dark blue), 1973/74
(light blue) and 2019/2020 (green). Right: QQ plot of the marginal Pareto tail model
fitted to the River Thames exceedances of uM on Gumbel margins with 95% tolerance
bounds.

it was difficult to choose p and q in these cases. Thresholds lower than the 0.9 quantile

were not considered as we are only interested in extreme events. We compare fits using

the minimised objective function values M(δ̂p,q, ϵ̂p,q; p, q) of expression (6.5.5) for each

(p, q) combination, as well as assessing how close empirical estimates of the extremal

dependence measures θ and χκ from the data are to the model based estimates for

different orders (p, q).

Figure 6.6.2 shows the minimised M(δ̂p,q, ϵ̂p,q; p, q) of expression (6.5.5) for different

orders p and q, when the model is fitted to exceedances of the 0.9 and 0.95 quantile

separately. As mentioned in Section 6.5.2, we cannot find the best model fit over (p, q)

by choosing this to be the (p, q) combination where M(δ̂p,q, ϵ̂p,q; p, q) is minimised,

instead we look for (p0, q0) such that there is stability in the M(δ̂p,q, ϵ̂p,q; p, q) values

for all p ≥ p0 and q ≥ q0. For the model fits to exceedances of the 0.9 quantile, we

observe stability in the minimised M(δ̂p,q, ϵ̂p,q; p, q) for (p, q) ≥ (2, 3). For both choices

of threshold u, M(δ̂p,q, ϵ̂p,q; p, q) is relatively stable across all values of q for a fixed
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Figure 6.6.2: The minimised objective function value for our moments-based inference
of expression (6.5.5) for Max-ARMA fits of different orders p = 1, 2, 3 (x-axis) and
q = 0, . . . , 4 (y-axis) to the River Thames data using a threshold u of the 0.9 (left) and
0.95 (right) quantiles. Darker (lighter) red indicates a higher (lower) objective function
value.

p when p = 3. For exceedances of the 0.95 quantile, M(δ̂p,q, ϵ̂p,q; p, q) appears to be

stable for q ≥ 3 across all p = 1, 2, 3, suggesting a Max-ARMA(3, 3) is the best fitting

model based on this criteria, but we make further comparisons below for choosing our

selected values of (p, q) here.

In Figures 6.6.3 and 6.6.4 we study estimates of the extremal dependence measures

from a given Max-ARMA model across models with different orders (p, q). We use

simulation methods to evaluate our model based estimates rather than using the theo-

retical limits derived in Section 6.3 that we used in the objective function (6.5.5). This

is because we are interested in the sub-asymptotic extremal dependence measures θ(u)

and χκ(u) so that we can compare these with the corresponding estimates from the

observed series. To find these model based estimates, we simulate a large sample and

obtain empirical estimates from this sample from the fitted Max-ARMA model using

Monte Carlo methods, where we limit the Monte Carlo noise by taking the simulated

sample to be of length 106.
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First, we compare empirical estimates of extremal dependence measures θ(u) and

χκ(u) for κ = 1, 7, 14 from the observed data and model-based estimates, when fit to

exceedances of the 0.95 quantile. These are shown in Figure 6.6.3. The Max-ARMA

models with orders (2, 0), (2, 1), (3, 0), (3, 2) and (3, 3) have estimates of θ(u) that

lie within the 95% confidence intervals (found via bootstrapping) of the corresponding

empirical estimate for the data. These same models, as well as when p = q = 2, also

give model estimates of χ1(u) within the confidence intervals (based on the Binomial

sampling distribution) of the associated empirical estimates. Models with p = 1 always

underestimate θ(u) compared to the empirical estimates. All models overestimate χ7(u),

except for p = 3 and q = 4, whilst most models (except when (p, q) is (1, 0), (2, 4)

or (3, 4)) give χ14(u) estimates that lie within the 95% confidence intervals from the

empirical estimates. Therefore, combining the results from Figures 6.6.2 and 6.6.3, we

conclude that a Max-ARMA(3, 3) is the best fitting model for river flow exceedances of

the 0.95 quantile at the River Thames. For this model we obtain parameter estimates

α̂ = (0.69, 0.78, 0.54) and β̂ = (3.15, 2.16, 0.99). Since all βj > αj for j = 1, 2, 3, all β

are identifiable and affect the sample path of simulations from this model. Additionally,

α2 > α2
1 whilst α3 − α1α2 > 0, but small, so primarily α1 and α2 influence the sample

paths of the simulations from this model.

Figure 6.6.4 shows estimates of χκ(u) for κ = 1, . . . , 14 from the data, with 95%

confidence intervals, and from the Max-ARMA(3,3) model based estimates. For κ = 1

and κ ≥ 11, we capture the structure of data estimate of χ̂κ(u) very well, but for

2 ≤ κ ≤ 10 the model based estimates slightly overestimate this asymptotic dependence

measure. For the other choices of (p, q) we tried, we did not obtain model based

estimates of χκ(u) within the confidence intervals of the data estimates for lags in the

range 2 ≤ κ ≤ 10.

Figure 6.6.4 shows four simulated time series plots over 183 days (corresponding to

the length of the winter seasons shown in Figure 6.1.1) using our fitted Max-ARMA(3,3)
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Figure 6.6.3: Estimates of θ(u) (left) and χκ(u) (right) for k = 1, 7 and 14 (black,
blue and green, respectively) using a threshold u of the 0.95 quantile for the River
Thames with empirical estimates (solid lines) and estimates using fitted Max-ARMA
models (points) with varying orders (p, q) (x-axis). Horizontal dashed lines show 95%
confidence intervals for the empirical estimates of θ(u) and χκ(u) for the data.

model, with the simulated series transformed onto the original data scale using the

probability integral transform, as discussed in Section 6.5.3. We show time series from

the two largest simulated events (where the simulated time series is the same length as

the total River Thames winter data, so these events should be comparable in size to

the largest observed events) as well as two randomly selected time series segments to

illustrate typical behaviour. All four simulated time series segments exhibit a saw-tooth

structure because α̂2 > α̂1 and we find this behaviour in all model fits with p > 1. Our

simulated realisations of time series exhibit similar behaviour to the observed data in

the decay, following a major spike, so our model is capturing the features of decay of

the original series well. The simulations of the typical level segments of the time series

also exhibit a similar number of smaller peaks to the observed data in Figure 6.1.1. A

noticeable feature of the observed data that our simulations fail to capture is that the

major spikes can take several days (or even up to a month, as for the flood event of

winter 1894; see black time series segment in Figure 6.1.1) to rise to their peak, however,
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Figure 6.6.4: Left: Empirical estimates of χκ(u) for κ = 1, . . . , 14, with u equal to the
0.95 quantile, for the data (black with 95% confidence intervals in dashed lines) and
estimates from a Max-ARMA(3,3) model fit to the River Thames data (blue). Right:
Four time series plots of length 183 (corresponding to the length of the winter season
October-March) from the fitted Max-ARMA(3,3) to exceedances of the 0.95 quantile
of the River Thames data, transformed to the original data scale. The time series plots
correspond to the two largest events (black and dark blue) and two randomly selected
series (light blue and green).

in the simulated realisations of the fitted models the spikes occur almost instantly. So

this is a limitation of the best fitting model for the data that we have considered.

Our results are primarily illustrative for the inference procedure, rather than to

demonstrate a definitive approach for choosing (p, q). We consider this to be of potential

interest for future work, but for our purposes the choices are sufficient for barrier closure

assessment, see the discussion below. However, to get a better fit of the model for the

spike segments of the time series we could have imposed a much larger value for q,

with the βj increasing with j so that for a large innovation given by Zt say, this would

lead to a rising spike in the series through successive values with {Xt+j = βjZt} for

j = 0, . . . , q, which would grow towards a spike at time q. The instant spike behaviour

we have estimated with q = 3 is typical of river flows with a smaller area and non-

chalk based catchments areas, where these types of rivers are known in the hydrology
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area as flashy, see Stewart et al. (2008). So it would appear that, with a more careful

choice of q, we have the flexibility with the Max-ARMA model to describe well the

extremal features and key hydrology aspects of the time series profiles of rivers in

different catchment sizes. Further work could investigate an approach for selecting the

optimal (p, q) orders for these data or explore applying our inference procedure to rivers

with smaller catchments.

From the perspective of the problem of barrier closure assessment for the River

Thames, as the set out in Section 6.1, we have demonstrated the capability of a Max-

ARMA model coupled with a Pareto marginal tail model to capture the core aspects

of extremal dependence structure in river flows of the River Thames, i.e., the marginal

tail decay, θ and χκ which primarily describe the magnitude and duration of the events

more than the actual profile of events. It is these dependence aspects that are crucial for

forecasting future closure rates of the Thames Barrier; as barrier closures are determined

by peak sea levels per the tidal cycle (i.e., peak tides plus skew surge) and/or river

flows in extreme states. Specifically, as extreme skew surge events tend to last 1-3

days yet extreme river levels can last up to 14-20 days with a mean cluster length of

5 days, it is possible that more than one extreme skew surge event can occur during

the duration of an extreme river flow event. Accounting for this possibility is vital for

determining barrier closure rates and their clustering in time. So long term simulations

from these models provide good approximations to the observed series for considering

barrier closure rate properties, as well as allowing for more extreme events than have

been observed both in terms of their marginal sizes and their temporal duration. Given

that river flow is independent of skew surge (Svensson and Jones, 2004), future work can

look at combining simulations of both variables (using the skew surge model of (D’Arcy

et al., 2023b), the deterministic predicted peak tide series, and the Max-ARMA model

for river flow) to estimate future closure rates, and how they cluster in time, and

ultimately understand the reliability of the barrier as we face unprecedented challenges
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resulting from anthropogenic climate change.

6.7 Proofs

6.7.1 Proof of Proposition 6.2.3

Proof. The proof works by induction. Let Pk be the statement: All αi > 0 for i =

1, . . . , k where k ≤ p are identifiable if maxi=1,...,⌊k/2⌋{αiαk−i} ≤ αk for all k ≤ p.

For k ≥ 2, assume that all statements {Pi}ki=2 hold. Then consider statement Pk+1.

For αk+1 to be identifiable, we know from Remark 6.2.2 that

max
Rk+1

{ ∏
i=1,...,k:
αi>0

αaii

}
< αk+1. (6.7.1)

This can be written as the maximum of the following components,

max

α1max
Rk

{ ∏
i=1,...,(k−1):

αi>0

αaii

}
,max
Rk+1

{ ∏
i=2,...,k:
αi>0

αaii

} < αk+1, (6.7.2)

where the first term above is any elements in the maxima set of expression (6.7.1) that

contain α1, whilst the second term is those without α1 terms.

Since αk is identifiable, we know from Remark 6.2.2 that,

max
Rk

{ ∏
i=1,...,(k−1):

αi>0

αaii

}
< αk.

Then inequality (6.7.2) becomes

max

α1αk,max
Rk+1

{ ∏
i=2,...,k:
αi>0

αaii

} < αk+1.
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Similarly, we rewrite the second term so that the above inequality becomes

max

α1αk, α2max
Rk−1

{ ∏
i=1,...,(k−2):

αi>0

αaii

}
,max
Rk+1

{ ∏
i=3,...,k:
αi>0

αaii

} < αk+1,

where the second term is any elements containing α2 and the third term is those without

α2. Since αk−1 is identifiable, we can rewrite this using Remark 6.2.2 as

max

max{α1αk, α2αk−1},max
Rk+1

{ ∏
i=3,...,k:
αi>0

αaii

} < αk+1.

Continuing in this way for a further (δ−2) iterations where δ ∈ N and δ > 2, we obtain

max

max{α1αk, α2αk−1, . . . , αδαk−δ},max
Rk+1

{ ∏
i=(δ+1),...,k:

αi>0

αaii

} < αk+1. (6.7.3)

Consider when δ = ⌊k/2⌋, then

max
Rk+1

{ ∏
i=⌊k/2⌋+1,...,k:

αi>0

αaii

}
= ∅,

because i = 1, . . . , ⌊k/2⌋ − 1 are required to meet the conditions of the set Rk+1, but

we only consider i = (δ + 1), . . . , k and for these values, there are no solutions in

ai ∈ (0, . . . , k + 1) such that
∑p

i=⌊k/2⌋ iai = k + 1. For δ > ⌊k/2⌋, this is always the

case and so the above set is always empty. This is the first time when the second term

in expression (6.7.3) becomes the empty set, because when δ = ⌊k/2⌋ − 1, this term

becomes

max
Rk+1

{ ∏
i=⌊k/2⌋,...,k:

αi>0

αaii

}
= α⌊k/2⌋α(k+1)−⌊k/2⌋.

Therefore, δ = ⌊k/2⌋, giving the required result, max{α1αk, α2αk−1, . . . , α⌊k/2⌋αk−⌊k/2⌋} ≤
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αk+1.

6.7.2 Proof of Proposition 6.3.1

Proof. Let {Xt} be a stationary Max-ARMA(p, q) process, defined in Section 6.2, un-

der the conditions of Davis and Resnick (1989) (see Remark 6.2.1). Consider the

maximum of the process {Xt}, first under an IID variables assumption (denote this

sequence by {X̂t}) with an identical marginal distribution to that of {Xt}. Let M̂n =

max{X̂1, . . . , X̂n} be the maximum and the limiting non-degenerate distribution of the

normalised M̂n is denoted by Ĝ. We find the distribution of the scaled maximum by

exploiting this independence assumption,

Pr(M̂n/n ≤ x) = exp(−n/nx) = exp(−1/x) := Ĝ(x) for x > 0.

Next, we derive the same limiting distribution for the Max-ARMA process, i.e., without

the independence assumption; denote this by G(x). We begin by considering the case

when n = 3 before considering the n > q case, as the former reveals the key steps in

the latter.

Case n = 3: By the definition of a Max-ARMA(p, q) we can write

M3 = max{X1, α1X1, β0Z2, β1Z1, α1X2, α2X1, Z3, β1β0Z2, β2Z1}

= max{X1, α1X1, β0Z2, β1Z1, α
2
1X1, α1β0Z2, α1β1Z1, α2X1, β0Z3, β1Z2, β2Z1}

= max
{
max{1, α1, α2}X1,max{β1, α1β1, β2}Z1,max{α1β0, β0, β1}Z2, β0Z3

}
.

As 0 < αi < 1 for all i = 1, . . . , p under stationarity and β0 = 1, from Remark 6.2.1,

we have

Pr(M3 ≤ nx) = Pr(X1 ≤ nx,max{β1, β2}Z1 ≤ nx,max{β0, β1}Z2 ≤ nx, Z3 ≤ nx).
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Since Z2 and Z3 are independent of X1 and Z1, this joint probability can be factorised

to give

Pr(M3 ≤ nx) = Pr(X1 ≤ nx,max{β1, β2}Z1 ≤ nx) Pr(max{β0, β1}Z2 ≤ nx) Pr(Z3 ≤ nx).

We simplify the joint probability of X1 and Z1 by

Pr(X1 ≤ nx,max{β1, β2}Z1 ≤ nx) = Pr(X1 ≤ nx) Pr(max{β1, β2}Z1 ≤ nx|X1 ≤ nx)

= Pr(X1 ≤ nx) Pr(max{β1, β2}Z1 ≤ nx|Z1 ≤ nx),

where the conditioning event {X1 ≤ nx} changes to {Z1 ≤ nx} as this is the only

information from the event involving X1 that is relevant to {max{β1, β2}Z1 ≤ nx}. It

follows that,

Pr(M3 ≤ nx) =Pr(X1 ≤ nx) Pr(Z3 ≤ nx) Pr(Z2 ≤ nx/max{β0, β1})

×min{exp(−γ(max{β1, β2} − 1)/(nx)), 1},

because if max{β1, β2} ≤ 1, then Pr(max{β1, β2}Z1 ≤ nx|Z1 ≤ nx) = 1 but otherwise,

this conditional probability would need to be evaluated. This final term can be written

more simply in our last expression for M3 as

Pr(M3 ≤ nx) =Pr(X1 ≤ nx) Pr(Z3 ≤ nx) Pr(Z2 ≤ nx/max{β0, β1})

× exp
(
− γ

nx
(max{β0, β1, β2} − 1)

)
.

Case n > q: Following the same logic as for the n = 3 case, using the notation

βM = max{β0, . . . , βq} which, by definition of the Max-ARMA process, satisfies βM ≥ 1

and βM :j = max{β0, β1, . . . , βj} so that 1 ≤ βM :j ≤ βM for all j = 0, 1, . . . , q and
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βM :q = βM , the distribution of the rescaled maxima is

Pr(Mn/n ≤ x) =Pr(X1 ≤ nx)

q−1∏
j=0

Pr
(
Zn−j ≤ nx/βM :j

) n−q∏
i=2

Pr
(
Zi ≤ nx/βM

)
× exp

(
− γ

nx
[βM − 1]

)
.

As Xt ∼ Fréchet(1) and Zt ∼ Fréchet(γ) with 0 < γ < ∞ defined in Remark 6.2.1, we

have

Pr(Mn/n ≤ x) = exp

(
− 1

nx

){ q−1∏
j=0

exp

(
− γβM :j

nx

)}
× exp

(
− γβM

x

[
1− q − 2

n

])
exp

(
− γ

nx
(βM − 1)

)
=exp

(
− 1

nx

[
1 + γ

q−1∑
j=0

βM :j

])
exp

(
− γβM

x

[
1− q − 2

n

])
× exp

(
− γ

nx
(βM − 1)

)
→
[
exp(−1/x)

]γβM =
[
Ĝ(x)

]γβM as n→ ∞.

This limit follows as the first and last terms tend to 1 and in the second term (q−2)/n→

0. From Section 6.3.1 the extremal index θ is defined via G(x) = [Ĝ(x)]θ, hence

θ = γβM = γmax{β0, β1, . . . , βq}.

6.7.3 Proof of Proposition 6.3.2

Proof. The definition of χκ can be rewritten for a stationary Max-ARMA process {Xt}

with unit Fréchet margins (using conditional probability and a Taylor expansion) as
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χκ = limx→∞ χκ(x) with, as x→ ∞,

χκ(x) =
Pr(Xt+κ > x,Xt > x)

Pr(Xt > x)
=

Pr(Xt+κ > x,Xt > x)

1− exp(−1/x)

=
Pr(Xt+κ > x,Xt > x)

1− (1− 1/x−O(x−2))
= xPr(Xt+κ > x,Xt > x)[1 + o(1)],

where the calculations for the denominator follow as Xt ∼Frećhet(1). So we need to

find the probability of the event J X(x, κ) := {Xt+κ > x,Xt > x} for different lags κ.

In this proof, we consider κ ∈ N only, but χκ = χ−κ holds, due to the symmetry of the

above expression, so our results hold for κ ∈ Z.

To determine the asymptotic behaviour of the joint probability in χκ(x) we make

the following partition, with βM = max{β0, . . . , βq} ≥ 1 and MZ
s:t := max{Zs, . . . , Zt}

for s ≤ t,

Pr(J X(x, κ)) =Pr(J X(x, κ),MZ
t+1:t+κ < x/βM) + Pr(J X(x, κ),MZ

t+1:t+κ ≥ x/βM)

=Pr(J X(x, κ),MZ
t+1:t+κ < x/βM)[1 + o(1)],

as x → ∞. The reason that the probability of the second term in the partition is

smaller order than the probability of the first partition term is because it requires the

occurrence of an extreme Zj value from at least one of only κ values for j, which has a

probability that is an order of magnitude smaller than not requiring this event.

First, we identify some conditions that control which type of extreme event the

process exhibits. For t ∈ Z and δ ∈ N ∪ {0}, we define the events

HZ(x, δ, κ) = {MZ
t−q−δ:t−1−δ < x/βM , βMZt−δ > x,MZ

t−δ+1:t+κ < x/βM},

HX(x, δ) = {MX
t−p−δ:t−δ−1 < x/αM},

where MX
s:t := max{Xs, . . . , Xt} for s ≤ t and αM = max{α1, . . . , αp} which, by defini-

tion of the Max-ARMA process, satisfies αM > 0. The eventHZ(x, δ, κ) gives that there
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is only one extreme value of the innovation process in the (q+δ+κ) values prior to and

including at time (t+κ). Specifically, at time (t−δ) the innovation exceeds x but all the

other innovations are less than x as x/βM ≤ x. The event HX(x, δ) requires that prior

to (t − δ), all p previous values of the Max-ARMA process are sufficiently small that

they cannot produce an extreme value. So if event H(x, δ, κ) := HZ(x, δ, κ) ∩HX(x, δ)

occurs then the only feature of the Max-ARMA and innovation process up to (t − δ)

that can produce a value of the Max-ARMA process that exceeds x at time (t− δ) and

subsequently is Zt−δ.

Then we can rewrite the joint probability of interest by partitioning over the time

when the large innovation Zt−δ occurs before time t, i.e., for δ = {0,N}. Then we can

express the probability as

Pr(J X(x, κ),MZ
t+1:t+κ < x/βM) =

∞∑
δ=0

Pr(J X(x, κ),H(x, δ, κ))[1 + o(1)], (6.7.4)

as x→ ∞, where the additional inclusion of additional terms of H(x, δ, κ) on the right

hand side only change the probability by a little o(1) term in x. We now focus on

finding the asymptotic behaviour of a generic term in the sum in expression (6.7.4).

Specifically,

Pr(J X(x, κ),H(x, δ, κ)) = Pr(H(x, δ, κ)) Pr(J X(x, κ) | H(x, δ, κ)).

The marginal probability here can be written asymptotically as βMγ/x as x→ ∞ as the

probability of the event {βMZt−δ > x} has this limiting behaviour and all the rest of the

finite events in H(x, δ, κ) have probabilities tending to one. If event H(x, δ, κ) occurred

for large enough x, and all αi and βj coefficients were non-zero, then Xt−δ = Zt−δ,

Xt−δ+1 = max{α1, β1}Zt−δ = γ1Zt−δ, Xt−δ+τ = γτZt−δ for all τ ≥ 1, where γτ is defined

by expression (6.3.4). Thus, under this conditioning, the process is deterministic given

the value of βMZt−δ > x. When any of the Max-ARMA coefficients are zero there is
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a potential for γτ = 0 for some τ , and in these cases the associated Xt−δ+τ = op(x) as

x→ ∞. So we then have

Pr(J X(x, κ) | H(x, δ, κ)) = Pr(γδZt−δ > x, γδ+κZt−δ > x|βMZt−δ > x)[1 + o(1)]

= Pr(min{γδ, γδ+κ}Zt−δ > x|βMZt−δ > x)[1 + o(1)]

= Pr(Zt−δ > x/min{γδ, γδ+κ})/Pr(βMZt−δ > x)[1 + o(1)]

→ min{γδ, γδ+κ},

as x→ ∞. As expression (6.3.4) shows, maxδ∈N(γδ) ≤ βM , so in the third equality the

event of interest is a subset of the conditioning event. Also, the final limit exploits the

property that Pr(Zt−δ > y) ∼ βMγ/y as y → ∞.

Combining these results together we have that

χκ = lim
x→∞

χκ(x) = lim
x→∞

Pr(J X(x, κ))/Pr(Xt > x) = γ
∞∑
δ=0

min{γδ, γδ+κ}.

This sum will always converge because γτ → 0 as τ → ∞ so for large τ min{γδ, γδ+κ} <

1 and each γτ geometrically decays for large τ .

6.8 Discussion

A key feature of all the stationary Max-ARMA(p, q) processes is that they are asymp-

totically dependent at all lags, i.e., χτ > 0, with this term defined by limt (6.3.3). Thus

this class of processes excludes the possibility of asymptotic independence at different

lags, i.e., χτ = 0 for at least some τ ≥ 1, see Ledford and Tawn (2003), so extensions

of Max-ARMA(p, q) processes that allow for asymptotic independence are of interest.

One such example is the power max-autoregressive (pMax-ARMA) process proposed

by Ferreira (2011). This process takes the form Xt = max{Xα1
t−1, Zt} with 0 < α1 < 1
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and Zt an IID sequence of random variables with real positive support. They demon-

strate that this process is asymptotically independent for all lags. However, they do

not extend this for a general pMax-ARMA(p, q) process so the identifiability and sta-

tionarity constraints, that we address for the Max-ARMA process, are not relevant

there; deriving conditions under which these properties hold would be an interesting

avenue for further work. It would also be very interesting to develop a class of models

that joins well between these two formulations, so that either asymptotic dependence

or asymptotic independence can occur at different lags. Perhaps a way to achieve this

is to change this innovation series to have a more rapidly decaying tail. An alternative

is to change the process in expression (6.2.1) from combining terms using the L∞-norm

to instead being the Lr-norm, for some 1 < r < ∞, as that provides a natural link

between the Max-ARMA process and the L1-norm case, corresponding to the standard

ARMA(p, q) processes, with issues like this have been considered by Schlather (2001)

in a different context.



Chapter 7

A marginal modelling approach for

predicting wildfire extremes across

the contiguous United States

7.1 Introduction

7.1.1 Motivation and data description

This paper details an approach to the data challenge organised for the EVA 2021

conference. The subject of the challenge was wildfire modelling, and two important sub-

challenges were proposed within this setting. In particular, teams were asked to develop

methods for predicting the number of fires (i.e., individual fires that are separated in

space), as well as the amount of burnt land resulting from these fires, over different

months for gridded locations across the continental United States (US).

In the absence of mitigation, wildfires can have devastating consequences, including

loss of life and damage to property. The northern California wildfire in October 2017

burned approximately 150,000 acres of land, resulting in 7,000 damaged structures and

100,000 evacuations (Wong et al., 2020). Recent increases in both the number and

188
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severity of wildfires can be linked to climate change, and in particular to anthropogenic

warming (Jones et al., 2020). Focusing specifically on the western US, Zhuang et al.

(2021) demonstrate that a high proportion of the observed increases in weather events

leading to wildfires may be attributed to this aspect of climate change. Extreme events

in wildfire modelling are especially important; the more individual wildfires that occur,

the greater the potential destruction, and the impact of large wildfires (in terms of the

amount of land area burnt) can be particularly devastating. It is therefore of interest

to develop models for wildfires, and in particular wildfire extremes.

The challenge data set consists of monthly wildfire count (CNT) and burnt area (BA)

observations from 1993 to 2015 at 3,503 grid cell locations spanning the contiguous US.

There are 35 auxiliary variables also recorded relating to land cover types, climate and

altitude. Observation locations are arranged on a 0.5◦ × 0.5◦ (approximately 55 km ×

55 km) regular grid of longitude and latitude coordinates, with observations recorded

from March to September; further details are provided by Opitz (2023).

In order to compare the predictions produced by the teams participating in the

data challenge, several observations were removed from the data to act as a validation

set; this contained 80,000 observations for each of CNT and BA. The selection of these

validation points was not done completely at random, so there is some spatio-temporal

dependence between them. This will be discussed further in Section 7.3.4, with a

pictorial example given in Figure 7.3.1. Let CNTi and BAi, i = 1, . . . , N , denote the

i-th observation of the wildfire CNT or BA data, respectively, where N = 563, 983

is the total number of observations across the training and validation sets for each

variable over all sites, months and years. We denote the set of observation indices in

the validation sets for CNT and BA by CNT val, BAval ⊂ {1, . . . , N}, respectively, with

|CNT val| = |BAval| = 80, 000. An important feature is that the validation indices

are not identical for the CNT and BA data, but there is a reasonable overlap, i.e.,

CNT val ̸= BAval but CNT val ∩ BAval ̸= ∅. We discuss ways to exploit this aspect in
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Section 7.2.2.

The objective of the challenge was to predict cumulative probability values for both

CNT and BA at the times and locations in their respective validation sets. The resulting

estimates were then ranked using a score computed from the true observed values, with

lower scores corresponding to more accurate probability predictions. These scores were

weighted so that more importance is placed on the estimation of the extremes; see

Opitz (2023). Statistical techniques that do not explicitly model the tail are therefore

unlikely to produce the best scores.

7.1.2 Data exploration

In this section, we give an overview of the features of the data set that motivate our

modelling approach. We consider the relationship between CNT and BA, as well as

the temporal non-stationarity of each variable separately; we also investigate how these

features vary over the spatial domain.

We begin by exploring the dependence between CNT and BA; for the bulk of the

data, we consider Kendall’s τ measure of rank correlation, whilst for the extremes we

consider the widely-used measures χ and χ̄. Consider a random vector (X, Y ) with

marginal distribution functions FX and FY , respectively. Coles et al. (1999) define

χ = limu→1 χ(u), where χ(u) = Pr(FY (Y ) > u | FX(X) > u) ∈ [0, 1], as a measure of

asymptotic dependence. If χ ∈ (0, 1], X and Y are said to be asymptotically dependent,

with χ = 1 corresponding to perfect dependence. Asymptotic independence between X

and Y is present only when χ = 0, meaning that χ fails to signify the level of asymptotic

independence. To account for this, Coles et al. (1999) define a further measure that

provides additional detail in this case, namely χ̄ = limu→1 χ̄(u) ∈ (−1, 1] where

χ̄(u) =
2 log Pr(FY (Y ) > u)

log Pr(FY (Y ) > u, FX(X) > u)
− 1.
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Under asymptotic dependence, χ̄ = 1, and for asymptotic independence, χ̄ < 1; the

further sub-cases χ̄ ∈ (0, 1) and χ̄ ∈ (−1, 0) correspond to positive and negative asso-

ciation, respectively, while χ̄ = 0 indicates independence.

We estimate these measures separately for subsections of the US to investigate

spatial variability in the dependence structure between CNT and BA. We start by

splitting the spatial domain into quadrants corresponding to the north east (NE; >

37.5◦N, < 100◦W), south east (SE; ≤ 37.5◦N, < 100◦W), south west (SW; ≤ 37.5◦N,

≥ 100◦W) and north west (NW; > 37.5◦N, ≥ 100◦W). Kendall’s τ measure suggests

strong overall correlation between CNT and BA, with estimates of 0.926 (0.925, 0.927),

0.827 (0.825, 0.829), 0.858 (0.855, 0.860) and 0.868 (0.867, 0.870) for the NE, SE, SW

and NW respectively, with the values in brackets denoting 95% confidence intervals

obtained via bootstrapping. However, estimates of χ(u) and χ̄(u) suggest this depen-

dence diminishes in the extremes, leading to asymptotic independence. We obtain

estimates (and 95% bootstrap confidence intervals) of χ(0.999) = 0.071 (0.043, 0.126),

0.038 (0.017, 0.072), 0.012 (0, 0.024) and 0.043 (0.024, 0.077), and χ̄(0.999) = 0.438

(0.343, 0.521), 0.282 (0.191, 0.392), 0.092 (−0.05, 0.179) and 0.317 (0.253, 0.413), for

the NE, SE, SW and NW regions respectively. The NE region exhibits the strongest

dependence between CNT and BA in the bulk of the data, as well as the strongest

extremal dependence. We extended this analysis to look at smaller spatial domains,

but our conclusions did not change.

Figure 7.1.1 shows the spatial distribution of average CNT and BA values in two

different time groupings: in the summer months (May, June, July and August; MJJA),

when wildfires are more likely to occur, and in the remaining cooler months (March,

April and September; MAS). The highest average CNT values are observed in the east

for MAS and the west for MJJA. The highest average BA values typically occur in

the west of the US during MJJA whilst the majority of the eastern US locations have

relatively low average BA values in both time groups, with the exception of Florida.
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Figure 7.1.1: Average CNT (a & c) and BA (b & d) across all years for each grid cell,
for MAS (a & b) and for MJJA (c & d).

This demonstrates that there is both spatial and temporal variability in the wildfire

observations.

To further demonstrate this spatio-temporal variability, Figure 7.1.2 illustrates the

months when the maximum CNT and BA observations occur for each grid cell. In the

eastern US, the maxima of each variable tend to occur in July or August (shown by red

points) whilst in the west, the maxima typically occur in March and April (illustrated by

lighter yellow points). As global temperatures rise with anthropogenic climate change,

the frequency and intensity of wildfires are generally expected to increase (Preisler et al.,

2004; Wuebbles et al., 2017). To investigate this, we fit a linear model between year and

annual mean CNT and BA separately, assuming independence across annual means. We

find significant trends for both CNT and BA. Therefore, assuming stationarity across

the entire spatial domain over the observation period would be unreasonable.
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Figure 7.1.2: Month where the maximum CNT (a) and BA (b) across all years occurs
for each grid cell.

Due to the nature of wildfires, we expect to observe relationships between both CNT

and BA observations and certain climate variables. For example, high temperature cou-

pled with low rainfall and low wind speed are the ideal conditions for wildfires to ignite

and spread (Holden et al., 2018; Son et al., 2021). No significant linear relationships

exist for either wildfire variable with any of the climate covariates, suggesting such rela-

tionships are complex in nature. Figure 7.1.3(a) shows the average temperature for each

grid cell; temperature is non-stationary across the US but there is some spatial depen-

dence, with nearby locations exhibiting similar values. Some form of spatial dependence

exists for all climate variables. Since these variables are given as monthly averages, it

is difficult to associate these covariates directly with the wildfire observations, which

are also given as monthly aggregates.

Another factor likely to alter wildfire behaviour across the US is the type of land

cover. For example, locations with large proportions of water or urban areas are typi-

cally not conducive to wildfires, whilst those with forest areas probably are. Eighteen

land cover variables, given as proportions of each grid cell, are provided in the chal-

lenge data set; these are denoted lc(j) for j = 1, . . . , 18 and defined in Opitz (2023).

Figure 7.1.3(b) illustrates the maximum land cover variable for each location. Spa-

tial heterogeneity can be observed over different regions. For example, a large portion
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Figure 7.1.3: Mean temperature in Kelvin (a) and the most common land cover variable
(b) for each location.

of the western US is taken up by shrubland (lc(11)), whereas the eastern region is

dominated by cropland (lc(j) for j = 1, 2, 3) and tree-based land cover types (lc(j) for

j = 5, 6, 7, 8). Unsurprisingly, many coastal locations are predominantly covered by wa-

ter (lc(18)), and regions containing national forests (such as Kootenai and Stanislaus)

are easily identifiable, since they are mostly made up of tree categories.

7.1.3 Existing methods

Various methods exist for modelling and predicting wildfire frequency and intensity.

For example, generalised additive models (GAMs) with climatic, anthropogenic and/or

spatial covariates are commonly used; see, e.g., Krawchuk et al. (2009) or Sá et al.

(2018). The latter captures covariate information via a fire index; many such indices

have been proposed within the literature (Ziel et al., 2020). Each index is typically

developed with country-specific considerations in mind, such as land cover types and

climate factors, and are often used by government bodies to assess risks and prioritise

fire responses. In the US, the National Fire-Danger Rating System is the primary tool

used for wildfire management (Cohen and Deeming, 1985). There have been attempts

in the literature to use fire indices as a means to model extreme wildfire events (Koh

et al., 2023). However, several approaches have found that certain fire indices are poor
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predictors of wildfires. For example, Sharples et al. (2009) show that the Forest Fire

Danger Index, typically used in Australia, is inadequate for predicting the behaviour

of moderate to high-intensity wildfires.

Machine learning techniques have also been adopted for wildfire modelling: Richards

and Huser (2022) and Ivek and Vlah (2023) use deep learning techniques; Cisneros

et al. (2023) present a four-stage process including a random forest algorithm; and Koh

(2023) develops a gradient boosting model trained with loss functions appropriate for

predicting extreme values. We take a simpler, marginal-based approach.

The remainder of this paper is structured as follows. In Section 7.2, we illustrate

how certain properties of the training data can be exploited to infer a subset of proba-

bility estimates for observations in the validation set. In Section 7.3, we introduce our

marginal modelling techniques for both CNT and BA. We also discuss our technique for

estimating spatial neighbourhoods and corresponding tuning parameters. We conclude

with a discussion of our approach in Section 7.4.

7.2 Exploiting properties of the training data set

7.2.1 Re-scaling burnt area values

In this section, we discuss various properties of the wildfire data set, and how these

can be exploited to improve the estimation of the predictive distributions for missing

observations.

To begin, observe that BA is an absolute measurement; this results in varying

measurement scales across different locations. To better understand this, consider that

some grid cells in the data set do not lie completely inside the continental US; this

feature is captured by the ‘area’ variable, denoted pi, i = 1, . . . , N , which describes the

proportion of each grid cell that lies in the region of interest. BA observations depend

upon this variable since for grid cells with smaller area values, there is less available
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land for wildfires to occur and hence lower BA values. For these reasons, the raw BA

observations cannot be easily compared across locations.

To account for this, we propose re-scaling BA observations to ensure all observations

are on a unified, relative scale. Recall that BAi, i = 1, . . . , N , with N = 563, 983,

denotes the i-th observation of the BA data, and that BAval ⊂ {1, . . . , N} is the

set of indices for missing BA observations. We consider here the i-th observation, with

corresponding grid cell area pi ∈ (0, 1]. For each i ∈ {1, . . . , N}, the total surface area of

the grid cell is computed by taking the corresponding longitude and latitude coordinates

and applying a formula derived from Archimedes’ theorem (Kelly and Šavrič, 2021).

We denote these surface area values by SAi. The surface area contained within the

continental US is then computed by multiplying the total surface area by the grid cell

area variable, i.e., SAi× pi. We denote these values by SA∗
i : such values will naturally

vary between locations, especially for locations lying on a borderline. Moreover, SA∗
i

values naturally decrease going from South to North of the continent, since grid cells

defined using longitude and latitude suffer from unequal cell sizes (Budic et al., 2016).

We refer to this variable as the true surface area.

Using this variable, we derive a relative measure for BA, which we term burnt area

proportion (BAP), i.e., for each i, define BAPi := BAi/SA
∗
i ∈ [0, 1]. This value denotes

the proportion of the true surface area that has been burnt for each observation. It is

arguably a better indicator of the impact and/or severity of wildfire events compared to

raw BA observations, since it puts the absolute magnitude in context for each location.

Moreover, this proportion is a relative measure, meaning the data for all locations are on

the same scale; this allows for a more straightforward comparison between neighbouring

observations with different (true) surface areas.

We recall that the objective of the data challenge is to obtain probability estimates
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of the form Pr(BAi ≤ u) for all u ∈ UBA, where

UBA = {0, 1, 10, 20, 30, . . . , 100, 150, 200, 250, 300, 400, 500, 1000,

1500, 2000, 5000, 10000, 20000, 30000, 40000, 50000, 100000},

and i ∈ BAval. This can be derived using the marginal distribution of BAPi, since

Pr(BAi ≤ u) = Pr(BAPi × SA∗
i ≤ u) = Pr(BAPi ≤ u/SA∗

i ).

Consequently, we evaluate the distribution function of BAPi for all u ∈ U i
BAP , where

U i
BAP := UBA/SA∗

i , to obtain the required predictive probabilities. We introduce our

technique for estimating this distribution function in Section 7.3.3.

We can also use these proportional data to deduce information about the upper tail

of the distribution for BAPi at any i ∈ BAval. Since it is impossible to observe a BA

observation which exceeds the true surface area at any location, we can immediately

deduce that Pr(BAPi ≤ u) = 1 for any u ∈ U i
BAP with u ≥ 1. In practice, over

1% of missing BA observations satisfied the inequality max{U i
BAP} ≥ 1, meaning a

non-negligible amount of information can be uncovered via this preliminary step.

We considered a similar re-scaling for CNT observations; however, there did not

appear to be any obvious relationship between the true surface area and CNT values.

Furthermore, unlike BA, no natural upper bound arises for CNT observations, so we

cannot deduce properties of the upper tail distribution for missing observations.

7.2.2 Exploiting features of the missing data

Before introducing our marginal modelling procedures, we highlight how the training

data can be used to provide information about the missing values we are required to

estimate. This is possible since the missing values in the CNT and BA variables do

not always occur at the same space-time locations, although there is some overlap in
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their missingness. We show that if exactly one of the CNT or BA values is known at a

particular index, we can deduce information about the other.

Recall that we are interested in estimating the predictive distribution of CNTi

for some i ∈ CNT val, i.e., Pr(CNTi ≤ u) for u ∈ UCNT , where u ∈ UCNT =

{0, 1, . . . , 9, 10, 12, . . . , 30, 40, . . . , 100}. If i ̸∈ BAval and BAPi = 0, we can imme-

diately deduce that CNTi = 0 and Pr(CNTi ≤ u) = 1 for all u ∈ UCNT . Moreover, if

i ̸∈ BAval and BAPi > 0, we have that CNTi > 0, implying Pr(CNTi ≤ 0) = 0, though

we are still required to estimate the predictive distribution for all u ∈ UCNT\{0}. The

values we can infer for BAPi from CNTi, with i ∈ BAval, are analogous, so the detail

is omitted here.

We find that CNTi = 0 for approximately 23% of the points in the CNT validation

set, and that CNTi > 0 for an additional 15%. We can also deduce similar proportions

for the BAP values we are required to predict. A reasonable amount of information can

therefore be uncovered using this simple step.

We also found that for the non-missing CNT and BA observations, the probability

of observing a zero observation exceeded 0.999 for both variables when lc(18)i > 0.94,

where lc(18)i denotes the proportion of each location covered by water. Therefore,

for any i ∈ CNTval (i ∈ BAval) with lc(18)i > 0.94, we set CNTi = 0 (BAPi = 0),

implying Pr(CNTi ≤ u) = 1,∀ u ∈ UCNT (Pr(BAPi ≤ u) = 1,∀ u ∈ U i
BAP ).

As well as improving estimates of the predictive distribution of some locations, the

additional steps introduced in this section also increase the amount of information avail-

able. This aids the marginal estimation procedures detailed in Sections 7.3.2 and 7.3.3.
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7.3 Marginal modelling of missing values

7.3.1 Neighbourhood selection

For our approach, we make the following assumption: for any observation with in-

dex i ∈ {1, . . . , N}, there exists some spatial neighbourhood of indices, Ni, where all

corresponding observations come from the same marginal distribution. Through the

estimation of this distribution, we can obtain predictive probabilities for missing CNT

and BAP observations. In this section, we introduce our approach for selecting these

neighbourhoods for CNT observations; the approach for BAP is analogous.

Consider the observation with index i ∈ {1, . . . , N}, and denote the corresponding

spatial location, month and year by si ∈ R2, mi ∈ {3, . . . , 9} and yi ∈ {1993, . . . , 2015},

respectively. We define the spatial neighbourhood as

Ni :=
{
j ∈ {1, . . . , N} : ∥si − sj∥ ≤ kCNT1 ,mj = mi, yj = yi

}
, (7.3.1)

for some kCNT1 ≥ 0, i.e., the indices of all observations occurring in the same year and

month as observation i with a spatial distance of at most kCNT1 from si. The spatial dis-

tance ∥·∥ is measured in kilometres (km) using the Haversine formula; in practice, these

are calculated via the distm function in the R package geosphere (Hijmans, 2019). We

treat kCNT1 as a tuning parameter and introduce a cross validation technique to select

it in Section 7.3.4. We denote the CNT values corresponding to neighbourhood Ni by

CNTNi = {CNTj : j ∈ Ni}. The definitions of kBAP1 and BAPNi for i ∈ {1, . . . , N}

are analogous.

More complex spatial neighbourhoods, which incorporated temporal and covariate-

based information, were also considered but ultimately resulted in worse quality marginal

estimates. This is discussed in Appendix D, where we present prediction scores for other

neighbourhoods we considered.
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7.3.2 A parametric approach for modelling CNT

Following Joseph et al. (2019), we assume all observations in the set CNTNi follow a

zero-inflated negative binomial distribution for all i ∈ CNT val, i.e., for any CNT ∈

CNTNi , we have that

Pr(CNT = j) =


π + (1− π)g(0) if j = 0

(1− π)g(j) if j > 0,

(7.3.2)

where π ∈ [0, 1] denotes a probability and g(j), j ≥ 0, is the probability mass function

of the negative binomial distribution. We estimate the parameter π and those of the

negative binomial distribution using likelihood inference. We then evaluate distribu-

tion (7.3.2) for all u ∈ UCNT using the estimated parameters, resulting in the predictive

distribution for the missing observation CNTi. In practice, we use the same tuning

parameter, kCNT1 , for all i ∈ CNT val; we discuss our approach to selecting this value in

the Section 7.3.4.

7.3.3 A semi-parametric approach for modelling BAP

Given any i ∈ BAval, we assume all observations in the set BAPNi follow the semi-

parametric marginal distribution given in Richards et al. (2022). This distribution

was proposed for modelling precipitation data, which are similar to wildfire data in

the sense that they typically contain a large number of zero observations. These data

structures are referred to as mixture distributions, since they are a mix of a discrete

(zero observations) and a continuous (positive BAP observations) process. Values in

the bulk of the data, including zeros, are modelled empirically, while values in the upper

tail are modelled using a generalised Pareto distribution (GPD). This distribution is

typically referred to in the context of the ‘peaks over threshold’ approach (Balkema and

de Haan, 1974; Pickands, 1975), whereby a GPD is fitted to independent and identically
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distributed exceedances of a high threshold. This overall marginal model is given by

Pr(BAP ≤ x) =


zi if x = 0

1−λi−zi
F ∗
i (ui)

F ∗
i (x) + zi if 0 < x ≤ ui

1− λi(1−Hui(x)) if x > ui,

(7.3.3)

for all BAP ∈ BAPNi , where zi is the probability of observing a zero, ui is some

high threshold to be chosen, λi = Pr(BAP > ui), F
∗
i is the distribution function of

strictly positive observations, and Hui(x) denotes the cumulative distribution function

of the GPD, i.e., Hui(x) = 1 − [1 + (ξi(x− ui))/(σi)]
−1/ξi
+ , with x+ = max{x, 0} and

(σi, ξi) ∈ R+×R. We refer to σi and ξi as the scale and shape parameters, respectively.

See Coles (2001) for a more detailed discussion of the peaks over threshold approach.

We set kBAP2 := 1−λi for all i ∈ BAval and treat kBAP2 as another tuning parameter,

which we again estimate using cross validation; see Section 7.3.4. Both ui and zi can be

estimated empirically, alongside F ∗
i . Note that this marginal model is only valid when

zi < 1 − λi: in such cases, the GPD scale and shape parameters are estimated using

likelihood inference. We then evaluate the distribution described in equation (7.3.3) at

the fitted parameters for all u ∈ U i
BAP , resulting in the predictive distribution for the

missing observation BAPi.

In the cases when zi ≥ 1 − λi (i.e., the marginal model is not valid), we use a

fully empirical distribution. Such cases occur when the estimated threshold equals

zero, corresponding to neighbourhood sets containing a significant proportion of zeros,

indicating a low occurrence of wildfires.

7.3.4 Tuning parameter selection

We now consider how to select the tuning parameters kCNT1 , kBAP1 and kBAP2 used in

our marginal modelling approaches. One option is to use leave-one-out cross validation
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and select the tuning parameter values that minimise the score used for ranking in

the data challenge: see Opitz (2023) for more information. However, the locations for

the validation data are not randomly distributed across the spatial domain, and are

generally clustered in space and time. We demonstrate this in Figure 7.3.1, where we

show the locations of the CNT validation data for March 1994; the resulting plots have

similar features for BAP, as well as for different months and years. In the case of BAP

data, this implies that for a fixed value of kBAP1 , there will be a larger number of missing

values in the set BAPNi for i ∈ BAval than for i ̸∈ BAval, on average. The same holds

when considering CNT data for a fixed value of kCNT1 . This feature of the validation

set means that using standard leave-one-out cross validation over all training locations

could lead to selecting smaller neighbourhoods than are really appropriate.

We instead propose to carry out the parameter selection procedure using only a

subset of the observations in the training data. Focusing on BAP, for each i ∈ BAval

and any combination of (kBAP1 , kBAP2 ) values, we allow the observation indexed by

argmin
j:mi=mj ,yi=yj ,j ̸∈BAval

∥si − sj∥,

to contribute to the score, i.e., giving the spatially-nearest non-missing observation that

occurs in the same month and year as observation i. Ties may be broken at random,

or using any rule that results in only one nearest neighbour per location. Since these

locations can be the nearest neighbour of more than one validation location, some of

the corresponding observations are included more than once in the score calculation.

An alternative would have been to use each of these observations only once to avoid

duplicates, but this means some validation locations would not be represented in the

score calculation.

We consider the following candidate values for the tuning parameters: kBAP1 ∈

{50, 75, . . . , 400}, kBAP2 ∈ {0.05, 0.10, . . . , 0.95}. For each combination of candidate

values, we recalculate the score function proposed in Opitz (2023), summing over all
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Figure 7.3.1: Locations in the set CNT val for March 1994 (grey) and the corresponding
locations of observations for tuning parameter selection (red).

values corresponding to our set of nearest neighbours, before finally selecting the param-

eter combination that minimises the score. The procedure in the CNT case is analogous,

albeit without the GPD quantile parameter kBAP2 . In Figure 7.3.1, we demonstrate the

locations of observations that contribute to the tuning parameter selection procedure

for CNT in March 1994. This results in selected tuning parameter values of kBAP1 = 175,

kBAP2 = 0.5, and kCNT1 = 125.

We note that our final approach has similarities with the winning entry to the 2017

EVA data challenge (Stephenson et al., 2018), where the authors combine data across

locations with sufficient observations, in order to fit a generalised extreme value distri-

bution for predicting precipitation extremes. They advocate the use of cross validation

for tuning parameter selection and to compare potential modelling approaches in data

challenges such as this, where the aim is to optimise some pre-determined metric.

7.4 Discussion of limitations and possible extensions

In this paper, we have discussed a marginal modelling approach for predicting wildfire

events across the contiguous US. This framework was applied to obtain estimates of

the cumulative distribution function at locations with missing entries for either CNT or

BA. The resulting estimates were then “ranked” using a score function weighted to give
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higher importance to extreme observations (Opitz, 2023). Our method produced scores

of 4080.559 and 3640.92 for CNT and BA, respectively, resulting in an overall score of

7721.479; this is a significant improvement on the proposed benchmark technique.

Unlike all the techniques introduced in Section 7.1.3, our approach does not attempt

to specify the relationships between the auxiliary and wildfire variables. Such relation-

ships appear to be complex and non-linear in nature, which may be explained by a

variety of hypotheses. For example, the monthly aggregated format of the wildfire vari-

ables arguably makes it more difficult to associate them with any climate covariates,

which are given as monthly means. Instead, our approach relies on the assumption

that wildfire observations within spatial neighbourhoods arise from the same marginal

distribution. We believe that this is realistic since neighbouring locations are likely to

have similar auxiliary covariates, as demonstrated in Figure 7.1.3, and a large wild-

fire event occurring at one location is likely to increase the probability of wildfires in

neighbouring locations. Furthermore, since the values in neighbourhood sets vary over

time for each missing CNT or BA observation, our approach accounts for the temporal

non-stationarity discussed in Section 7.1.2. We also propose several preliminary steps

in Section 7.2; these steps do not require expert knowledge of wildfires to implement.

Furthermore, such steps lead to significant improvements in the predictive distribu-

tions obtained using our approach by increasing the amount of information available

and bringing all BA observations onto a unified scale.

While developing our approach, we investigated the possibility of accounting for

covariate influence on extreme CNT values via the use of GAMs (this option was also

mentioned in Section 7.1.3), but found their predictive performance to be poor in this

setting; see Wood (2017) for details on these types of models. In particular, we fit-

ted a continuous GPD for each month, with the scale parameter having a GAM form

(Youngman, 2019) comprising spatial and climatological covariates; a continuous ap-

proximation was used due to having discrete CNT values. The advantage of this method
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is that covariate effects can be directly assessed by examining the smooth functions un-

derlying the models. From the fitted GAMs, the general spatial behaviour of the CNT

data was modelled fairly well in each month, but these models did appear to suffer

from oversmoothing, even when using models with the lowest level of smoothness. On

the other hand, we found that physically-interpretable covariate behaviour for the cli-

matological variables was hard to capture, making model selection difficult; the precise

reason for this is unclear. It is likely that the aforementioned oversmoothing combined

with other issues, such as poor convergence of the underlying numerical optimisation

routines and difficulties combining the fitted GAMs with models for the bulk of the CNT

values, lead to poor model performance against the benchmark. Therefore, it appears

that this type of approach may not be favourable in situations where the prediction of

unknown values is required, and is more suited to analyses where the aim is to account

for uncertainty whilst modelling complex covariate effects. Indeed, in addition to the

GAM-based approach mentioned in Section 7.1.3, Sá et al. (2018), Zhang et al. (2017)

and Rodŕıguez-Pérez et al. (2020) have also successfully applied GAM techniques for

modelling wildfire data.

One possible extension of the modelling techniques proposed in Sections 7.3.2 and

7.3.3 would be to introduce weights into the marginal estimation procedures. In the

current format, observations within spatial neighbourhoods are given equal weights,

even though it is likely that locations with a closer proximity to a missing observation

would provide more useful information than locations that are further away. Our current

method could therefore be extended by introducing weights to the marginal estimation

procedures, with closer observations contributing more to probabilistic estimates. We

would expect different values of the tuning parameters kCNT1 and kBAP1 , defining the

spatial range of the neighbourhoods, to be appropriate in this case, but our cross

validation approach could be used analogously.

Changes to the definition of the neighbourhoods in equation (7.3.1) could lead to
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improvements with our approach. One drawback with our current implementation is

that the values kCNT1 and kBAP1 are chosen to be the same across all validation locations.

Although we selected these tuning parameters carefully via cross validation, it is possible

that this is an over-simplification and allowing the values to depend on covariates such

as location, month or year may have been more appropriate. An extension of our

approach could allow for this possibility, e.g., by separating the spatial domain into

smaller sections and implementing cross validation separately in each one. It may also

be reasonable to apply clustering algorithms as a preliminary step, to inform the spatial

regions where setting the tuning parameters (kCNT1 , kBAP1 ) as constant is a reasonable

assumption. Allowing these parameters to vary across space also has the potential to

provide insight into the behaviour of wildfires across the spatial domain. Additionally,

we considered allowing the neighbourhoods themselves to depend on covariate-based

clusters or to cover larger time windows, but the results presented in Appendix D

suggest the simpler spatial neighbourhood approach was more successful.

While the zero-inflated negative binomial distribution proposed for CNT neigh-

bourhoods is not motivated by extreme value theory, our analysis indicated the fitted

marginal distributions performed reasonably well, including in the upper tail in the

majority of cases. Several other distributions were tested, including fully empirical and

discrete GPD models (Hitz et al., 2017); however, in every case, these distributions

resulted in poorer prediction quality when ranked by the objective function given in

Opitz (2023). This is likely due to the difficulties that arise in trying to capture be-

haviour in the bulk and tail simultaneously, and perhaps due to an insufficient amount

of data in each of our spatial neighbourhoods for fitting the discrete GPD. In addition,

alternative marginal distributions for BAP observations have the potential to further

improve the predictive ability of our modelling framework.



Chapter 8

Extreme value methods for

estimating rare events in Utopia

8.1 Introduction

This paper details an approach to the data challenge organised for the Extreme Value

Analysis (EVA) 2023 Conference. The objective of the challenge was to estimate ex-

tremal probabilities, or their associated quantiles, for simulated environmental data sets

for various locations on a fictitious planet called Utopia. The data challenge is split

into 4 challenges; challenges C1 and C2 focus solely on the univariate setting, whereas

challenges C3 and C4 concern multivariate data sets, i.e., we use data from single and

multiple locations, respectively.

Challenge C1 requires estimation of the 0.9999-quantile of the distribution of the

environmental response variable Y conditional on a covariate vector X, for 100 realisa-

tions of covariates. To do so, we model the tail of Y | X = x using a generalised Pareto

distribution (GPD; Pickands, 1975) and employ the extreme value generalised additive

modelling (EVGAM) framework, first introduced by Youngman (2019), to account for

the non-stationary data structure. We consider a variety of model formulations and

207
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select our final model using cross validation (CV). Furthermore, 50% bootstrap con-

fidence intervals are estimated, and the final model performance is assessed using the

number of times the true conditional quantile lies in the confidence intervals (Rohrbeck

et al., 2023). For challenge C2, we are required to estimate the T -year return level

for the marginal distribution of Y . In other words, we are interested in the value q

satisfying Pr(Y > q) = 1/(300T ), such that T = 200.

Challenges C3 and C4 concern the estimation of probabilities for extreme multivari-

ate regions. Such estimates require techniques for modelling and extrapolating within

the joint tail. For challenge C3, three unknown non-stationary environmental variables

are provided, and we are required to estimate two joint tail probabilities. To achieve

this, we propose a non-stationary extension of the model introduced by Wadsworth

and Tawn (2013). Lastly, for challenge C4, we wish to estimate the probability that 50

environmental variables jointly exceed prespecified extreme thresholds. To simplify the

analysis, we separate the variables into five independent groups and obtain separate

probabilities for each group using the conditional extremes approach of Heffernan and

Tawn (2004).

The remainder of the paper is structured as follows. A suitable background on EVA

is introduced in Section 8.2. Section 8.3 covers all aspects of the univariate challenges

C1 and C2; we outline our exploratory data analysis (EDA) and detail our method-

ology based on EVGAM, introducing tools for model selection and comparison. In

Section 8.4 we cover the first multivariate challenge C3. After establishing the presence

of non-stationarity in the underlying data through EDA, we detail our extension of the

Wadsworth and Tawn (2013) model, alongside inferential techniques for this extended

framework. Given this non-stationarity, an overview of quantile regression and model

fitting is presented. Challenge C4 is covered in Section 8.5. Given the high-dimensional

nature of this problem, our data analysis provides the basis for clustering the variables

into independent subgroups, and the conditional extremes approach is used to approx-
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imate probabilities for each subgroup. The paper ends with a discussion of the results

of all challenges. Supporting material can be found in Appendix E.

8.2 EVA background

8.2.1 Univariate modelling

Univariate EVA methods are concerned with capturing the tail of a distribution, allow-

ing extreme quantities to be estimated. The most common univariate approach is the

peaks-over-threshold framework. Consider a continuous, independent and identically

distributed (IID) random variable Y with distribution function F and upper endpoint

yF := sup{y : F (y) < 1}. Pickands (1975) shows that, for some high threshold v < yF ,

the excesses (Y −v) | Y > v, after suitable rescaling, converge in distribution to a GPD

as v → yF . In practice, this limit is taken to hold exactly for an appropriately chosen

high threshold v such that

Pr(Y > y + v | Y > v) =


(1 + ξy/σ)−1/ξ

+ if ξ ̸= 0

exp (−y/σ) if ξ = 0,

for y > 0, w+ = max(w, 0), shape parameter ξ ∈ R and threshold-dependent scale

parameter σ > 0. Note that the case when ξ = 0 is taken in the limit as ξ → 0. We

write (Y − v) | Y > v ∼ GPD(σ, ξ). For ξ < 0, the distribution has a finite upper

end-point at v − σ/ξ but is unbounded above for ξ ≥ 0. Davison and Smith (1990)

provide an overview of the properties of the GPD, and also propose an extension of

this framework to the non-stationary setting. Given a non-stationary process Y with

associated covariate(s) X, they propose the following model

Pr(Y > y + v | Y > v,X = x) =

(
1 +

yξ(x)

σ(x)

)−1/ξ(x)

+

,
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for y > 0, where σ(·), ξ(·) denote functions of the covariate(s). Recent extensions of the

Davison and Smith (1990) framework include allowing the threshold to be covariate-

dependent, i.e., v(x) (Kyselý et al., 2010; Northrop and Jonathan, 2011), and capturing

the covariate functions in a flexible manner using generalised additive models (GAMs;

Chavez-Demoulin and Davison, 2005; Youngman, 2019).

8.2.2 Extremal dependence measures

In addition to capturing modelling marginal tail behaviours, multivariate EVA methods

are concerned with quantifying the dependence between extremes of multiple observa-

tions. An important classification of this dependence, is obtained through the measure

χ (Joe, 1997): given a d-dimensional random vector X, with d ≥ 2 and Xi ∼ F for all

i ∈ {1, . . . , d}, consider the probability

χ(u) :=
Pr(F (Xi) > u, i ∈ A ⊆ {1, . . . , d})

1− u
, | A | ≥ 2, (8.2.1)

where |·| denotes set cardinality. Where the limit exists, we set χ := limu→1 χ(u) ∈ [0, 1].

When χ > 0, we say that the variables exhibit asymptotic dependence, i.e., can take

their largest values simultaneously, with the strength of dependence increasing as χ

approaches 1. If χ = 0, the variables cannot all take their largest values together. In

particular, for d = 2, we refer to the case χ = 0 as asymptotic independence.

We also consider the coefficient of tail dependence proposed by Ledford and Tawn

(1996). Using the formulation given in Resnick (2002), let

η(u) :=
log (1− u)

logP (F (Xi) > u, i ∈ A ⊆ {1, . . . , d})
.

When the limit exists, we set η := limu→1 η(u) ∈ (0, 1]. The cases η = 1 and η <

1, correspond to cases χ > 0 and χ = 0, respectively. For η < 1, this coefficient

quantifies the form of dependence for random vectors that do not take their largest
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values simultaneously.

Since χ and η are limiting values, they are unknown in practice and must be approx-

imated using numerical techniques. Therefore, when quantifying extremal dependence,

we approximate χ (η) using empirical estimates of χ(u) (η(u)) for some high threshold

u. See Murphy-Barltrop et al. (2023) for a detailed example.

8.3 Challenges C1 and C2

This section discusses our approach for challenges C1 and C2 in the univariate setting.

Both challenges concern 70 years of daily data for the capital city of Amaurot. Each

year has 12 months of 25 days and two seasons (season 1 for months 1-6, and season 2

for months 6-12). Suppose Y is an unknown response variable, and X = (V1, . . . , V8)

is a vector of covariates, (V1, V2, V3, V4) denoting unknown environmental variables and

(V5, V6, V7, V8) denoting season, wind direction (radians), wind speed (unknown scale),

and atmosphere (recorded monthly), respectively.

For C1, we build a model for Y | X and estimate the 0.9999-quantile, with associ-

ated 50% confidence intervals, for 100 different covariate combinations denoted xi for

i ∈ {1, . . . , 100}. Note xi are not covariates observed within the data set, but new

observations provided by the challenge organisers.

For C2, we estimate the marginal quantile q such that Pr(Y > q) = (6×10)−4, which

corresponds to a once in 200 year event in the IID setting. Therefore, we first estimate

the marginal distribution FY (y) using Monte-Carlo techniques; see for instance, Eastoe

and Tawn (2009). Since we have a large sample size n = 21, 000 it is reasonable to

assume that the observed covariate sample is representative of X. We can approximate

the marginal distribution as follows,

F̂Y (y) =

∫
X

FY |X(y | x)fX(x)dx ≈ 1

n

n∑
t=1

FYt|Xt(yt | xt). (8.3.1)
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To approximate FY (y), we first re-estimate the GPD parameters, now using a penalised

log-likelihood which incorporates the following loss function, provided by the challenge

organisers,

L(q, q̂) =


0.9(0.99q − q̂) if 0.99q > q̂

0 if |q − q̂| ≤ 0.01q

0.1(q̂ − 1.01q) if 1.01q < q̂,

(8.3.2)

where q and q̂ are the true and estimated marginal quantiles, respectively. This loss

function penalises under-estimation more heavily than an over-estimation.

We conduct the same EDA for both challenges given the same covariates are used;

this is outlined in Section 8.3.1. In Section 8.3.2 we introduce our techniques for mod-

elling Y | X, which is then used for modelling Y via (8.3.1). Our approach for un-

certainty quantification is outlined in Section 8.3.3, and we give our results for both

challenges in Section 8.3.4.

8.3.1 Exploratory data analysis

This section details our exploratory analysis for challenges C1 and C2. We are informed

that the response variable Yt, t ∈ {1, . . . , n}, is independent over time (Rohrbeck et al.,

2023), but is affected by the covariate vector Xt = {V1,t, . . . , V8,t}. However, it is not

clear which covariates affect Y , and what form these covariate-response relationships

take. In what follows, we aim to explore these relationships so we can account for them

in our modelling framework.

To begin, we explore the dependence between all variables to understand the rela-

tionships between covariates, as well as relationships between individual covariates and

the response variable. We investigate dependence in the main body of the data using

Kendall’s τ measure, while for the joint tails, we use the pairwise extremal dependence

coefficients χ and η defined in Section 8.2; values for all pairs are shown in Figure 8.3.1,
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Figure 8.3.1: Heat maps for dependence measures for each pair of variables: Kendall’s
τ (left), χ (middle) and η (right). Note the scale in each plot varies, depending on
the support of the measure, and the diagonals are left blank, where each variable is
compared against itself.

with threshold u set at the empirical 0.95-quantile for the extremal measures.

The response variable Y has the strongest dependence with V3 in the body of the

distribution, followed by V6 (wind speed) and then V7 (wind direction). Similarly, Y

has strong dependence with V2, V3 and V6 in the tail. We also find strong dependence

between V6 and V7 in the body, but evidence of weak dependence in the tail (dark blue

for χ̂ and η̂). There is also strong dependence between V1 and V2 in both the body

and tail (see dark red for η̂). We find very similar dependence relationships when the

data are split into seasons. In Appendix E, we show scatter plots of each covariate

against the response variable; these demonstrate a highly non-linear relationship for

each explanatory variable with Y .

Since V6 and V7 have strong relationships with the response variable Y , we ex-

plore these variables in more detail. The most notable feature of both variables is that

they have a significant shift in distribution. We use the changepoint package (Kil-

lick and Eckley, 2014) in R to estimate the difference in mean for both variables; just

5 observations separate the estimated changepoints, so we assume the changes occur

simultaneously. Before the changepoint, winds typically occur in the southwest direc-

tion and are greater in magnitude, while after the changepoint, they occur mainly in
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the northeast direction and are lower in magnitude; see Appendix E. Rohrbeck et al.

(2023) state this non-stationarity was created unintentionally when designing the data

challenge.

Next, we explore temporal relationships for the response variable Y . We first find

temporal non-stationarity in that the distribution of Y varies significantly with V5

(season); see Appendix E for more detail. The magnitude of Yt is higher for season 1

than season 2, in both the main body and tail of the distribution. However, within

each season, across months, there is little temporal variation in the distribution of Y .

We also find that Y exhibits temporal independence at all lags, with acf values close to

zero (see Appendix E).

We also explore temporal dependence in the covariates. Rohrbeck et al. (2023) states

that V1, . . . , V4 are temporally independent. We find that for V6 and V7, the acf remains

significantly different from zero at all time lags (see Appendix E) due to the changepoint

discussed earlier. Finally, V8 has high acf values at the earliest lags that decrease rapidly

until lag 25 (i.e., the length of a month) and then continue to decrease at a slower rate

until ∼ 50 time lags. This is because atmosphere is recorded monthly.

As noted in Rohrbeck et al. (2023), 11.7% of the observations have at least one pos-

sible predictor variable missing completely at random (MCAR). A detailed breakdown

of the pattern of missing predictor observations is provided in Appendix E. Since we can

assume the data are MCAR, ignoring the observations that have a missing predictor

variable will not bias our inference. However, a complete case analysis is undesirable

due to the amount of data loss. To mitigate against this, we attempt to impute the

observations where predictors are missing but ultimately found a case analysis approach

works best for our data. This results in only 4% of observations being removed for our

final model.
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8.3.2 Methods

In this section, we explain our model development procedure for Y | X. As the chal-

lenges concern extreme quantile estimation, we use a non-stationary GPD model. This

requires threshold selection and comparison of different covariate-dependent GPD pa-

rameterisations. Recall that we utilise the same model formulation for both C1 and C2

via (8.3.1).

When fitting a GPD, the first challenge is to select an appropriate threshold. This

selection involves a bias-variance trade-off: too low a threshold is likely to violate the

asymptotic basis of the model, incorporating bias in the GPD fit, whereas higher thresh-

old choices lead to additional uncertainty due to fewer exceedances being used to fit

the model. A variety of methods exist which aim to balance this trade-off; Scarrott and

MacDonald (2012) provide a review and more recent developments include Northrop

et al. (2017) and Schneider et al. (2021). Owing to its favourable properties for IID

data, we employ the threshold selection method of Murphy et al. (2023) and extend

this approach to select a threshold for non-stationary, covariate-dependent GPDmodels.

The method selects a threshold based on minimising the expected quantile discrepancy

(EQD) between the sample quantiles and fitted GPD model quantiles. When fitting

a non-stationary model, the excesses will not be identically distributed across covari-

ates. Thus, to utilise the EQD method in this case, we use the fitted non-stationary

GPD parameter estimates to transform the excesses to common standard exponential

margins and compare sample quantiles against theoretical quantiles from the standard

exponential distribution.

Owing to the complex covariate structure observed in the data, as described in

Section 8.3.1, we employ the flexible EVGAM framework proposed in Youngman (2019)

for modelling GPD tail behaviour. Under this framework, GAM formulations are used

to capture non-stationarity in the threshold, scale and shape functions introduced in

Section 8.2. In general, GAMs provide flexible functional forms that allow us to capture
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multiple covariate interactions. Moreover, both discrete and continuous covariates can

be incorporated in the GAM framework.

Without loss of generality, consider the scale function σ(x). We assume that

h(σ(x)) = ψσ(x), with ψσ(x) = β0 +
K∑
κ=1

Pκ∑
p=1

βκpbκp(x), (8.3.3)

where h(x) := log(x) denotes the link function which ensures the correct support, with

coefficients β0, βκp ∈ R and basis functions bκp for p ∈ {1, . . . , Pκ}, κ ∈ {1, . . . , K}.

Analogous forms are taken for v(x) and ξ(x), adjusting the link function h as appro-

priate, with ψv and ψξ denoting the respective formulations.

For all GAM formulations, model fitting is carried out using the evgam software pack-

age (Youngman, 2022), whereby restricted maximum likelihood estimation (REML) is

used to approximate the GAM coefficients. In general, REML schemes avoid over-

fitting through penalisation of the likelihood function. Furthermore, formulation via

likelihood functions avoids the use of Markov Chain Monte-Carlo methods, which can

be computationally expensive; see Wood (2017) for further details.

For model performance assessment and selection, we apply k-fold CV (Hastie et al.,

2001, Ch 7.). We divide the data into k groups (folds), where each fold is removed

in turn and the model is fitted to the remaining data. Choosing a higher number k

provides less biased CV metrics with a higher variance. A lower k is computationally

cheaper, however, it may overestimate the test error rate. We explore model ranking

by taking both k = 10 and 50, and find that both give an equivalent ranking; we

present results for the latter. For each omitted fold, we compute several goodness-of-fit

measures: Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC),

and the continuous ranked probability score (CRPS, Gneiting and Katzfuss, 2014). AIC

and BIC aid in guiding the model search, favouring parsimony by penalising model

complexity, while CRPS describes the discrepancy between the predicted distribution
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function and observed values without the specification of empirical quantiles. Finally,

we report the average criterion over all 50 folds for each model; lower values of AIC,

BIC and CRPS indicate a better model fit.

Model selection

Our analysis in Section 8.3.1 indicates that V3, V5 (season), and V6 (wind speed)

exhibit non-trivial dependence relationships with the response variable; we therefore

assume these variables can be used as predictor variables for modelling Y , and set

X̃ := (Vj)j∈{3,5,6}, with X̃r,t denoting the rth component of X̃, r ∈ {1, 2, 3}. Although

V7 (wind direction) also exhibits predictor power, we have not considered it here since

it is highly correlated with wind speed so would involve adding complex interaction

terms to the model formulation, and V6 has a stronger relationship with Y compared

to V7 (see Figure 8.3.1).

There is a clear variation in the distribution of Y between seasons. Due to this

distinct difference, we explore the inclusion of a stepped-threshold according to season.

In particular, we set v(x̃t) := 1(x̃2,t = 1)v1 + 1(x̃2,t = 2)v2, v1, v2 ∈ R, with corre-

sponding rate parameter λ(x̃t) := 1(x̃2,t = 1)λ1 + 1(x̃2,t = 2)λ2, where λ1, λ2 ∈ [0, 1]

denote the non-exceedance probabilities for seasons 1 and 2, respectively. This seasonal

threshold significantly improves model fits; see Appendix E for further details. GAM

forms for the threshold were also explored, but did not offer significant improvement.

Furthermore, the smooth GAM formulation of the GPD scale parameter adequately

captures any residual variation in the response arising due to covariate dependence.

Using the evgam package, we fit the non-stationary GPD to the tail of Y , with

σ(x) as in equation (8.3.3). We keep the shape function ξ(x) := ξ ∈ R constant

across covariates; this is common in non-stationary analyses since this parameter is

difficult to estimate (Chavez-Demoulin and Davison, 2005). Even after accounting

for seasonal variability in the threshold, including the seasonal variable in the scale
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function formulation via an indicator function improves model fits. From Section 8.3.1,

we know there is a step change in the mean for V6; we consider both an indicator

function and a spline to capture the relationship between Y and this predictor. When

using splines, we are required to select a basis dimension B ∈ N; this determines the

number of coefficients to be estimated. Basis dimension is the most important choice

within spline modelling procedures and directly corresponds with the flexibility of the

framework (Wood, 2017). In practice, it is better to select a higher dimension than we

would expect to be necessary since the REML scheme will adjust estimates of coefficients

to avoid over-fitting. Furthermore, as long as the basis dimension is sufficiently high,

the locations of knots have little impact on the resulting model fits. Note that we

use thin-plate regression splines as they can smooth with respect to any number of

covariates, and it is the default in the evgam package (Youngman, 2022). Other types

of splines could be used, but we do not consider them here.

To determine B for V6, we build a model for Y | X̃3, allowing us to consider the effect

of this predictor on the response directly. We vary the basis dimension and compare

the resulting models using CV. Through this, we set B = 3 since this appears to offer

sufficient flexibility to capture the observed dependence. For V3, we employ a similar

procedure and set B = 4.

To determine the best-fitting model, we use a forward selection process based on

minimising the CV score using CRPS. Specifically, by comparing model fits with only

a single predictor variable (models 2-4 in Table 8.3.1), we find model 4 minimises the

CV score and so we add V3 to the model. Continuing in this fashion results in our final

model being model 7. Wind speed (V6) was also modelled using an indicator function

to try and capture its changepoint although this did not improve the model fit and

has been omitted in Table 8.3.1. We have omitted models that included additional

predictor variables and interaction terms as they do not reduce the CV score further.

Let yt and x̃t denote the observations of the response variable and predictive co-
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Table 8.3.1: Table of selected models considered for challenge C1. 1(·) denotes an
indicator function, si(·) for i ∈ {1, 2} denote thin-plate regression splines, β0, β1 are
coefficients to be estimated, and x̃r,t is defined as in the text. All values have been
given to one decimal place.

Model σ(x̃t) CRPS AIC BIC

1 β0 11.5 92,059.9 92,074.5

2 β0 + β11(x̃2,t = 1) 11.0 92,026.5 92,048.4

3 β0 + s1(x̃1,t) 10.6 91,651.4 91,695.3

4 β0 + s2(x̃3,t) 11.0 91,775.6 91,797.7

5 β0 + β11(x̃2,t = 1) + s1(x̃1,t) 10.6 91,634.1 91,686.4

6 β0 + s1(x̃1,t) + s2(x̃3,t) 10.5 91,307.2 91,357.3

7 β0 + β11(x̃2,t = 1) + s1(x̃1,t) + s2(x̃3,t) 10.4 91,279.9 91,339.2

variates, respectively. Then our model has the following form,

FYt|X̃t
(yt|X̃t = x̃t, yt > v(x̃t)) = 1− λ(x̃t)

[
1 + ξ

(
yt − v(x̃t)

σ(x̃t)

)]−1/ξ

+

,

for all t ∈ {1, . . . , n}. The formulation of σ(·) is defined in Table 8.3.1 as model 7,

where β0, β1 ∈ R denote coefficients, and s1, s2 are thin-plate regression splines for V3

and V6, respectively, with corresponding basis coefficients β2 ∈ R3 and β3 ∈ R4. For

challenge C2, we are required to incorporate the loss function of equation (8.3.2) into

the modelling framework. Letting Iv := {t ∈ {1, . . . , n} | yt > v(x̃t)} and nv := |Iv|,

we consider the following objective function

S(θ) := −lR(θ) +
∑
i∈Iv

L(q∗i , q̂i)/nv,

where lR(θ) denotes the penalised log-likelihood function of the REML approach (Wood,

2017), θ := (β0, β1,β2,β3, ξ) denotes the parameter vector associated with the GPD

formulation, and
∑
i∈Iv

L(q∗i , q̂i)/nv denotes the average loss between observed and model

quantiles. Specifically, if we denote the mapping between Iv and the order statistics
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of (yt − v(x̃t))t∈Iv by π, then q∗i is the π(i)th order statistic of (yt − v(x̃t))t∈Iv and

q̂i = σ(xπ(i))[{1 − π(i)/(nv + 1)}−ξ − 1]/ξ. Minimising S(θ) ensures the parameter

estimates also account for the loss function. We use this formulation to adjust the

GPD parameters for challenge C2 once a threshold is selected.

8.3.3 Uncertainty quantification

We are required to construct central 50% confidence intervals for 100 different covariate

combinations provided by the challenge organisers, xi for i ∈ {1, . . . , 100}. We approx-

imate these intervals using the stationary block bootstrapping procedure adopted by

D’Arcy et al. (2023b) that preserves temporal dependence and covariate information;

we outline this below.

First, the response variable Yt is transformed to Uniform(0,1) margins; denote this

sequence UY
t = FYt|X̃t

(Yt|X̃t = x̃t). We then adopt the stationary bootstrap proce-

dure of Politis and Romano (1994) to retain the temporal dependence in the response

and explanatory variables. The block length L is simulated from a Geometric(1/l)

distribution, where the mean block length l ∈ N is carefully selected based on the

autocorrelation function. We choose 50 days; the maximum lag for which the autocor-

relation was significant across all variables; see Appendix E. Denote this bootstrapped

sequence on uniform margins by UB
t . We transform UB

t back to the original scale using

our fitted model, preserving the original structure of Yt; we denote this series Y
B
t . Then

we fit our model to Y B
t to re-estimate all of the parameters and thus the quantile of

interest. We repeat this procedure to obtain 200 bootstrap samples.

8.3.4 Results

For C1, we use our final model of Section 8.3.2 to estimate the 0.9999-quantile of

Y | X̃ = x̃i, i ∈ {1, . . . , 100}, for the set of 100 covariate combinations. The left panel

of Figure 8.3.2 shows the quantile-quantile (QQ) plot for our model. There is general
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Figure 8.3.2: QQ plot for our final model, model 7 in Table 8.3.1, on exponential
margins. The y = x line is given in red and the grey region represents the 95% tolerance
bounds (left). Predicted 0.9999−quantiles against true quantiles for the 100 covariate
combinations. The points are the median predicted quantile over 200 bootstrapped
samples and the vertical error bars are the corresponding 50% confidence intervals.
The y = x line is also shown (right).

alignment between the model and empirical quantiles; however, there is some under-

estimation in the upper tail, and our 95% tolerance bounds do not contain some of

the most extreme response values. The right panel of Figure 8.3.2 shows our predicted

quantiles, and their association confidence intervals, compared to their true quantiles.

This figure is different from the one presented by Rohrbeck et al. (2023) due to an error

in our code being fixed after submission. In this scenario, our estimated confidence

intervals lead to a 14% coverage of the true quantiles, which does not alter our ranking

for this challenge. Our performance and model improvements are discussed in Section

8.6.

For challenge C2, we estimate the quantile of interest as q̂ = 212.5913 (208.3783,

246.0764). Due to a coding error, this value differs from the original estimate sub-

mitted for the data challenge. The updated estimate over-estimates compared to the

truth. A 95% confidence interval for the estimate is given in parentheses based on the
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bootstrapping procedure outlined in Section 8.3.3.

8.4 Challenge C3

8.4.1 Exploratory data analysis

For challenge C3, we are provided with 70 years of daily time series of an environmental

variable for three towns on the island of Coputopia. These series are denoted by Yi,t,

i ∈ {1, 2, 3}, t ∈ {1, . . . , n}, where i is the index of each town and t is the point in

time. Each year consists of 12 months, each lasting 25 days, resulting in n = 21, 000

observations for each location.

Alongside the time series, we are also provided with daily covariate observations

Xt = (St, At), where St and At denote seasonal and atmospheric conditions, respec-

tively. Season is a binary variable, taking values in the set {1, 2}, with each year of

observations exhibiting both seasons for exactly 150 consecutive days. On the other

hand, the atmospheric conditions are piecewise constant over months, with large vari-

ations in the observed values between months. A descriptive figure of both covariates

is given in Appendix E.

In Rohrbeck et al. (2023), we are informed that Yi,t are distributed identically

across all sites and over time, with a standard Gumbel distribution function. How-

ever, it is not known whether the covariates Xt influence the dependence structure of

Yt := (Y1,t, Y2,t, Y3,t). We are also informed that, conditioned on covariates, the process

is independent over time, i.e., (Yt | Xt) ⊥⊥ (Yt′ | Xt′) for any t ̸= t′. In this section,

we examine what influence, if any, the covariate process Xt may have on the depen-

dence structure of Yt. If such relationships exist, they need to be accounted for when

estimating joint tail probabilities.

We begin by transforming the time series to standard exponential margins using

the probability integral transform, i.e., set Zi,t := − log(1 − F (Yi,t)), i ∈ {1, 2, 3},
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t ∈ {1, . . . , n}, where F (y) = exp(− exp(−y)), y ∈ R. This transformation is com-

mon in the study of multivariate extremes and can simplify the description of ex-

tremal dependence (Keef et al., 2013). To explore the extremal dependence in the

Coputopia time series, we consider all 2- and 3-dimensional subvectors of the process,

i.e., {Zi,t, i ∈ I, t ∈ {1, . . . , n}}, I ∈ I := {{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. This separa-

tion is important to ensure the overall dependence structure is fully understood, since

intermediate scenarios can exist where a random vector exhibits χ = 0, but χ > 0 for

some 2-dimensional subvector(s) (Simpson et al., 2020).

Furthermore, to explore the impact of covariates on the dependence structure, we

partition the time series into subsets using the covariates. For the seasonal covariate,

let GS
I,j := {Zi,t, i ∈ I, St = j} for j = 1, 2. For the atmospheric covariate, we let

π : {1, . . . , n} → {1, . . . , n} denote the permutation associated with the order statistics

of At, defined so that ties in the data are accounted for. We then split the data

into 10 equally sized subsets corresponding to the atmospheric order statistics, i.e.,

GA
I,k :=

{
Zi,t, i ∈ I, t ∈ Σk

}
for k = 1, 2, . . . , 10, where Σk := {t | (k − 1)n/10 + 1 ≤

π(t) ≤ kn/10}. We can observe that the atmospheric values associated with each subset

GA
I,k will increase over k.

The idea behind these subsets is to examine whether altering the values of either

covariate impacts the extremal dependence structure. Consequently, we set u = 0.9 and

estimate χ(u) using the techniques outlined in Section 8.2, with uncertainty quantified

through bootstrapping with 200 samples. The bootstrapped χ estimates for GA
I,k with

I = {1, 2, 3} are given in Figure 8.4.1. The plots for the remaining index sets in I, along

with the subsets associated with the seasonal covariate, are given in Appendix E. The

estimates of χ appear to vary, in the majority of cases, across both subset types (sea-

sonal and atmospheric), suggesting both covariates have an impact on the dependence

structure. For the atmospheric process in particular, the values of χ tend to decrease for

higher atmospheric values, suggesting a negative association between positive extremal
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Figure 8.4.1: Boxplots of empirical χ estimates obtained for the subsets GA
I,k, with

k = 1, . . . , 10 and I = {1, 2, 3}. The colour transition (from blue to orange) over k
illustrates the trend in χ estimates as the atmospheric values are increased.

dependence and atmosphere. We also observe that across all subsets, χ appears consis-

tently low in magnitude, suggesting the extremes of some, if not all, of the sub-vectors

are unlikely to occur simultaneously. As such, for modelling the Coputopia time series,

we require a framework that can capture such forms of dependence.

We also consider pointwise estimates of the function λ, as defined later in equa-

tion (8.4.2), over GS
I,j and GA

I,k for fixed simplex points; these results are given in

Appendix E. Similar to χ, estimates of λ vary significantly across subsets, providing

additional evidence of non-stationarity within the extremal dependence structure.

8.4.2 Modelling of joint tail probabilities under asymptotic

independence

For challenge C3, we are required to estimate probabilities

p1 := Pr (Y1 > y, Y2 > y, Y3 > y) and p2 := Pr (Y1 > v, Y2 > v, Y3 < m) ,

with y = 6, v = 7 and m = − log(log(2)). We refer to p1 and p2 as parts 1 and 2

of the challenge, respectively. Note that p1 and p2 are independent of the covariate
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process and correspond to different extremal regions in R3. For the remainder of this

section, we will consider the transformed exponential variables (Z1, Z2, Z3), omitting

the subscript t for ease of notation. Observe that F(−Z3)(z) = ez, for z < 0; setting

Z̃3 := − log (1− exp{−Z3}) , we have

p2 = Pr (Z1 > ṽ, Z2 > ṽ, Z3 < m̃) = Pr
(
Z1 > ṽ, Z2 > ṽ, Z̃3 > m̃

)
,

where ṽ and m̃ denote the values v andm transformed to the standard exponential scale,

e.g., ṽ := − log (1− exp{− exp{−v}}). Similarly, we have p1 = Pr (Z1 > ỹ, Z2 > ỹ, Z3 > ỹ).

Consequently, both p1 and p2 can be considered as joint survivor probabilities.

In many applications of multivariate extremes, joint tail probabilities are estimated

using models that implicitly assume random vectors are regularly varying (Tawn, 1988a;

Resnick, 2002). However, this framework is unable to accurately extrapolate into the

joint tail for data not exhibiting asymptotic dependence (Ledford and Tawn, 1996; Hef-

fernan and Tawn, 2004). This has motivated the development of modelling approaches

for data structures where not all extremes are observed simultaneously, such as the

Coputopia data set.

The first such approach was proposed by Ledford and Tawn (1996); given a slowly

varying function L, i.e., limu→1 L(tu)/L(u) = 1 for all t > 0, they assume the joint tail

is given by

Pr (Z1 > u,Z2 > u,Z3 > u) = Pr (min{Z1, Z2, Z3}) = L (eu) e−u/η, (8.4.1)

as u → ∞, where η ∈ (0, 1] is the coefficient of tail dependence defined in Section 8.2.

If η = 1 and limu→∞ L(u) ̸= 0, we have asymptotic dependence, while η < 1, or η = 1

and limu→∞ L(u) = 0, implies the variables cannot be extreme simultaneously.

In practice, the approach of Ledford and Tawn (1996) is only applicable within

regions where all variables are large. To overcome this limitation, Wadsworth and
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Tawn (2013) proposed a general extension of equation (8.4.1). For any ray ω ∈

S2 := {(w1, w2, w3) ∈ [0, 1]3 : w1 + w2 + w3 = 1} , where S2 denotes the standard 2-

dimensional simplex, the authors assume

Pr (Z1/w1 > r,Z2/w2 > r,Z3/w3 > r) = Pr (min{Z1/w1, Z2/w2, Z3/w3} > r)

= L(er;ω)e−rλ(ω), (8.4.2)

as r → ∞, where λ(ω) ≥ max(ω) is known as the angular dependence function.

Asymptotic dependence occurs at the lower bound, i.e., λ(ω) = max(ω) for all ω ∈ S2,

and model (8.4.2) reduces to model (8.4.1) for ω = (1/3, 1/3, 1/3), with η = 1/{3λ(ω)}.

In practice, equation (8.4.2) can be used to evaluate extreme joint survivor probabilities;

in particular, probabilities p1 and p2 can be identified with the rays ω(1) := (ũ, ũ, ũ)/r(1)

and ω(2) := (ṽ, ṽ, m̃)/r(2) in S2, respectively, where r(1) := ũ+ũ+ũ and r(2) := ṽ+ṽ+m̃.

See Section 8.4.4 for further details.

As a final remark, we note that there exist several additional methods capable of

approximating extreme joint survivor probabilities for non-asymptotically dependent

data structures (e.g., Heffernan and Tawn, 2004; Wadsworth et al., 2017). However, in

our approach, we prefer to stick with the model of Wadsworth and Tawn (2013) since

this framework can be easily adapted to capture non-stationary dependence.

8.4.3 Accounting for non-stationary dependence

In the stationary setting, pointwise estimates of λ can be obtained via the Hill es-

timator (Hill, 1975), from which tail probabilities can be approximated. However,

alternative procedures are required for data exhibiting trends in dependence, such as

the Coputopia data set. Existing approaches for capturing non-stationary dependence

structures are sparse in the extremes literature, and most approaches are limited to

asymptotically dependent data structures. For the case when data are not asymp-
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totically dependent, Mhalla et al. (2019) and Murphy-Barltrop and Wadsworth (2022)

propose non-stationary extensions of the Wadsworth and Tawn (2013) framework, while

Jonathan et al. (2014) and Guerrero et al. (2023) propose non-stationary extensions of

the Heffernan and Tawn (2004) model. See Murphy-Barltrop and Wadsworth (2022)

for a detailed review.

To account for non-stationary dependence in C3, we propose an extension of the

Wadsworth and Tawn (2013) framework. With Zt = (Z1,t, Z2,t, Z3,t) and Xt, defined as

in Section 8.4.1, we define the structure variable Tω,t := min{Z1,t/w1, Z2,t/w2, Z3,t/w3},

for any ω ∈ S2; we refer to Tω,t as the min-projection at time t. From Section 8.4.1, we

know that the joint distribution of Zt is not identically distributed over t; this implies

non-stationarity in the distribution of Tω,t.

To account for non-stationarity in Tω,t, Mhalla et al. (2019) and Murphy-Barltrop

and Wadsworth (2022) assume the following model

Pr (Tω,t > u | Xt = xt) = L (eu | ω,xt) e−λ(ω|xt)u as u→ ∞, (8.4.3)

for all t. Note that this assumption is very similar in form to equation (8.4.2), with the

primary difference being the function λ is non-stationary over t. From equation (8.4.3),

it is straightforward to see that

Pr (Tω,t − u > z | Tω,t > u,Xt = xt) = e−λ(ω|xt)z as u→ ∞, (8.4.4)

for z > 0. Consequently, equation (8.4.3) is equivalent to assuming (Tω,t − u) | {Tω,t >

u,Xt = xt} ∼ Exp(λ (ω | xt)) as u→ ∞.

In unreported exploratory analysis, we found that equation (8.4.3) was not flexible

enough to capture the tail of Tω,t for the Coputopia data; see Section 8.4.3 for further

discussion. Thus, we propose the following model: given any z > 0 and a fixed ω ∈ S2,
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we assume

Pr (Tω,t − u > z | Tω,t > u,Xt = xt) =

(
1 +

ξ (ω | xt) z
σ (ω | xt)

)−1/ξ(ω|xt)

as u→ ∞.

(8.4.5)

This is equivalent to assuming (Tω,t−u) | {Tω,t > u,Xt = xt} ∼ GPD(σ (ω | xt) , ξ (ω | xt))

as u → ∞, and equation (8.4.4) is recovered by taking the limit as ξ (ω | xt) → 0 for

all t.

Our proposed formulation in equation (8.4.5) allows for additional flexibility within

the modelling framework via the inclusion of a GPD shape parameter ξ (ω | xt), which

quantifies the tail behaviour of Tω,t. Given the wide range of distributions in the

domain of attraction of a GPD (Pickands, 1975), it is reasonable to assume that the

tail of Tω,t can be approximated by equation (8.4.5). For the Coputopia time series,

this assumption appears valid, as demonstrated by the diagnostics in Section 8.4.3.

Model fitting

To apply equation (8.4.5), we first fix ω ∈ S2 and assume that the formulation holds

approximately for some sufficiently high threshold level from the distribution of Tω,t; we

denote the corresponding quantile level by τ ∈ (0, 1). For simplicity, the same quantile

level is considered across all t. Further, let vτ (ω,xt) denote the corresponding threshold

function, i.e., Pr(Tω,t ≤ vτ (ω,xt) | Xt = xt) = τ for all t. Under our assumption, we

have (Tω,t− vτ (ω,xt)) | {Tω,t > vτ (ω,xt),Xt = xt} ∼ GPD(σ (ω | xt) , ξ (ω | xt)). We

emphasise that vτ (ω,xt) is not constant in t, and we would generally expect vτ (ω,xt) ̸=

vτ (ω,xt′) for t ̸= t′.

As detailed in Section 8.4.2, both p1 and p2 can be associated with points on the sim-

plex S2, denoted by ω(1) and ω(2), respectively. Letting ω ∈ {ω(1),ω(2)}, our estimation

procedure consists of two stages: estimation of threshold function vτ (ω, zt) for a fixed

τ ∈ (0, 1), followed by estimation of GPD parameter functions σ (ω | xt) , ξ (ω | xt).
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For both steps, we take a similar approach to Section 8.3.2 and use GAMs to cap-

ture these covariate relationships. To simplify our approach, we falsely assume that

the atmospheric covariate At is continuous over t; this step allows us to utilise GAM

formulations containing smooth basis functions. Given the significant variability in At

between months, discrete formulations for this covariate would significantly increase

the number of model parameters and result in higher variability.

Let log(vτ (ω,xt)) = ψv(xt), log(σ (ω | xt)) = ψσ(xt) and ξ (ω | xt) = ψξ(xt) denote

the GAM formulations of each function, where ψ− denotes the basis representation of

equation (8.3.3). Exact forms of basis functions are specified in Section 8.4.3. As in

Section 8.3.2, model fitting is carried out using the evgam software package (Youngman,

2022), with REML procedures used to avoid over-fitting. For the first stage, vτ (ω,xt)

is estimated by exploiting a link between the loss function typically used for quantile

regression and the asymmetric Laplace distribution (Yu and Moyeed, 2001). The spline

coefficients associated with ψσ and ψξ are estimated subsequently using the obtained

threshold exceedances.

Selection of GAM formulations and diagnostics

Prior to estimation of the threshold and parameter functions, we specify a quantile level

τ and formulations for each of the GAMs. To begin, we fix τ = 0.9 and restrict attention

to the latter problem; this in turn involves selecting basis functions and basis dimen-

sions. A variety of formulations were considered for each GAM. By comparing metrics

for model selection, namely AIC, BIC and CRPS, we found the following formulations

to be sufficient

ψv(xt) = βu+sv(at)+βs1(st = 2), ψσ(xt) = βσ+sσ(at) and ψξ(xt) = βξ, (8.4.6)

for parts 1 and 2, where βu, βσ, βξ ∈ R denote constant intercept terms, 1 denotes

the indicator function with corresponding coefficient βs ∈ R, and su, sσ denote cubic
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regression splines of dimension B = 10. The shape parameter is set to constant for the

reasons outlined in Section 8.3.2. Cubic basis functions are used for ψv and ψσ since

they have several desirable properties, including continuity and smoothness (Wood,

2017). Setting B = 10 appears more than sufficient to capture the trends relating

to the atmosphere variable. Alternative smooth splines and basis dimensions were

tested for both parts 1 and 2, but this made little difference to the resulting model

fits. Moreover, the fact the same model selection appeared suitable for both parts of

C3 provides evidence of robustness for these GAM formulations.

We remark that the seasonal covariate is only present with the formulation for ψv.

Once accounted for in the non-stationary threshold, the seasonal covariate appeared to

have little influence on the fitted GPD parameters. More complex GAM formulations

were tested involving interaction terms between the seasonal and atmospheric covari-

ates. However, such formulations offered negligible improvements in model fits, and

thus we prefer the simpler formulations on the basis of parsimony.

With GAM formulations selected, we now consider the quantile level τ ∈ (0, 1); this

is analogous to the bias-variance trade-off discussed in Section 8.3.2. To assess sensi-

tivity in our formulation, we set T := {0.8, 0.81, . . . , 0.99} and fit the GAMs outlined

in equation (8.4.6) for each τ ∈ T. Letting δω,t and Tτ := {t ∈ {1, . . . , n} | δω,t >

vτ (ω,xt)} denote the min-projection observations and indices of threshold-exceeding

observations, respectively, we expect the set

E := {− log {1− FGPD(δω,t − vτ (ω,xt) | σ (ω | xt) , ξ (ω | xt)} | t ∈ Tτ},

to be distributed according to a unit exponential distribution.

With all exceedances transformed to a unified scale, we compare the empirical and

model exponential quantiles using QQ plots, through which we assess the relative perfor-

mance of each τ ∈ T. We then selected τ values for which the empirical and theoretical

quantiles appeared most similar in magnitude. From this analysis, we set τ = 0.83 and
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Figure 8.4.2: Final QQ plots for parts 1 (left) and 2 (right) of C3, with the y = x line
given in red. In both cases, the grey regions represent the 95% bootstrapped tolerance
bounds.

τ = 0.85 for parts 1 and 2, respectively. The corresponding QQ plots are given in Fig-

ure 8.4.2, where we observe reasonable agreement between the empirical and theoretical

quantiles. However, whilst these values appeared optimal within T, we stress that ade-

quate model fits were also obtained for other quantile levels, suggesting our modelling

procedure is not especially sensitive to the exact choice of quantile. Furthermore, we

also tested a range of quantile levels below the 0.8-level, but were unable to improve

the quality of model fits.

Plots illustrating the estimated GPD scale parameter functions are given in Ap-

pendix E, with the resulting dependence trends in agreement with the observed trends

from Section 8.4.1. We also remark that the estimated GPD shape parameters obtained

for parts 1 and 2 were 0.042 (0.01, 0.075) and 0.094 (0.059, 0.128), respectively, where

the brackets denote 95% confidence intervals obtained using posterior sampling; see

Wood (2017). These estimates, which indicate slightly heavy-tailed behaviour within

the min-projection variable, provide insight into why the original exponential modelling

framework is not appropriate for C3.

Overall, these results suggest different extremal dependence trends exist for the two

simplex points ω(1) and ω(2), illustrating the importance of the flexibility in our model.
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These findings are also in agreement with empirical trends observed in Section 8.4.1,

suggesting our modelling framework is successfully capturing the underlying extremal

dependence structures.

8.4.4 Results

Given estimates of threshold and parameter functions, probability estimates can be

obtained via Monte Carlo techniques. Taking p1, for instance, we have

p1 = Pr(Z1 > ỹ, Z2 > ỹ, Z3 > ỹ)

= Pr
(
min

(
Z1/w

(1)
1 , Z2/w

(1)
2 , Z3/w

(1)
3

)
> r(1)

)
=

∫
Xt

Pr(Tω(1), t > r(1) | Xt = xt)fXt(xt)dxt

= (1− τ)

∫
Xt

Pr(Tω(1), t > r(1) | Tω(1), t > vτ (ω
(1),xt),Xt = xt)fXt(xt)dxt

≈ 1− τ

n

n∑
t=1

(
1 +

ξ(ω(1) | xt)
(
r(1) − vτ (ω

(1),xt)
)

σ (ω(1) | xt)

)−1/ξ(ω(1)|xt)

,

assuming {xt : t ∈ {1, . . . , n}} is a representative sample from Xt. The procedure

for p2 is analogous. We note that this estimation procedure is only valid when r(1) >

vτ (ω
(1),xt), or r

(2) > vτ (ω
(2),xt), for all t: however, for each τ ∈ T, this inequality

is always satisfied, owing to the very extreme nature of the probabilities in question.

Through this approximation, we obtain p̂1 = 1.480449×10−5 and p̂2 = 2.460666×10−5.

8.5 Challenge C4

8.5.1 Exploratory data analysis

Challenge C4 entails estimating survival probabilities across 50 locations on the island

of Utopula. As stated in Rohrbeck et al. (2023), the Utopula island is split into two ad-

ministrative areas, for which the respective regional governments 1 and 2 have collected
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data concerning the variables Yi,t, i ∈ I = {1, . . . , 50}, t ∈ {1, . . . , 10, 000}. The index

i denotes the ith location, with locations i ∈ {1, . . . , 25} and i ∈ {26, . . . , 50} belonging

to the administrative areas of governments 1 and 2, respectively. Index t denotes the

time point in days; however, since Yi,t are IID for all i, we drop the subscript t for the

remainder of this section.

Many multivariate extreme value models are only applicable in low-to-moderate

dimensions, and we would not generally expect such techniques to scale to the 50-

dimensional setting (Engelke and Ivanovs, 2021). It is therefore reasonable to consider

techniques for dimensional reduction. We explore this possibility by examining the

extremal dependence structure of the data. In particular, we look at pairwise χ(u)

extremal dependence coefficients, introduced in equation (8.2.1), for all possible pairwise

combinations of sites; the resulting estimates with u = 0.95 are visualised in the heat

map of Figure 8.5.1.

Figure 8.5.1 suggests the existence of 5 distinct subgroups where all variables within

each subgroup have similar extremal dependence characteristics, but variables in differ-

ent subgroups appear to be approximately independent of each other in the extremes.

It is worth noting that the same clusters are identified when examining pairwise η(u)

extremal dependence coefficients; the resulting estimates can be found in Appendix E.

Moreover, examining the magnitudes of the aforementioned χ(·) and η(·) estimates,

assuming asymptotic dependence between variables in each group does not appear rea-

sonable. We therefore consider models that can be applied to data structures that do

not take their extreme values simultaneously. The indices of the five aforementioned

subgroups are given by:
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Figure 8.5.1: Heat map of estimated empirical pairwise χ(u) extremal dependence
coefficients with u = 0.95.

G1 = {4, 14, 19, 28, 30, 38, 43, 44},

G2 = {3, 10, 15, 18, 22, 29, 45, 47},

G3 = {8, 21, 25, 26, 32, 33, 34, 40, 41, 42, 48, 49, 50},

G4 = {1, 2, 5, 7, 9, 17, 20, 31, 46},

G5 = {6, 11, 12, 13, 16, 23, 24, 27, 35, 36, 37, 39}.

Groups G1 and G2 include the most strongly dependent variables (shown by the

darkest colour blocks in Figure 8.5.1), followed by groups G3 and G4, while group G5

contains the most weakly dependent variables. We henceforth assume independence be-

tween these groups of variables, i.e., Pr((Yi)i∈Gk
∈ Ak, (Yi)i∈Gk′

∈ Ak′) = Pr((Yi)i∈Gk
∈

Ak) Pr((Yi)i∈Gk′
∈ Ak′), Ak ⊂ R|Gk|, Ak′ ⊂ R|Gk′ |, for any k ̸= k′ ∈ {1, . . . , 5}.

Challenge C4 requires us to estimate the probabilities p1 = Pr (Yi > si; i ∈ I) and

p2 = Pr(Yi > s1; i ∈ I), where si := 1(i ∈ {1, 2, . . . , 25})s1 + 1(i ∈ {26, 27, . . . , 50})s2
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and s1 (s2) denotes the marginal level exceeded once every year (month) on aver-

age. We refer to p1 and p2 as parts 1 and 2 of C4, respectively. Under the assump-

tion of independence between groups, the challenge can be broken down to 5 lower-

dimensional challenges involving the estimation of joint tail probabilities for each Gk,

k ∈ {1, . . . , 5}. These can then be multiplied together to obtain the required over-

all probabilities due to (assumed) between-group independence. Specifically, we have

p1 =
∏5

k=1 Pr (Yi > si; i ∈ Gk) and p2 =
∏5

k=1 Pr (Yi > s1; i ∈ Gk). We now consider

the estimation of within group probabilities.

8.5.2 Conditional extremes

In this section, we detail the modelling approach proposed by Heffernan and Tawn

(2004), commonly referred to as the conditional extremes model. The main appeal

of this approach is that it provides a flexible multivariate extreme value framework,

capable of capturing a range of extremal dependence forms. It has thus been applied

extensively to the joint modelling of environmental data sets (Keef et al., 2013; Jonathan

et al., 2014) and in the high dimensional setting (e.g., Quinn et al., 2019). For these

reasons, we opt to employ this as our method for modelling extremes in challenge C4.

Consider a d-dimensional random variable W = (W1, . . . ,Wd) on Laplace margins.

The conditional extremes model approach assumes the existence of normalising func-

tions a|i, b|i such that

lim
wi→∞

Pr
{
W−i ≤ a|i (wi) + b|i (wi) z|i | Wi = wi

}
= H|i

(
z|i
)
, (8.5.1)

for non-degenerate distribution functions H|i, i ∈ {1, . . . , d}, where W−i denotes the

vector W with the ith component removed. Here, z|i is within the support of the
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residual random vector

Z|i = (W−i − a|i (wi))/b|i (wi) ∼ H|i. (8.5.2)

A direct consequence of assumption (8.5.1) is that, conditional onWi > ui, the variables

Wi − ui and Z|i are independent in the limit as ui → ∞, with limiting distributions as

unit exponential and H|i, respectively.

Parametric families for the normalising functions a|i and b|i were provided for the

case of Laplace margins by Keef et al. (2013). Specifically, they set

a|i(wi) = α−|iwi and b|i(wi) = w
β−|i
i , (8.5.3)

for α−|i ∈ [−1, 1]d−1 and β−|i ∈ (−∞, 1]d−1, with vector operations applied compo-

nentwise. Let αj|i and βj|i, j ∈ {1, . . . , d} \ {i}, denote the elements of the respective

parameter vectors associated with variable Wj.

Estimation of the α−|i and β−|i can be achieved via standard maximum likelihood

techniques, provided we make an additional assumption regarding the parametric form

of the distribution H|i. Accepted practice is to assume IID marginal distributions

Hj|i ∼ N(µj, σ
2
j ), µj ∈ R, σj ∈ R+ for all j ∈ {1, . . . , d}\{i}, as suggested by Heffernan

and Tawn (2004).

Having obtained maximum likelihood estimates for α−|i, β−|i for some high thresh-

old ui of Wi, extreme predictions in the form of (W−i,Wi)|Wi > vi can be made for

any vi ≥ ui, by exploiting the limiting independence of (Wi − vi) and Z|i. Drawing

a realisation z|i of Z|i from the set of fitted residual values (8.5.2) and independently

generating an observation from (Wi−vi) provides a new observation of W in the region

{w ∈ Rd;wi > vi}. Algorithm 1 details how we employ this method when estimating

extreme set probabilities.

We apply the above methodology when estimating probabilities p1 and p2 defined
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Algorithm 1 Extremal probability estimation using conditional extremes

1: Fit the conditional extremes model as described above.

2: Select a number N ∈ Z+ of values to generate.

3: for j ∈ {1 . . . , N} do

4: Simulate a realisation wi of (Wi − vi)|(Wi > vi) from a unit exponential distri-

bution.

5: Sample z|i from the set of fitted residual values (8.5.2).

6: Set w−i = α−|iwi + βwi

−|iz|i.

7: Obtain a realisation wj := (w−i, wi) of (W−i,Wi)|Wi > vi.

8: end for

From this we obtain realisations {wj}Nj=1.

9: Estimate the probability Pr(W ∈ A) for A ⊂ {x ∈ Rd; xi > vi} via

p̂A =

(
1

N

N∑
j=1

1(wj ∈ A)

)(
1

2
exp(−vi)

)
,

where the right-side term originates from the unit Laplace marginal exceedance

probability.

in Section 8.5.1. The analysis of Section 8.5.1 identified five subgroups G1, . . . , G5,

between which we assume independence. As is discussed in Section 8.5.1, we leverage

this dependence pattern when estimating probabilities p1 and p2 by calculating the

individual subgroup probabilities separately.

We first transform the data onto Laplace margins via Wi := FL(F
−1
G (Yi)), where

FG and FL denote standard Gumbel and Laplace distribution functions, respectively.

Setting W := (W1, . . . ,W50), we divide this random vector into the five subgroups

identified in Section 8.5.1. The subgroup probabilities are each estimated using Algo-

rithm 1 for each subvector. For this, we select the first element of each subvector as

the conditioning variable and simulate 108 replicates from each fitted model to obtain
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probability estimates. To account for uncertainty in the estimation of the normalising

functions (8.5.3), we perform a parametric bootstrapping procedure with 100 samples.

That is, we fit an initial conditional extremes model for a given conditioning threshold,

then use this model to generate 100 predictive samples and apply Algorithm 1 to each

to estimate 100 realisations of the target probabilities. Sensitivity analyses of the esti-

mated probabilities to the choice of conditioning variable suggest no significant effect.

Furthermore, we consider a range of conditioning thresholds; the corresponding esti-

mates of subgroup probabilities defined in Section 8.5.1 appear relatively stable with

respect to the conditioning threshold quantile. We ultimately select 0.85-quantiles for

the conditioning thresholds of our final probability estimates.

8.5.3 Results

Figure 8.5.2 shows the bootstrapped estimated individual group and overall probabil-

ities with respect to the conditioning threshold quantile for part 1. The results for

part 2 are given in Appendix E. Our final estimates are given by p̂1 = 1.093634 ×

10−26 (2.149591 × 10−36, 1.359469 × 10−24) and p̂2 = 1.075787 × 10−31 (1.596381 ×

10−46, 1.850425× 10−29), with 95% confidence intervals given in parentheses.

8.6 Discussion

In this paper, we have proposed a range of statistical methods for estimating extreme

quantities for challenges C1-C4. For the univariate challenge C1, we estimate an ex-

tremal quantile for a response conditioned on a set of environmental covariates. Specif-

ically we wanted to estimate the 0.9999-quantile, and the associated 50% confidence

intervals, of Y | X = xi, i ∈ {1, . . . , n}. For challenge C2, we estimated a quantile,

corresponding to a once in 200 year level, of the marginal distribution Y whilst incor-

porating the loss function in equation (8.3.2). Overall we ranked 6th and and 4th for
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Figure 8.5.2: Part 1 subgroup and overall bootstrapped probability estimates on the
log scale. The red points indicate the original sample estimates and the colouring of the
boxplots indicates the choice of conditioning threshold, with the conditioning quantile
indices 1-6 referring to the quantile levels {0.7, 0.75, 0.8, 0.85, 0.9, 0.95}, respectively.

challenges C1 and C2, respectively.

For challenge C1, our final model (model 7 in Table 8.3.1) was chosen to minimise

the model selection criteria but the QQ plot under-estimates the most extreme values of

the response (see Figure 8.3.2). Despite this under-estimation, the conditional quantiles

calculated for C1 are generally well aligned with the true quantiles. If we ignore the

model selection criteria and chose the model based on a visual assessment of QQ plots,

we would have chosen model 5 in Table 8.3.1 and this would have covered the true

quantile on fewer occasions than our chosen model. Therefore, the main issue with our

results is the narrow confidence intervals.

Narrow confidence intervals are an indication of over-fitting and this could have
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arisen in several places. For instance, Rohrbeck et al. (2023) suggested all the season-

ality is captured in the threshold, while our model includes a seasonal threshold and

a covariate for seasonality in the scale parameter of the GPD model. As well as over-

fitting, the model may not have been flexible enough. This could be, in part, due to

our model missing covariates. For instance, the true model contained V2 as a covariate

(Rohrbeck et al., 2023) whilst our model did not. In addition, the basis dimensions for

our splines are low. In practice, one should choose a higher dimension than we would

expect and although we chose the dimension using a model-based approach, it may

have resulted in the splines not being flexible enough to capture all of the trends in the

data. Since we used the same model for challenges C1 and C2, these issues can also be

attributed to our ranking in C2.

For the first multivariate challenge C3, we employ an extension of Wadsworth and

Tawn (2013) to estimate the probability of three variables lying in an extremal set. Our

extension to this framework accounts for non-stationarity in the data when estimating

the associated coefficient which relies on GAMs to obtain the parameters. The QQ plots

for the resulting fitted exceedance model suggested a reasonable fit; however, parameter

estimates show the proposed modelling approach was not the most suitable. For this

challenge, we ranked 5th and our estimates are on the same order of magnitude as the

truth (Rohrbeck et al., 2023).

We note similarities in the methodologies presented for the challenges C1, C2, and

C3. Specifically, each of the proposed methods used the EVGAM framework for captur-

ing non-stationary tail behaviour via a generalised Pareto distribution. We acknowledge

that the model selection tool proposed for C1 and C2 could also be applied for C3. How-

ever, we opted not to use this tool for several reasons. Firstly, unlike the univariate

setting, there is no guarantee of convergence to a GPD in the limit, and the GPD tail

assumption thereby needs to be tested. Moreover, in exploratory analysis, we tested

the model selection tool for C3 but found the selected models and quantiles to not be
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satisfactory, particularly in the upper tail of the min-projection. We therefore select

a model manually, using QQ plots to evaluate performance. Exploring threshold and

model selection techniques for multivariate extremes represents an important area of

research.

In the final multivariate challenge C4, we were asked to estimate very high-dimensional

joint survival probabilities. To do so, we split the probability into 5 lower-dimensional

asymptotically independent components, then estimated each using the conditional ex-

tremes method of Heffernan and Tawn (2004). In the final rankings of Rohrbeck et al.

(2023), we ranked 3rd for this challenge. A more prudent method could have been

implemented, as groups of variables were never truly independent. Alternatively, we

could consider estimating individual group probabilities across varying thresholds and

then taking an average value as our final result. Even though sensitivity analyses indi-

cate little effect of thresholds on model parameter estimates, it may have had a more

significant impact on final probability estimates.
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Conclusions and further work

In this final chapter, we summarise our contributions to the area of extreme value statis-

tics that result from Chapters 3-8 of this thesis. The research presented advances to

the existing methodology for modelling extremal behaviour of sea levels and river flows.

Accounting for non-stationarity and temporal dependence in these univariate processes

have been key themes throughout this thesis and our methods have demonstrated an

improvement in existing approaches. We summarise the content of each chapter in

Section 9.1, before identifying avenues for further work in Section 9.2.

9.1 Summary of contributions

In Chapter 3 we developed a novel methodology for estimating extreme sea levels by

accounting for seasonality in skew surge and peak tide, the dependence between them,

and temporal dependence in skew surges. Our results showed a significant improve-

ment on current methods, which ignored these features of the sea level processes and

instead made several simplifying assumptions. Our model also allowed us to study the

seasonality of sea levels exceeding levels previously unobserved which can be useful for

coastal defence maintenance planning. The return levels estimated from our model

presented a more accurate representation of future extreme events, and will be useful

242
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for future coastal defence upgrades. Seasonal variations are a common feature of many

environmental variables and therefore should be accounted for when estimating return

levels; the methodology discussed in Chapter 3 could apply to a range of variables.

We extended the work of Chapter 3 in Chapter 4 by presenting a framework to in-

vestigate the effects of anthropogenic climate change on extreme skew surges. Increases

in the magnitude or frequency of these events can have catastrophic consequences if not

included in extreme sea level estimation for coastal flood defence design. These trends

are typically different to those observed in the main body of the data, such as mean sea

level rise. We used year and global mean temperature anomaly (GMT) as covariates

in our statistical model for extreme event occurrence. After accounting for mean sea

level trends, we investigated changes in the probability of an extreme skew surge, i.e.,

the rate parameter of the generalised Pareto distribution (GPD), with GMT across the

different seasons and sites on the UK National Tide Gauge Network. We showed there

is evidence of an increasing trend for most seasons across sites, however, occasionally

we found decreasing trends within seasons. We did not find any significant changes in

the magnitude of extreme skew surges, i.e., in the GPD scale parameter, and hence in

the mean of the skew surge excesses of the threshold. Accounting for seasonal changes

in extreme skew surge occurrence with GMT in sea level return level estimation showed

that return levels increase with GMT. The ideas presented in Chapter 4 could be ap-

plied to more locations, but also to other environmental variables to investigate trends

in extreme values.

Chapter 5 presented a procedure for simulating skew surges that reproduces the

stochastic behaviour of their seasonality and extreme values (using ideas from Chap-

ter 3), as well as their temporal dependence. It is fundamental to understand the

temporal dependence of skew surges for coastal erosion maintenance planning as pro-

longed storm events, or clustering of separate storm events that span multiple tidal

cycles, accelerate erosion rates. We used a copula framework, assuming the data fol-
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lows a Markov process, to model the pairwise dependence structure of values separated

by different lags. Since we found evidence of asymptotic independence between such

values, we used the Gaussian copula to capture this extremal behaviour. We found that

the temporal dependence structure is not constant throughout the year, with stronger

dependence found in the summer months, and we captured this using harmonics for the

Gaussian copula dependence parameters. We provided simulations at four UK National

Tide Gauge Network sites.

In Chapter 6 we introduced max-autoregressive moving average (Max-ARMA) pro-

cesses as a potential candidate for modelling extreme river flows. Large precipitation

events cause sudden spikes in river flow data that then exponentially decay, so the

data typically have features of heavy tails and non-linearity; Max-ARMA processes are

powerful tools for modelling time series of this nature, capturing their unique temporal

dependence structure. We discussed conditions for a Max-ARMA process to be station-

ary and identifiable. For inference, we introduced a moments-based procedure using

the extremal index and coefficient of asymptotic dependence that we also derived in

this chapter. We illustrated this procedure on river flow data from the River Thames,

London (UK).

Chapters 7 and 8 detailed contributions, as part of a wider team, for the Extreme

Value Analysis conferences held in 2021 and 2023, respectively. In Chapter 7, we

discussed a marginal modelling approach for predicting wildfire events across the con-

tiguous United States. We obtained estimates of the cumulative distribution function

at locations with missing entries of wildfire count or burnt area. The resulting esti-

mates were then “ranked” using a score function weighted to give higher importance

to extreme observations (Opitz, 2023). Our method produced a significant improve-

ment on the proposed benchmark technique. Then in Chapter 8 we proposed a range

of statistical methods for estimating extreme quantities for the second data challenge,

split into four sub-challenges: C1-C4. For the univariate challenge C1, we estimated an
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extremal quantile for a response conditioned on a set of environmental covariates, with

the associated 50% confidence intervals. For challenge C2, we estimated the marginal

200-year return level of the same environmental response variable whilst incorporating

a pinball loss function. For the first multivariate challenge C3, we employed an exten-

sion to the framework of Wadsworth and Tawn (2013) to estimate the probability of

three variables lying in an extremal set, whilst accounting for non-stationarity in the

data using generalised additive models. In the final multivariate challenge C4, we esti-

mated 50-dimensional joint survival probabilities by splitting the probability into five

lower-dimensional asymptotically independent components and estimating each using

the conditional extremes method of Heffernan and Tawn (2004).

9.2 Further work

In the following sections we discuss interesting avenues for further research to extend the

ideas presented in this thesis. In Section 9.2.1 we discuss ideas for further developments

to our novel methodology for estimating extreme sea levels, which was introduced in

Chapters 3 and 4. Then in Section 9.2.2 we discuss potential avenues for extending our

work from Chapter 5 regarding skew surge simulation. In Section 9.2.3 we detail how we

envision the Max-ARMA model presented in Chapter 6 being used to capture temporal

dependence for river flows so that a realistic marginal model for extreme events can be

developed. Lastly, in Section 9.2.4 we discuss how to combine simulated river flow and

skew surge time series for surge barrier maintenance, taking care with the dependence

between these variables.

9.2.1 Extreme sea level estimation in Chapters 3 and 4

A key part of our methodologies in Chapters 3 and 4 was accounting for skew surge

within-year seasonality. We used a non-stationary threshold, defined as a quantile of
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the monthly skew surge distribution, to define extreme values and develop our non-

stationary GPD model. Using a quantile ensures there are a similar number of ex-

ceedances to model per month. This approach is similar to that of Carter and Chal-

lenor (1981) since we first assumed stationarity within months and then built in the

seasonal variation on a shorter temporal resolution through covariates in the GPD pa-

rameters. This meant that we were able to capture most of the non-stationarity, as well

as skew surge-peak tide dependence, at the same stage of the modelling process. How-

ever, we could have considered a smoother threshold choice by using quantile regression

(Northrop et al., 2016) but we did not try this as our monthly threshold appeared suf-

ficient. Further work could compare differing non-stationary threshold functions; the

evgam R package introduced in Section 2.4.1 of Chapter 2 can be used for doing so via

quantile regression (Youngman, 2019, 2022).

Skew surges are also believed to change over decadal time scales with climate in-

dices. For example, the North Atlantic Oscillation index (NAO) describes such time

scale changes in regional weather systems, so is believed to impact storm surges, and

thus skew surges. Araújo and Pugh (2008) find a negative correlation between storm

surge and air pressure patterns, using NAO. It would be interesting to explore how

adding an NAO covariate into the GPD for extreme skew surges changes model fit

however, this poses two challenges: NAO is difficult to forecast (Siegert et al., 2016),

so using a model of this type for future prediction may be challenging. Secondly,

the marginal distribution of NAO is unknown so would need estimating to obtain the

marginal distribution of skew surges; this could introduce further uncertainty into the

skew surge model and care might need to be taken when modelling the tails of NAO.

As demonstrated in Chapter 4, spatial pooling provides a promising framework to

capture longer-term trends due to climate change; single site trends are subtle but

sharing information across sites gives more significant results. Spatial pooling also

enables inference at locations with limited or no data, where our current single site
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model would not perform well. Our results of Chapter 4 are primarily illustrative since

we considered just four sites here. There are 44 sites on the UK National Tide Gauge

Network where this methodology could be extended so that trends could be shared

amongst suitable spatial regions.

In Chapter 3 we introduced a prior penalty for the GPD shape parameter based on

spatial information. Our results showed drastic reductions in the uncertainty associated

with longer term return levels. We found overlap in confidence intervals for the shape

parameter across all sites studied, so it may be reasonable to fix this parameter, to

be common but unknown, across these sites as an alternative approach for borrowing

information. Fixing the shape parameter to be common in homogeneous regions is a

crucial step in regional frequency analysis, originally introduced by Hosking and Wallis

(1997). It could be interesting to combine our findings of Chapters 3 and 4 to apply

the method in a regional frequency analysis framework, where sites in a homogeneous

region not only have a common shape parameter, but also common longer term trends

due to anthropogenic climate change. We refer the reader to Batstone et al. (2013),

Bernardara et al. (2011) and Haigh et al. (2010) for different approaches to spatial

pooling for extreme sea level estimation.

9.2.2 Simulating skew surges in Chapter 5

Our skew surge simulation procedure of Chapter 5 demonstrated promising results for

replicating the temporal dependence structure of observations. We compared estimates

of well-known extremal dependence measures (the extremal index and the coefficients

of asymptotic (in)dependence; see Chapter 2 for definitions of these) from the observed

data and over 200 simulated samples. Whilst our simulations matched the observa-

tional estimates well (see Section 5.5.2 of Chapter 5), further work could investigate if

we can improve our results. For example, we used the Gaussian copula for modelling

the temporal dependence as this can capture the asymptotic independence structure
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exhibited by the skew surge data, however, other choices could be explored, such as the

Frank, Clayton and Inverted Logistic copulas (Joe, 2014). Alternatively, when incorpo-

rating non-stationarity into the dependence parameter of the Gaussian copula we used

harmonics, however, other approaches could be investigated such as using generalised

additive models (Chavez-Demoulin and Davison, 2005) or splines (Youngman, 2019).

As discussed in Section 9.2.1, we shared information across sites regarding the GMT

covariate in Chapter 4. We could adopt a similar approach to pool information across

sites that share temporal dependence characteristics. For example, Sheerness and Low-

estoft are both located on the east coast and will be affected by similar storms, therefore

we expect them to have a similar dependence structure. This would reduce the uncer-

tainty associated with dependence parameter estimation and ultimately the simulations.

However, we only studied four sites here so continuing with the single site analysis for

a larger set of sites in close proximity would be a necessary first step.

By replicating simulations over 200 samples, we obtained measures of uncertainty

for our simulations that will be useful in practice. However, it would be insightful to

have confidence intervals for the Gaussian copula dependence parameters. Then, we

could check for overlap in dependence parameters across different lags or confidence

intervals that contain zero, where a parameter could be disregarded. The uncertainty

in dependence parameter estimates should then be propagated through into the uncer-

tainty quantification for our simulations. The block bootstrap procedure is a potential

method for quantifying uncertainty that preserves temporal dependence (Politis and

Romano, 1994). Alternatively, since we used likelihood inference to fit the copula

models in Chapter 5 (under a Markov assumption), the asymptotic normality of the

maximum likelihood estimates could be exploited to obtain confidence intervals based

on the Hessian.

The simulations we presented in Chapter 5 correspond to the historic period of

observation, but in practice, simulations of future records are more interesting and
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important. Obtaining simulations for a future time period is straightforward using

the predicted tidal regime. However, we used the marginal model of Chapter 3 which

assumes a steady state climate and is unrealistic in practice. Predicted trends in mean

sea level under different climate scenarios can be easily added back onto the simulations.

However, there exist longer term trends in extreme skew surges that differ from those in

the mean, as identified in Chapter 4. We can also capture these trends here by adding

a GMT covariate into our marginal GPD model so that simulations can be obtained

under different scenarios of future GMT increases.

9.2.3 Max-ARMA models for extreme river flow in Chapter 6

The theoretical results derived for Max-ARMA models in Chapter 6 were motivated by

the need to find a suitable candidate for capturing the temporal dependence of river

flow series, particularly in its extreme states. A large precipitation event causes river

flows to spike and then remain high for days as the large volume of water propagates

downstream. Max-ARMA processes are a suitable candidate for modelling this be-

haviour, and we introduced a moments-based inference approach using the extremal

properties derived in Chapter 6 to fit such models. However, we focussed on station-

ary Max-ARMA processes and, like other environmental processes considered in this

thesis, river flows exhibit non-stationarity. Figure 9.2.3 shows the within-year seasonal-

ity in the UK River Thames, observed at Kingston-upon-Thames, the same data used

in Chapter 6 but there only winter data were considered. Future work is required to

preprocess the data to remove the seasonal trend; we discuss our initial ideas below.

We suggest extracting the baseflow process to obtain a residual series without these

strong seasonal trends in the main body of data. The baseflow of a river is the portion

of its flow attributed to its groundwater seepage into the river channel so that it persists

even during dry periods. We aim to estimate the baseflow from our series so that it can

be removed. Let {Yt : t = 1, . . . , n} denote the daily maximum river flow series over
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n observations; knowing t tells us the day in year d ∈ [1, 365], so for some function f ,

d = f(t). We estimate baseflow by first finding the minimum observation within some

time window w ∈ N around the day of interest d for a given year k = 1, . . . , K where

K denotes the total number of years, formally defined as m
(k)
d = min{Y (k)

d−w, . . . , Y
(k)
d+w}.

Then, we obtain a minimal set for each day d across all years k as md =
{
m

(k)
d ; k =

1 . . . , K
}
. Lastly, we find the quantile q ∈ [0, 1] of observations in the minima set for

day d across all years and denote this qd. We call the series {qd}365d=1 the baseflow process,

and this is the same across years so it has a cyclic annual pattern. Then we obtain a

residual process {ϵt} defined as ϵt = Yt − qf(t) that can be assumed as more stationary

than {Yt} within the body of data, although the extremes may still exhibit seasonality.

The quantile q and time window w must be carefully chosen; increasing the time

window will create a smoother baseflow but too wide will lose the specific seasonal

behaviour. Increasing the quantile q will capture more temporal dependence in the

baseflow, so less for the residual process, however, too high will result in removing too

much information from the data. Figure 9.2.1 shows an example from Kingston-upon-

Thames for differing quantiles and time windows; this shows that q = 0.75 yields a much

smoother curve than q = 0.2, and having w too low (here w = 2) yields a baseflow with

almost very little seasonal structure. Then we fix w = 5 and q = 0.75 to illustrate

that the residual process has less temporal dependence (Figure 9.2.2 shows a reduction

in the acf values, especially for large lags) and less seasonality in the main body of

data (see Figure 9.2.3 where the median is constant across months for the residuals).

Extreme residual values have a similar seasonal structure to extreme skew surges as in

Chapter 3, so a similar approach using a non-stationarity version of the GPD could be

used to model the tail here.

Simulations from an appropriate Max-ARMA model act as simulations of the resid-

ual process extremes. However, these will initially be on unit Fréchet margins, by defi-

nition of a Max-ARMA process, so a marginal transformation is required to transform
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Figure 9.2.1: Baseflow process (blue) for time window w = 5 (left and right) and w = 2
(centre), and quantile q = 0.75 (left and centre) and q = 0.2 (right) plotted against the
day of year d. A 20 year series of river flow observations (from Kingston-upon-Thames)
are shown by grey points.
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Figure 9.2.2: Autocorrelation function (acf) plots for the Kingston-upon-Thames data
(left) and its corresponding residual series (right), once the baseflow is removed with
w = 5 and q = 0.75.
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Figure 9.2.3: Boxplots of observations per month for the Kingston-upon-Thames data
(left) and its corresponding residual series (right), once the baseflow is removed with
w = 5 and q = 0.75.

this series to the appropriate scale; we discuss such a transformation in Section 6.5.3

of Chapter 6. These simulations can then be added to the baseflow process to ob-

tain a simulated series of river flow extremes with the correct seasonal structure in the

main body. Temporal trends in the tail will still need to be accounted for, this can

be done during the marginal transformation for the residuals. However, exploring how

capturing seasonality can be incorporated into the Max-ARMA framework (e.g., by in-

cluding temporal covariates on the model parameters) would be an interesting avenue

for further work.

9.2.4 Combining simulations from Chapters 5 and 6

One motivation driving the research presented in Chapter 5 was for surge barrier main-

tenance at estuary locations, such as the Thames Barrier. At these locations, barriers

mitigate against coastal and fluvial flooding. In Chapter 5, we simulated time series

of skew surge at Sheerness that can be used to estimate barrier closures for coastal

flooding at the Thames Barrier. In Section 9.2.2, we discuss how to simulate river

flow time series using the Max-ARMA model; these simulations can also be used to

predict barrier closure rates resulting from fluvial flooding. However, combining these
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All Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
τ 0.16 0.20 0.19 0.21 0.18 0.17 0.08 0.21 0.14 0.09 0.15 0.05 0.17
χ 0.08 0.13 0.12 0.06 0.08 0.04 0.15 0.04 0.07 0.03 0.11 0.05 0.04
χ̄ 0.28 0.25 0.26 0.001 0.08 0.03 0.30 0.09 0.04 -0.04 0.24 -0.002 0.13

Table 9.2.1: Empirical estimates of Kendall’s τ measure, χ and χ̄ (both at the 0.99
quantile) for skew surge and river flow daily maximum data at Sheerness and Kingston-
upon-Thames, respectively.

simulations assumes skew surge and river flow are independent, which is a reasonable

assumption, but since weak dependence does exist between them, further work could

investigate modelling this relationship (Hendry et al., 2019).

Table 9.2.1 illustrates initial exploratory analysis into the dependence between skew

surge daily maxima at Sheerness and river flow daily maxima at Kingston-up-Thames.

Kendall’s τ measure suggests there is weak dependence in the body of the data. We

also look at estimates on a monthly scale to assess if the relationship between skew

surge and river flow is time-varying. We find the strongest dependence in the body

(i.e., highest values of Kendall’s τ) in March and July, followed by January and then

February.

It is also important to consider dependence in the extremes since an extreme event

of either variable can be destructive, but a combination of extreme events over mul-

tiple hazards is even more so. Therefore, it is fundamental to determine if extremal

dependence exists between skew surge and river flow. To investigate this, we empiri-

cally estimate bivariate asymptotic dependence measures χ and χ̄ (see Section 2.3 of

Chapter 2 for details) for exceedances of the 0.99 quantiles; see Table 9.2.1. These

estimates suggest asymptotic independence across all months so that both variables are

unlikely to be extreme at the same time regardless of the time of year they occur. If

jointly modelled, a suitable asymptotically independent model could be implemented

as there is some evidence, particularly for January, February, June and October that

χ̄ > 0 indicating a departure from independence in the occurrence of joint extremes.

For example, in a copula framework, the Gaussian copula would be suitable but the
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bivariate extreme value logistic copula would not; both are introduced in Section 2.3.4

of Chapter 2. It would be interesting to assess the importance of capturing the joint

river flow and skew surge dependence on the annual rate of barrier closures, akin to the

effect of the temporal dependence study in Chapter 5.



Appendix A

Supplementary material for

Chapter 3: Accounting for

seasonality in extreme sea level

estimation

A.1 Introduction

This document outlines the supplementary material for Chapter 3. Firstly in Sec-

tion A.2, we present the exploratory analysis to assess skew surge-peak tide dependence,

discussed in Section 3.3.3 of Chapter 3; we demonstrate a time-varying relationship at

Sheerness. We fit the tide dependent skew surge model presented in Section 3.4.4 of

Chapter 3 to a 483 year physical model dataset in Section A.3, to illustrate the phys-

ical justification of modelling skew surge-peak tide dependence. Then in Section A.4

we investigate temporal dependence in the skew surge series, this was discussed in Sec-

tion 3.3.2 of Chapter 3 and then accounted for in our methodology in Section 3.4.5.

We investigate the sensitivity of our sea level return level estimates to the choice of

255
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the threshold used in the skew surge generalised Pareto distribution (GPD) model in

Section A.5. We present the results of a simulation study in Section A.6, where we es-

timate sea level return levels using our proposed method and that used in practice (the

skew surge joint probabilities method of Batstone et al. (2013), abbreviated to SSJPM)

to samples of 483 years of physical model data. In Section A.7 we derive an analytical

expression for the probability that a randomly selected sea level annual maxima is from

a particular month, given it is equal to a return level (see equation (3.5.2) of Chap-

ter 3); this is evaluated in Section 3.5.5 of Chapter 3 to understand the seasonality of

extreme sea levels. In Section A.8 we detail the process of transforming skew surges

to uniform margins using the final model presented in Chapter 3, and we use this as

a means of assessing skew surge model fit; this was used in the bootstrap procedure

for uncertainty quantification on return level estimations in Section 3.5.4 of Chapter 3.

Lastly, we present supplementary figures in Section A.9.

A.2 Skew surge-peak tide dependence

In this section, we present our exploratory analysis to demonstrate that it is reason-

able to assume skew surge and peak tide are independent at Heysham, Lowestoft and

Newlyn, but not at Sheerness. We perform various statistical tests at all sites. Firstly,

we formally test if there is a relationship between extreme skew surges and their as-

sociated ranked peak tide, where extreme skew surges are defined as exceedances of

different thresholds. Then we investigate if all peak tides come from the same distri-

bution as those associated with extreme skew surges. We also do this on a monthly

scale at Sheerness to understand how the dependence structure changes within a year.

Lastly, we use a simple quantile regression technique to test if the quantile of skew

surges associated with different ordered tidal bands varies.

We test if ranked peak tides associated with extreme skew surge (defined as ex-
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Table A.2.1: Kolmogorov-Smirnov test p values for uniformity of ranked peak tides
associated with extreme skew surges, defined exceedances of different quantiles of the
data (0.9, 0.95, 0.975, 0.999). Average p values, after repeated bootstrapping, are shown
in parentheses.

Site Block size 0.9 0.95 0.975 0.99

HEY 19 0.0052 (0.012) 0.044 (0.083) 0.1813 (0.11) 0.32 (0.12)

LOW 5 0.63 (0.17) 0.72 (0.22) 0.78 (0.27) 0.33 (0.23)

NEW 20 0.070 (0.075) 0.091 (0.087) 0.15 (0.17) 0.12 (0.11)

SHE 6 1.5× 10−8 (4.1× 10−8) 1.1× 10−4 (2.9× 10−4) 9.9× 10−4 (0.0011) 0.0013 (7×10−4)

ceedances of the 0.95 quantile) are uniformly distributed, using a Kolmogorov-Smirnov

test (see Figure A.9.3). If the two components are independent, these will be dis-

tributed Uniform(0, T ) where T is the total number of tidal cycles. The standard

version of the Kolmogorov-Smirnov test falsely assumes that peak tides are temporally

independent; we use the bootstrap procedure of Politis and Romano (1994) to account

for this. Average p values over 100 iterations are reported in Table A.2.1, with expected

block sizes inferred from the site specific autocorrelation function (acf) plots (see Fig-

ure A.9.5). At Sheerness, we find strong evidence to reject the null hypothesis that

ranked peak tides associated with extreme skew surges are uniformly distributed, with

p value 2.89 × 10−3. At the other three sites, we find sufficient evidence to reject this

claim at the 5% level. We also explore the sensitivity of this test to the choice of the

threshold used to define extreme skew surges, the p values are reported in Table A.2.1.

Lower thresholds typically correspond to lower p values, suggesting we are more likely

to reject the independence hypothesis when there are more exceedances.

We also test if the distribution of peak tides associated with extreme skew surges

is the same as the distribution of all peak tides, using the Anderson-Darling test. Fig-

ure A.2.1 shows these distributions at all sites with their associated probability density

functions, estimated using a Gaussian kernel density estimator. If peak tide and skew

surge are independent, these two distributions should be identical up to sampling vari-

ation. We find insufficient evidence to reject the null hypothesis that these are from
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Figure A.2.1: Histogram of all peak tides at Heysham (top left), Lowestoft (top right),
Newlyn (bottom left) and Sheerness (bottom right). Probability density function of
all peak tides (solid) and peak tides associated with extreme skew surges (dashed) are
interpolated onto each distribution.

the same distribution at Heysham, Lowestoft and Newlyn at the 0.01 significance level

(p values are 0.014, 0.083 and 0.215, respectively). However, this is not the case at

Sheerness, with p value 0.00025.

We investigate this relationship at Sheerness further by studying the dependence

on a monthly basis to understand how the skew surge-peak tide dependence changes

throughout the year. Again, we compare the distributions of all peak tides and extreme

skew surge-related peak tides. Figure A.2.2 shows this for February, May, August

and October. In May, the mode of the distribution of peak tides associated with

extreme skew surges shifted to a lower value than the distribution of all peak tides.

Results from the Anderson-Darling test suggest there is significant evidence, at the

1% level, to reject the null hypothesis that peak tides and the peak tides associated

with extreme skew surge come from different distributions all months except February,

March, September and December. Therefore, we conclude the skew surge-peak tide

independence assumption is not valid for most months. When modelling the dependence

of skew surge and peak tide in Section 3.4.4 of Chapter 3, we recognise that this
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Figure A.2.2: Monthly distributions of peak tides at Sheerness in February, May, August
and October. The probability density function of all peak tides (solid) and peak tides
associated with extreme skew surge (dashed) are interpolated onto each distribution.

relationship is changing across the year.

To further investigate skew surge-peak tide dependence, we partition the ordered

peak tide series into blocks of 100 (so that block 1 corresponds to the 100 smallest peak

tide observations). For each block, we estimate the 0.95 quantile of the associated skew

surges. The estimated quantiles are shown in Figure A.2.3. There is no immediate

relationship between the skew surge quantile and the block number. However, when

we fit a linear model, there is a significant trend at the < 10−4% level at Sheerness and

the 0.1% level at Newlyn, but no significant trend at Lowestoft and Heysham. Since

our other tests have not found dependence at Newlyn, this relationship is likely to be a

physically small relationship but statistically significant due to the length of the data

series. However, at Sheerness, it is likely this is due to skew surge-peak tide dependence

based on our other findings.

A.3 Physical model data

In Section A.2 here (and Section 3.3.3 of Chapter 3) we identify weak dependence

between skew surge and peak tide at Sheerness; we account for this in our skew surge

model. Our results show that incorporating peak tide as a covariate on the rate and

scale parameter of the GPD for extreme skew surges improved the model fit. In this
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Figure A.2.3: 0.95 quantile estimates of skew surges associated with ranked peak tide
groups of size 100, at Heysham (top left), Lowestoft (top right), Newlyn (bottom left)
and Sheerness (bottom right).

section, we make the same comparisons on a 483 year data set from a hydrodynamical

model driven by a regional climate model (HadGEM3-GC3-MM). Howard and Williams

(2021) present this model to generate a dataset of 483 year present-day surges at sites

on the UK National Tide Gauge Network. They use their simulations to review the

skew surge-peak tide independence assumption at Sheerness, and demonstrate that

extreme skew surges are more likely to occur on larger peak tides. D’Arcy and Tawn

(2021) evaluate this assumption using a simplified version of the method presented in

Chapter 3. For the scale parameter, we compare the models given in equations (3.4.6)

and (3.4.12), and we refer to these as Models S2 (without a tide covariate) and S4

(with a tide covariate), respectively, as in Chapter 3. Models for the rate parameter

are given by equations (3.4.7) and (3.4.11), we refer to these as Model R0 (without a

tide covariate) and R1 (with a tide covariate), respectively.

For the physical model skew surge data, we begin by comparing models for the scale

parameter only. Model S4 reduces both AIC and BIC by 28.75 and 21.03, respectively,

relative to Model S2 suggesting that the extra parameter that captures variation with
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peak tide tide is necessary. The likelihood ratio test strongly agrees with this, giving a

significant p value of the order 10−8. We estimate the tidal coefficient to be γ̂σ = −0.013

with 95% confidence interval (-0.018, -0.0081). This suggests that more extreme skew

surges occur on lower peak tides, as found in our exploratory analysis. Since the

confidence interval doesn’t contain 0 the tidal coefficient is significant. This parameter

estimate is reassuringly close to the corresponding estimate for the observed data of

γ̂σ = −0.012 (−0.026, 0.0011) estimated in Section 3.4.4 of Chapter 3. Whilst this

suggests threshold excesses occur on lower peak tides, the confidence interval contains

0 so this result for the observed data is not statistically significant. However, this result

is supported by the physical model data at Sheerness, which are based on physical

reasoning with no data measurement issues and no issues with changes in the tide

gauge and estuary over time.

Next, we compare models for the rate parameter on the physical model data. We

find that Model R1 reduces AIC by 88.4 and BIC by 56.3 when compared with Model

R0, this suggests that adding a peak tidal covariate to the rate parameter is important.

Therefore, we make the same conclusions on 483 years of physical model data, as we do

on 37 years of observed data. This shows the rate model parameterisation is supported

empirically and physically. When we cannot reasonably assume skew surge and peak

tide are independent, accounting for their dependence is important as it can lead to

practical differences in the sea level return level estimates, as shown in Section 3.5.3 of

Chapter 3.

A.4 Temporal skew surge dependence

Here we provide further details on skew surge temporal dependence discussed in Sec-

tion 3.3.2 of Chapter 3. We study the two key measures of extremal dependence, these

are a measure of asymptotic dependence χ and of asymptotic independence χ̄ for each
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site. For random variables Yi and Yi+τ separated by lag τ from a stationary sequence,

with yF the upper endpoint of their distribution F , Coles et al. (1999) define

χτ = lim
y→yF

Pr(Yi+τ > y|Yi > y),

as a measure of asymptotic dependence where χτ ∈ [0, 1]. If χτ ∈ (0, 1], we say that

Yi and Yi+τ are asymptotically dependent; this means there is non-zero probability

of Yi+τ being large when Yi+τ is large at all extreme levels. Whereas χτ = 1 and

χτ = 0 correspond to perfect dependence and asymptotic independence, respectively.

Therefore, χτ fails to signify the level of asymptotic independence, so Coles et al. (1999)

also define the measure χ̄τ as

χ̄τ = lim
y→yF

2 log Pr(Yi > y)

log Pr(Yi > y, Yi+τ > y)
− 1,

where χ̄τ ∈ (−1, 1]. Asymptotic dependence and asymptotic independence correspond

to χ̄ = 1 and χ̄ < 1, respectively, whilst 0 < χ̄τ < 1 and −1 < χ̄τ < 0 correspond to

positive and negative association, respectively, and χ̄τ = 0 corresponds to near inde-

pendence. We evaluate both measures with y at different quantiles of the distribution

in Figure A.4.1 for Heysham, and Figures A.9.6 and A.9.7 for the remaining sites.

Firstly, we use estimates of χ and χ̄ to choose a high threshold y to empirically

estimate the extremal index θ using the runs method. We are interested in choosing a

threshold where these measures tend to zero without significant noise; the 0.95 quantile

is sufficient for each site. We explore the sensitivity of our estimate to this threshold

choice in Figure A.4.2; as we increase the threshold, the estimate of θ increases. This

is what we expect since exceedances of lower thresholds are likely to exhibit more

dependence than exceedances of higher thresholds. We also explore the sensitivity to

run length r in Figure A.4.2. Estimates of the extremal index are generally higher at

Newlyn and Sheerness, which agrees with the acf values in Figure A.9.5. The choice of
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Figure A.4.1: Estimates of χ (top row) and χ̄ (bottom row) for Heysham for exceedances
of the 0.9, 0.95, 0.975, 0.99 and 0.999 quantiles (from left to right column) at various
lags.
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Figure A.4.2: Empirical (runs) estimates of the extremal index θ for skew surge, at
various quantiles and run lengths at Heysham (top left), Lowestoft (top right), Newlyn
(bottom left) and Sheerness (bottom right). The estimates use thresholds which are
taken to be quantiles 0.9 (circle), 0.95 (square), 0.975 (triangle), 0.99 (cross) and 0.999
(star).

run length and threshold level are important because they have a significant influence

on the θ estimate, so we choose these carefully.

Since our empirical estimates are sensitive to the threshold level, we develop a

parametric model for the subasymptotic extremal index θ̂(y, r), that is dependent on

the skew surge level y; this is given in equation (3.4.16) of Chapter 3. Figure 3.4.3 of

Chapter 3 shows a consistent model fit with the empiricals at Heysham, with parameter

estimates θ̂ = 1 and ψ̂ = 0.33 for r = 2. Figure A.9.8 shows the fit at the remaining

sites and these also match closely with the empiricals. The parameter estimates are

θ̂ = 1, 0.95, 0.89 and ψ̂ = 0.42, 0.17, 0.21 for r = 10, 1, 10 at Lowestoft, Newlyn and

Sheerness, respectively. As expected, θ̂ lies close to 1 in all cases, this represents the

limiting extremal index and the case of independence. The estimate of ψ tells us about

the speed of convergence to θ̂, so that Newlyn converges fastest whilst Lowestoft is the

slowest.
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A.5 Threshold sensitivity

In this section, we explore the sensitivity of the sea level return level estimates de-

rived from the proposed model (3.4.15) to the choice of threshold u for the skew surge

model (3.4.14); above this threshold we fit a non-stationary GPD and the empirical

distribution is used below. Recall that our modelling approach uses a time-varying

threshold, so we have a different threshold uj for each month j = 1, . . . , 12. In Chap-

ter 3, we use the 0.95 quantile of monthly skew surges, here we compare these results

with using the 0.9 and 0.99 quantile to define extreme skew surges.

Figure A.5.1 shows the return level estimates from the proposed model where the

0.9, 0.95 and 0.99 quantiles are used to define the extreme values at Sheerness. The

95% confidence intervals are the same as those in Chapter 3 where the 0.95 quantile is

used, both before and after we add a prior distribution (see Section 3.5.4 of Chapter 3

for details). We can see that the estimates for the method using the 0.9 and 0.99

quantile of skew surges lie within the confidence intervals for the original estimates

(0.95 quantile). The estimated values from these two new thresholds are much closer to

the point estimate for the 0.95 quantile threshold than the endpoints of the associated

95% confidence intervals, suggesting that the impact of threshold uncertainty is small

compared to other sources of uncertainty in the modelling framework. This is the case

for the model with and without the prior distribution on the shape parameter of the

GPD, where the uncertainty for the former is much smaller but still larger than the

uncertainty attributable to threshold selection. We find similar results at the remaining

sites, see Figure A.9.21.

A.6 Simulation study

So far, we have compared models when fit to observed data at the tide gauges therefore

comparison with the empirical estimates are restricted to the length of observed data.
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Figure A.5.1: Return level estimates from the final (temporal dependence) model with
95% confidence intervals before (black) and after (blue) adding a prior distribution to
the shape parameter at Sheerness, where the 0.95 quantile is used for the skew surge
distribution (left); estimates are also shown at the 10, 100, 1000 and 10,000 year levels
when the 0.9 (crosses) and 0.99 (dots) quantiles are used in the skew surge model,
both with (blue) and without (black) the prior distribution on the shape parameter
of the GPD. The corresponding difference between the estimates from the original
approach (0.95 quantile) with the 0.9 (crosses) and 0.99 (dots) quantiles, compared
with confidence intervals (right).

Here, we use samples from the 483 year physical model data at Sheerness (introduced

in Section A.3) to fit our proposed model (given in expression (3.4.15) of Chapter 3,

without a prior on the shape parameter) and the SSJPM of Batstone et al. (2013), and

compare these with empirical estimates. Howard and Williams (2021) introduce the

data, which are generated from a widely-used physical model using a long-run hydro-

dynamical model driven by a long-run climate model (HadGEM3-GC3-MM) without

any drivers for climate change. This gives us an entirely realistic dataset as the as-

sociated hydrodynamical model has been calibrated to give realistic skew surges and

peak tides, whilst the climate model ensures features such as seasonality and temporal

dependence are captured.

From the 483 year dataset, we randomly select 30 samples of 37 continuous years

so that they approximately match the observed length of data at Sheerness. Note

we say approximately here because the physical model data benefit from no missing

data, whilst the observed tide gauge data has 9% missing at Sheerness. Additionally,
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months are simplified to 12 months of 30 days each in the physical model data, so

years are only 360 days long. For each sample, we fit the SSJPM and our proposed

model. The latter averages over the annual maxima distribution for each specific year

in the data to capture interannual tidal variations. When fitting this to a sample

of physical model data, we average over all 483 years of tidal data (which can be

predicted from the observed 37 years of sea level data) so that each year’s annual tidal

regime is captured, but the skew surge model parameters are estimated from the 37

year sample data. This ensures that longer-term tidal variations are accounted for and

the results are more comparable with empirical estimates. Since the SSJPM assumes

peak tides are stationary and only uses tidal information from a single nodal cycle, we

only use the tides in the 37 year sample, rather than all 483 years of tides, to better

represent their approach and to help show that the major improvements come from

our modelling of seasonality. We then estimate sea level return levels corresponding to

return periods between 1 and 100 years, and compare them to the empirical estimates;

these are shown in Figure A.6.1, averaged over each sample for each return period. The

average estimates from our model lie much closer to the empirical than the SSJPM,

especially for lower return periods where they match almost perfectly. At the 100 year

level, our estimate still lies closer but the empirical estimates are less reliable, even

though they are taken from 483 years of data. At the 1, 10 and 100 year level, the

RMSE over all samples for our model is 0.03m, 0.05m and 0.14m, respectively. For

the SSJPM the RMSE values are greater by factors of 1.54, 1.29 and 1.26, respectively.

Notice the difference between estimates from the two methods is greater for lower return

periods, with our method always being superior. A summary of the 1, 10 and 100 year

return level estimates is given in Table A.6.1 for both methods; the SSJPM has a

greater bias and variance over the 30 samples than our method. Note that our method

slightly underestimates at the 1 and 10 year return levels, whilst the SSJPM always

overestimates and by a greater magnitude.
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Table A.6.1: Sample standard deviation (SD), bias and RMSE (in cm) of the 1, 10 and
100 year sea level return level estimates from 30 samples of 37 years from the physical
model data using our model and the SSJPM (Batstone et al., 2013). Here we take the
truth as empirical estimates based on the 483 years of physical model data.

Our model SSJPM

Return period SD Bias RMSE SD Bias RMSE

1 2.4 -2.5 3.4 2.1 4.8 5.3

10 4.8 -0.4 4.7 5.3 3.2 6.1

100 8.6 11.3 14.2 11.8 13.6 17.9
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Figure A.6.1: Return level estimates (y-axis in metres) for different return periods (x-
axis in years) from the final (temporal dependence) model (black) and the SSJPM (blue)
(Batstone et al., 2013), averaged over 30 samples of 37 years from the physical model
data (Howard and Williams, 2021). Empirical estimates from all 483 years of physical
model data are shown by black points.
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A.7 Derivation of expression for seasonal probabil-

ity

We are interested in deriving an analytical expression for the probability P̂M(j; z) that

a randomly selected sea level (annual maxima) M is from month j given it equal to

some level z, given by,

P̂M(j; z) = P̂r(m(M) = j|M = z),

where m(M) denotes the month of occurrence of the variable M and P̂r(·) is under our

final model of Section 3.4.5 in Chapter 3. This is probability (3.5.2) in Chapter 3 and

we use this in Section 3.5.5 to evaluate extreme sea level seasonality. We are specifically

interested when z = zp, a level with an associated annual exceedance probability p ∈

[0, 1], so that z is a return level derived from expression (3.4.15).

As the distribution of M varies with year k due to the tidal variations, we begin by

conditioning on a fixed year k, so that we only look at sea levels within a specific year

and consider the probability P̂M(k)(j; z). We rewrite this in terms of the distribution and

density of the month j maxima sea level, F
M

(k)
j

and f
M

(k)
j
, respectively, and the density

of the annual maxima sea level fM(k) , each conditional on some year k = 1, . . . , K,

where K is the total number of years of observation,

P̂M(k)(j; z) =

f
M

(k)
j
(z)

∏
J=1,...,12
J ̸=j

Pr(M
(k)
J < z)

fM(k)(z)

=
1

fM(k)(z)

[(
f
M

(k)
j
(z)

F
M

(k)
j
(z)

)
FM(k)(z)

]
.

Therefore, it follows to find an expression for each of these terms to simplify the above
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expression. To find the form of the density of the monthly maxima sea levels in a given

year f
M

(k)
j
, we must differentiate the corresponding distribution function,

F
M

(k)
j
(z) = Pr(M

(k)
j ≤ z) =

T
(k)
j∏
i=1

[
F

(d,j,x)
Y (z −X

(k)
ji

)
]θ̂(z−X(k)

ji
,r)
,

where F
(d,j,x)
Y is the skew surge distribution function given by equation (3.4.14) and

θ̂(·, r) is our extremal index model given by equation (3.4.16) for fixed run length r.

Differentiating this gives

f
M

(k)
j
(z) ≈ F

M
(k)
j
(z)

T
(k)
j∑
i=1

fY
(d,j,x)(z −X

(k)
ji

)θ̂(z −X
(k)
ji
, r)

F
(d,j)
Y (z −X

(k)
ji

)
, (A.7.1)

when we ignore smaller order terms arising from θ̂′(·, r). The density of skew surges

f
(d,j,x)
Y is given by

f
(d,j,x)
Y (y) =


f̂j(y) if y ≤ uj

λd,x
σd,x

[
1 + ξ

(
y−uj
σd,x

)]− 1
ξ
−1

+
if y > uj,

where λd,x and σd,x are given by expressions (3.4.11) and (3.4.12), respectively. Below

the monthly threshold uj, we estimate the derivative of the monthly empirical distribu-

tion using a Gaussian kernel density estimator and denote this f̂j. We find the density

of the annual maximum sea levels, for a fixed year k, by differentiating in similar way

and ignoring smaller order terms, so that,

fM(k)(z) ≈ FM(k)(z)
12∑
J=1

T
(k)
J∑
i=1

f
(d,J,x)
Y (z −X

(k)
Ji

)θ̂(z −X
(k)
Ji
, r)

F
(d,J,x)
Y (z −X

(k)
Ji

)
. (A.7.2)
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Using equations (A.7.1) and (A.7.2), we can simplify P̂M(k)(j; z) to

P̂M(k)(j; z) =
A(i,j,k)(z)

12∑
J=1

A(i,J,k)(z)

where A(i,j,k)(z) =

T
(k)
j∑
i=1

f
(d,j,x)
Y (z −X

(k)
ji

)θ̂(z −X
(k)
ji
, r)

F
(d,j,x)
Y (z −X

(k)
ji

)
.

Clearly
∑12

j=1 P̂M(k)(j; z) = 1. Then the probability over all K years is given by

P̂M(j; z) = 1
K

∑K
k=1 P̂M(k)(j; z).

A.8 Transforming skew surges to uniform margins

In Section 3.5.4 of Chapter 3 we assess the fit of our final model for sea level annual

maxima (3.4.15) by looking at year-specific distributions and bootstrap confidence in-

tervals on the return level estimates. Here, we test the goodness-of-fit for the final

skew surge model (expression (3.4.14)), using the probability integral transform; if our

model fits well, transforming the observations through the fitted distribution function

will give a sample of identically distributed Uniform(0, 1) values. This was also a step

in our stationary bootstrap procedure, but here we check if these transformed values

{UY
i } are uniform using a Kolmogorov-Smirnov test.

Figure A.8.1 shows the transformed skew surges at Sheerness. We can immedi-

ately see these are not uniformly distributed. This is supported by results of yearly

Kolmogorov-Smirnov tests for uniformity, where the p values are almost all > 0.05.

Instead, there appears to be a cyclic sinusoidal trend, following the trend of the 18.6

year nodal cycle. We suspect this is a data issue, perhaps the tidal series was not

correctly removed from the sea level observations when the skew surges were obtained.

Figure A.8.1 also shows the annual mean skew surges at Sheerness, we can see there is a

similar cyclic trend here and that the means are not centred at zero (see Figure A.9.16

for the remaining sites). To correct for this we re-centre the data at zero, by removing

the corresponding annual mean from the observations. This is an ad hoc approach
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Figure A.8.1: Monthly means (y-axis in meters) of transformed skew surge observations
through the final skew surge distribution function (4.14) (left) and annual mean skew
surges (right), both at Sheerness, against the year of observation (x-axis).

and the data should be investigated further. We did not correct for this trend at an

earlier stage in the modelling process because it does not have a significant effect on the

extreme values. However, once we correct for this trend, we find that the transformed

data are uniformly distributed in 32 years (out of 37) at Sheerness, indicating a good

model fit for skew surges. We find similar results at the remaining sites, where a cyclic

trend is first observed in {UY
i } but once the annual means are removed, the transformed

data can be reasonably assumed as Uniform(0,1). Figure A.9.17 shows the p values for

each year at each site.

A.9 Supplementary figures
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Figure A.9.1: Monthly box plots of skew surge (left column) and peak tide (right
column) at Lowestoft (top row), Newlyn (middle row) and Sheerness (bottom row).
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Figure A.9.2: Estimates of P̃X(j;xq) (expression 3.3.2 of Chapter 3) for months j =
1− 12 and q = 0.5 (dashed), 0.9 (dotted), 0.95 (dot-dashed), 0.99 (long-dashed), 0.999
(solid) at Lowestoft (top left), Newlyn (top right) and Sheerness (bottom), with 95%
confidence intervals when q = 0.99.
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Figure A.9.3: Scatter plot of extreme skew surge observations (exceedances of 0.95
quantile) against associated ranked peak tides at Heysham (top right), Lowestoft (top
left), Newlyn (bottom left) and Sheerness (bottom right).
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Figure A.9.4: Scale (left column) and shape (right column) parameter estimates for
Model S2 (blue) and Model S0 (black) at Lowestoft (top row), Newlyn (middle row)
and Sheerness (bottom row). 95% confidence intervals are added to Model S0 (black
error bars) and to Model S2 parameter estimates (blue dashed lines).
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Figure A.9.5: Autocorrelation function (acf) plots for Heysham (top left), Lowestoft
(top right), Newlyn (bottom left) and Sheerness (bottom right).
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Figure A.9.6: Estimates of χ for Lowestoft, Newlyn and Sheerness (from top to bottom
row) for exceedances of the 0.9, 0.95, 0.975, 0.99 and 0.999 quantiles (from left to right
column) at various lags.
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Figure A.9.7: Estimates of χ̄ for Lowestoft, Newlyn and Sheerness (from top to bottom
row) for exceedances of the 0.9, 0.95, 0.975, 0.99 and 0.999 quantiles (from left to right
column) at various lags.
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Figure A.9.8: Estimates of the subasymptotic extremal index θ(y, r) for different skew
surge levels using the runs estimate (grey points) and our model estimate (black line)
(expression (3.4.16) of Chapter 3) at Lowestoft (top left), Newlyn (top right) and Sheer-
ness (bottom). Run lengths are chosen as 10, 2 and 10, respectively. The threshold v
is chosen as the 0.99 skew surge quantile for all sites (black dashed line).
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Figure A.9.9: Estimated exceedance probability λd,x (expression (4.11)) per month with
respect to peak tide x and day in month dj, averaged over day at Heysham (top left),
Lowestoft (top right), Newlyn (bottom left) and Sheerness (bottom right). Trends
for March (solid), June (dashed), September (dotted) and December (dot-dashed) are
shown here.



APPENDIX A. 281

●●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●● ● ● ● ● ●●
●●●●●●●●●

●● ●● ●● ●● ●● ●● ●●●●●●●●●●●● ● ● ● ● ● ● ● ●● ●●●●●●●●●●●●●●●●● ●●
●●

●●
●●

●●

●●●●● ● ● ● ● ● ●● ●● ●● ●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●

●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●● ● ●
● ●

●●
● ● ●● ●● ●●●●●

●●

● ●● ●● ●●●●●●●●●●●●● ●● ●● ● ● ● ● ●● ●● ●● ●●●●●●●●●●●●● ●●
●●

●● ●●
●●
●● ●●●

●● ●● ●● ●● ●● ●●●● ●●●●●●●●●●● ●● ●● ●●
●●●●●● ●● ● ●

●●
●●

● ●●●●●●●●●●●●●●●●●●● ●● ●

● ●● ●● ●●●●●●●●●●● ●●
●●

●● ●● ●●●●●

●●●●●●● ● ● ● ● ● ●● ●● ●●●●●●●●●●●●●●●●● ●● ●● ●●
●● ●●

●● ●● ●●●●●●●●●●●●●

●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●

●● ●● ●●●●●●●●●●●●●●●●● ●●

● ●●●●●●●●●●●●●

● ●● ●

●● ●● ● ● ●● ●● ●●●● ●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●●●● ●●●●●●●●●●●●●●● ●●
● ●

●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●● ● ● ●● ●● ● ● ●● ●●●●●●●●●●●●●

● ●● ●●●●●●●●●●●●● ● ● ●● ●● ●●●● ●●●●●●●●●●●● ●●
●●

●●
●●

●● ●● ●●

●● ●
●●●●●●●●●●●●●●●●●● ●● ●● ●●

●● ●● ●● ●● ●●●●●●●●●●●●● ●● ●● ●

●● ● ●● ●● ●

● ●●●●●●●●●●● ●● ●● ●● ●●●● ●●●●●●●●●●●●●●●●●

● ●●●●●●●●●● ● ● ● ●● ●● ●●●●●●●●●●●●●●●●●●● ●● ●● ●●
●●

●●
●● ●●●●●● ●●●●●

● ●●●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●● ● ● ● ●
●●

●● ●●●●●

●● ●● ●● ●● ●●●● ●●●●●●●●●●●● ● ● ● ● ● ● ● ●● ●●●●●●●●●●●●●●●●●
●●

●●
●●

●●
●●

●●●● ● ● ● ● ●● ●● ●● ●● ●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●●●● ●●●●●●●●●●●●●●●

●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●● ●● ● ● ● ● ●●
●● ●● ●● ●●●●●●●

● ●● ●●●● ●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●● ●●●●●●●●●●●●● ●●
●●

●●
●●

●●
●●●

●● ●● ●● ●●●● ●●●●●●●●●●●●●●● ●● ●●
●●

●● ●● ●● ●●●●●●●●●●●●●●● ●●
●●

●● ●●

●●●● ●● ● ● ● ● ●● ●● ●● ●● ●● ●●●●●●●●●●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●●●●●●

● ●●●●●●●●●●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●●●● ●●
●●

● ●
●●

●● ●● ●● ●●●●●

●● ●● ●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●● ●●●●●●●●●●●●●
●●

●●
●● ●● ●● ●

●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●● ● ● ● ● ●●
●●●●●● ●●●●●●●●●●

●●● ●●
●●

●●
●●

●●●●● ● ● ● ● ● ●● ●● ●● ●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●

●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●● ● ● ● ●
● ●

●●
●● ●●●●●●●

●● ●● ●● ●●●●●●●●●●●●●●● ●● ● ● ●● ●● ●● ●●●●●●●●●●●●●●●●● ●●
●●

●●
●● ●● ●●

●● ●● ●● ●● ●●●●●●●●●●●●●●●●●●● ●● ●● ●●
●● ●● ●● ●●●●●●●●●●

●●● ●● ●●

●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●● ●● ●● ●● ●●●●●●●●●●●●●●●●●●●

●● ●●●●●●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●● ●● ●● ●●●●

●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●● ● ● ● ●● ●● ●●●●●●●●●●●●●●●●●●● ●●
●●

●●●●●●●●● ●● ● ● ● ●● ●● ●● ●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●

●●●●●●●● ● ● ●
● ●

● ●
●●

●● ●●●

●● ●● ●● ●● ●● ●●●●●●●●●●●●●●● ● ● ● ● ● ● ●● ●● ●● ●●●●●●●●●●●●●●● ●●
●●

●●
●●

●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●● ●● ●●
●● ●● ●● ●● ●●●●●●●●●●●●●●● ●●

●●●●●●●●●●●● ● ● ●● ●● ●● ●● ●● ●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●

●●●●●●●

● ●●●●●●●●●●●●●●●●●●● ●●
● ●

●●
●●

●●
●● ●

●● ●● ●● ●● ●●●●●●●●●●●●●●●●● ●● ●● ●●
●●

●●
●●

●● ●● ●●●●●●●●●●● ●●
●●

●●
●●

●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●
●●

●●●

●●●●●●●●●●●● ● ● ● ● ●● ●● ●● ●●●●●●●●●●●●●●●●● ●●
●●

●
●●

●●
●●

●● ●●●●●●●

●● ●● ●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●● ● ●
● ●

●●
●●

●●●

●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●● ● ● ● ● ●● ●● ●●●●●●●●●●●●
●●

●●
●●

●●●●●● ● ● ● ● ● ● ●● ●● ●● ●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●● ●● ● ● ●● ●● ●● ●●●●●●●●●

●● ●● ●● ●●●●●●●●●●●●●●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●●●● ●
●●

●
● ●●

●● ● ●● ●● ●●●●●●●●●●●●●●●●●●●●● ●● ●●
●●

●●
●●

●● ●●●●●●●●●●●●●●● ●● ●● ●●●●●●●

0.025

0.050

0.075

0.100

7 8 9 10

Mar

●

●
●

●

●

●

●

●

●●

●
●

●
●

●●

●●

●
●

●●
●●

●
●

●●

●●

●
●

●

●

●

●

●

●●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●●

●●

●
●

●
●

●

●

●

●
●

●●
●

●
●

●●●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●
●

●●

●●
●

●
●●●●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●

●
●

●

●●
●●●●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●
●

●●
●

●
●●

●
●●●●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●●

●●

●
●

●
●

●

●●
●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●●●●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●
●

●●

●
●

●
●

●

●

●

●

●
●

●
●

●

●●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●●
●●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●●

●
●

●
●

●●

●

●●
●●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●●

●●
●

●

●
●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●●
●

●●●
●●

●
●

●●
●

●

●●
●●

●
●

●●

●●
●
●●

●
●

●

●

●

●

●
●

●●

●●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●●

●●

●
●

●
●

●

●

●
●●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●

●●

●●●
●●●●

●
●●

●
●

●●

●●

●●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●●●●
●●

●
●

●
●

●●

●●

●
●

●
●

●
●

●
●

●●
●
●

●
●

●
●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●●

●
●

●●

●●
●●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●●

●●●
●

●
●

●●

●●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●
●

●
●

●●
●●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●●

●
●

●
●

●
●

●

●

●

●
●

●●

●●

●●
●●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●●

●●
●

●●
●

●●
●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●

●●

●●

●
●●

●●
●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●●

●●

●●●
●●●

●
●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●
●

●
●

●
●

●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●●

●
●

●

●●

●●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●
●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●●

●●●●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●
●

●●

●
●

●

●●●

●●
●●●●●●

●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●●

●
●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●●

●●
●●●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●
●

●
●●

●
●

●
●●

●●

●
●

●
●

●
●

●
●

●●●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●●●
●

●
●

●
●

●●

●●

●●

●
●

●

●

●

●
●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●
●

●
●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●●

●●

●●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●●

●●
●

●
●

●●
●●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

●●
●

●
●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

●●

●
●

●

●
●

●●

●●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●●

●●

●
●

●
●

●

●

●

●●
●●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●●
●●

●
●●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●

●
●

●
●

●●

●

●●

●●

●●
●●●●●●

●●

●●

●●

●●

●
●
●

●●

●●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●
●●

●
●

●

●●

●●

●●

●
●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●

●●
●●●

●
●●

●●

●●

●●

●●

●

●

●
●

●

●

●

●

● ●●

●●

●
●

●
●

●

●

●

●

●●

●●
●●●●

●●

●●

●●

●●

●
●

●

●
●

●●
●

●●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●

●●

●●

●●
●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●

●
●

●
●●

●●●
●●

●●

●
●

●
●

●

●

●

●

●

●●●
●

●
●●

●●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●●

●
●

●

●
●

●
●

●●●●
●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●
●●

●●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●●
●●●●●●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●
●

●●

●
●

●

●
●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●●
●●●
●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●
●●●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●
●

●●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●●
●●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●●

●
●

●

●
●

●
●●

●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●

●

●

●

●

●

●●

●●
●

●●
●●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●

●
●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●●

●
●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●●

●

●
●

●

●●

●●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●●

●●
●●●

●●●
●●

●●

●●

●●

●●

●●

●●

●●●●

●
●

●●

●●

●

0.025

0.050

0.075

0.100

7 8 9 10

Jun

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●
●
●
●

●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●●

●
●

●

●

●●

●

●

●

●

●

●

●●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●
●

●●

●
●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●
●

●
●●
●●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●●

●
●

●

●

●

●●

●●

●

●

●●

●●

●●

●

●

●
●

●

●

●
●●

●●
●

●

●
●

●

●
●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●
●

●

●

●

●●

●
●

●
●

●

●

●

●
●●

●●

●●

●●

●●

●

●

●
●●

●●

●
●

●

●

●
●

●
●

●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●●●
●●

●●

●
●

●

●
●

●●

●

●●

●●

●●

●

●

●

●

●

●
●●

●
●

●
●

●

●

●●

●●

●●

●
●●●●

●●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●
●

●

●

●

●●
●

●

●●
●

●

●
●●●●

●
●●

●

●●

●

●

●

●●

●

●●

●
●

●●

●
●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●
●

●

●
●
●

●
●

●

●
●

●

●

●

●
●
●

●●

●●

●●

●●

●
●●●

●
●
●●●

●

●●
●

●
●

●

●
●

●
●

●

●
●

●

●

●●●
●

●●

●●

●●

●
●●●●●

●
●

●
●

●

●

●●

●

●●

●●

●●

●
●

●●

●

●

●

●
●

●●

●●

●

●
●●

●●

●
●

●
●

●

●

●

●
●

●

●
●

●
●

●●

●
●

●
●

●
●

●●

●

●

●

●●

●●

●●

●
●

●

●●●

●
●

●●

●
●

●●

●

●
●●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●●

●●

●
●

●
●
●
●

●
●

●●

●●

●●

●
●

●

●●
●●

●●

●

●

●

●

●

●

●

●
●
●

●
●

●●

●

●

●●
●

●

●

●

●
●

●●

●●
●●

●

●

●

●●

●
●

●
●

●

●

●

●
●

●

●
●

●●

●●

●

●

●●

●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●
●

●

●

●

●

●

●●

●
●

●
●

●●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●
●

●
●

●
●

●
●

●●

●

●

●●
●

●●●●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●●

●
●

●●

●

●

●
●

●

●●
●●

●
●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●
●

●

●
●

●●

●●
●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●●

●●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●●

●
●

●●

●

●

●●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●●

●●

●●

●

●

●

●
●
●

●

●

●
●

●●

●
●

●

●
●

●
●

●●
●

●

●

●
●

●

●

●
●

●●

●

●

●

●●

●

●

●
●

●

●●●

●

●

●
●

●
●

●●

●

●

●

●●
●●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●●

●
●

●●

●

●

●●

●

●
●

●●

●●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●●

●
●

●

●

●
●

●

●

●
●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●●

●
●

●
●●

●●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●●

●●

●
●

●
●●

●●

●
●

●

●

●

●
●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●
●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●●

●●
●●●
●●

●
●

●

●

●

●

●
●

●●

●
●

●

●

●

●
●

●

●●

●●

●●

●●

●●

●●
●

●
●

●●
●●

●
●

●

●

●

●

●

●●

●

●●

●●

●●

●●

●
●

●

●
●

●
●

●

●

●
●

●
●

●
●●

●●
●●

●
●

●

●

●

●

●

●
●

●

●●

●
●

●●

●●

●
●

●

●

●

●
●

●●

●
●

●

●●

●●

●●

●●

●

●

●●

●

●

●
●
●●

●
●

●●

●●

●
●

●
●

●

●

●●

●
●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●●

●●

●●

●
●

●
●

●
●

●

●
●

●●

●

●

●●

●●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●●

●
●

●
●

●

●

●

●

●

●
●

●
●

●●

●●

●
●

●

●
●●

●

●

●

●

●
●

●●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●●

●●

●
●

●
●●●

●

●

●

●

●
●

●●

●
●

●

●
●

●●

●
●

●

●

●

●

●

●●

●

●

●

●●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●
●

●

●
●

●
●

●●

●
●

●

●

●

●●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●
●

●
●

●●

●●

●
●

●

●

●

●
●

●

●●

●●

●

●

●

●●
●

●●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●
●

●
●

●
●

●●

●●

●●

●
●

●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●
●

●

●●

●●

●●

●

●

●

●

●

●

●●

●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●●

●
●

●
●

●

●

●

●●

●

●●

●
●

●
●

●●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●●

●●

●●

●
●

●
●

●
●

●
●●

●●
●

●
●

●
●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●
●●

●
●

●●

●
●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●●

●●

●
●

●
●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●
●

●

●
●

●
●

●●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●
●
●

●

●

●

●

●
●

●●

●
●

●

●
●

●●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●
●

●

●●

●
●

●
●

●
●

●●

●●

●●
●

●●
●●

●
●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●●

●●

●●

●●

●●
●●●

●●
●●

●
●

●

●

●

●
●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●●
●

●●

●●

●●

●
●

●
●

●
●

●●
●

●
●

●
●

●

●

●
●

●
●

●

●●

●
●

●●

●●

●
●

●

●

●

●

0.025

0.050

0.075

0.100

7 8 9 10

Sep

●
●●● ●●●
●

●
●●

● ●
●●

● ●
●

●
● ●

●
●

●
●●

●●
●●

●●
●● ●●●●●●●●●●●●● ●● ●● ●●●●● ●● ●●

●
●

●
●

●
●●

●●
●●

● ● ●● ●●●●●●●●●●
●●

●●● ●●
●● ●● ●●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●● ● ●●

●●
●●

●●
● ●

●
●●

●●
●●

●●
●●● ●● ●●●● ●

● ●
● ●

● ●
● ●

● ●● ●● ●● ●● ●● ● ●● ●●●● ●● ●● ●
●

●●●●
● ●

●●
●●

● ●

●
●

●
●

●
●●
●● ●● ●● ●●● ●●●● ●●●● ●● ●● ●●●● ●● ●● ●● ●● ●● ● ●● ●

●
●●

●●●●●●● ●●●● ●
●●

●●
● ●

● ●
●

●●
●●

●● ●● ●● ●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●
●

●● ●●●●
●●

● ●
●●

●●
● ●

● ●
● ●●●●● ●● ●● ●●

●● ●● ●● ●● ●● ●
● ●● ●● ●●

●●
●●

●●
● ●● ●● ●●●●●

●●
● ●

● ●
● ●
●●

●●
●●

●●
●●● ●● ●● ●●● ●●

●● ●● ●
●

●
● ●

● ●
● ●● ●

● ●● ●● ●● ●● ●● ● ● ● ●● ●● ●●●● ●
● ●
●●

● ●
●

●

● ●
● ●

● ●
● ●

● ●● ●● ● ● ●● ● ●● ●●●● ●● ●●●●●●●● ●● ●●●●●●● ●● ●●

●●●●● ●●●● ●●●●●
● ●

●●●●●●●●● ●● ●● ● ● ● ●● ●● ●● ●● ●● ●
● ●● ●●●●●● ●● ●

●●
●●

● ●
●

●●
●●

● ●

● ●
●

●
● ●

●●
●●

●●
● ●● ●● ●● ●●● ●●●● ●● ●●●● ●●●● ●●●

●
●

●●
●● ●● ●●●●●●●

●●●●●●●●●● ●●● ●● ●● ●● ●● ●● ●
●

●● ●● ●●●●
●●●●

●●
●●

●●
●●●●●●● ● ●●

●● ●
●● ●● ●● ●● ●● ●● ●

●
●●

●●
● ●

●●●
●● ●● ●

● ●●●
● ●

● ●
● ●

●
●

●
●●

●● ●● ●● ●● ●●●●● ●●●●●●●● ●●●●●● ●
●

●
●●

●●
●

●
●

●●
●●

●

●●
●●

● ●
●●

●●
● ●● ●● ●● ●●● ●● ●● ●● ●● ●● ●● ●● ●

●●●●●●●
●●

●●
●●

●●
● ●●

●● ●●● ●●●● ●● ●● ●● ●●●● ●
● ●●●● ●● ●● ●● ●● ●● ● ● ● ●●●

●
●●

●●● ●●●●●
●

●
●●

● ●
●

●
● ●

● ●
●

●●
●●

●● ●● ●● ●● ●●● ●●●●●●●●●● ●● ●● ●● ●●●●●

●
●

●
●●

●●
●● ●● ●●●●●●●●● ●●●●●●●

● ●● ●● ●● ●● ●●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●
●●

● ●
●●

●●
● ●●

●●
●●

●●
●●

●●● ●● ●●●●●
● ●

● ●
●

●
●

●
● ●● ●● ●● ●● ● ●● ●● ●● ●●●● ●● ●

●
●●● ●

● ●
●●

●●
● ●

●
●

●
●

●
●

●
●●

●●●●●●●●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●● ● ● ● ●● ●

●
●●

●●
●●●●●●●●

● ●
●●

● ●
● ●

●●
●●● ●● ●● ● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●

●
●

●
●

●
●●

●● ● ●●
●● ●●

●●
●● ●● ●

●
●

● ●
● ●

● ●
●

●
●

●●
●● ●● ●●● ●● ●●●● ●● ●●●● ●● ●●●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●●

●●
●●

●● ●●●●
● ●

●●●●
● ●

● ●
● ●● ●● ●●●●● ●● ●● ●● ●● ●● ●● ●●

●● ●●●●●●
● ●

● ●
● ●

● ●
●

●
●

●● ●● ●●● ●●
●● ●●

●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●

●
●●●●● ●●●● ●

●
●

● ●
●

●
● ●

●
●

●
●

● ●
● ●● ●● ●● ●● ● ●● ●● ●●●●●● ●● ●● ●●●●●●●● ●● ●

●
●

●
●

●
●

●
●●

●●
● ●● ● ●●● ●●

●●●●●● ●
● ●

● ●
● ●

● ●● ●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ● ● ●
● ●

●●
●●

●●
●●

●● ●● ●● ● ● ● ●● ●● ●● ●
● ●

● ●
● ●

● ●
● ●

● ●●●● ●● ● ●● ●● ●● ●● ●● ●● ● ●● ●● ●
●●

●●
● ●

● ●

● ●
● ●

●
●

● ●● ●● ●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●● ●● ●● ● ●● ●●

●
●

●
●●

●● ●●●●●●●●●●●●
●●

●●
●●

●●●●● ●● ●● ● ● ● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●

●●● ●● ● ● ●
●●

●● ●● ●● ●● ●
● ●

● ●
● ●

● ●
● ●● ●● ●● ●● ●●●●● ●●●●●●●●●●●●● ●

●●
●● ●●●●
●●

●●
●●

●●
●●

●●● ●● ●● ● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●

●
●● ●●● ●● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●●
●●

●●
●● ●● ●● ●●●●●●●●●●●●●●●●●●

●●

● ●

● ●
●

●
●

●●
●●

●●
●●

●● ●● ●●●●●●●●
●●

●●
● ●● ●● ●● ●●●●● ●● ●● ●● ●● ●● ●● ●● ●

●●●●●
●●

●●
●●

●●
● ●

●
●●

●● ●● ●●●●●●● ●● ●
● ●

● ●
● ●

● ●● ●● ●● ●● ●● ●● ●● ● ●● ●● ●

●
●●

●● ●●●●●●
●●

●●
● ●

● ●
●

●
●

●
●

●●
●● ●● ●● ●●●●● ●● ●●●●●●●● ●● ●● ●● ●● ●● ●● ●

●
●

●
●

●
●●

●● ●● ●●●●●●●●●●●●●●
●●

● ●● ●● ●● ●● ●● ●● ●●● ●● ●● ●● ●● ●● ●● ●● ●● ●

●●
●●

●●
● ●

●
●●

●●
●●

● ●
● ● ● ●● ●● ●●●

● ●
● ●

● ●
● ●

● ●
● ●● ●● ●● ●●●●● ●● ●● ●● ●● ●● ● ●● ●● ●

● ●
● ●

● ●
● ●

●
●

●
●

●
●

●
●●

●● ●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ● ●● ●● ●● ●●

●

●●
●●

●● ●●●●
●●

●●
●●

● ●
● ●

● ●
● ●● ●● ●● ● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●

● ●

●
●

●
●●
●● ●●● ●● ●●

●●
●●
●

●
●

● ●
● ●

● ●
● ●

● ●●
●●
●● ●● ●● ●●●●●●● ●● ●● ●● ●● ●● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●●
●●

●● ●● ●●●●●●●●
●

● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ●●●
●●

●●
● ●

● ●
● ●

● ●● ●●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ● ● ● ● ● ●●

●
●●

●● ●●● ●● ●● ●
● ●

● ●
●

●
● ●

● ●
● ●

● ●
● ●● ●● ●● ● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●

●
●

●
●

●
●● ●● ●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ● ●● ●● ●● ●● ●● ●● ●● ●● ●● ● ●●

●●
●●

●●
●●

●●
● ●● ●●

● ● ● ● ● ●● ●● ●● ●● ●
● ●

● ●
● ●

● ●
● ●● ●● ●● ● ●● ●● ●● ●● ●● ●● ●●●

●● ●● ●● ●
● ●

● ●
● ●

● ●
● ●

●
●

●
●● ●● ●●●●● ●● ●● ●● ●●●●●●●●●●●●●● ●● ● ● ● ●● ●●

●
●●

●●
●● ●●●●●●●●●●
●●

●●
●●

●●
●●●●●●● ●

● ●

● ●

0.025

0.050

0.075

0.100

7 8 9 10

Dec

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●●

●
●

●
●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●
●●

●●

●●
●●

●
●

●

●

●

●

●
●

●●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●
●●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●

●●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●●

●
●

●
●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●●

●
●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●●
●●

●●
●●

●
●

●

●

●

●

●

●

●
●

●●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●●

●●

●●
●

●●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●
●
●●

●●

●●

●●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●●●
●

●
●

●
●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●
●

●●
●

●

●
●

●

●

●

●
●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●●

●

●

●

●

●

●

●

●

●
●

●
●
●●●●

● ●●
●●●

●●
●

●

●

●

●

●

●

●

●●

●●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●
●●

●●
●●●

●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●
●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●●
●●●

●●
●●

●●
●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●●
●●

●
●

●
●
●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●
●●●

●●
●

●
●●

●

●
●●

●●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●●●
●

●

●
●

●

●

●
●

●
●

●
●

●
●●●●●●●●●●●

● ●

●

●

●

●

●

●

●
●

●●

●●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●
●●

●●
● ●●

●●
●●

●●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●
●●●

●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●●
●

●●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●●
●●
●●●

●●
●

●●
●●

●
●

●
●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●
●

●
●

●●
●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●●●
●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●
●●

●●
●●

●
●
●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●●
●●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●●
●●●

●

●
●

●●

●●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●●●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●●

●●
●●

●●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●●

●●

●
●
●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●
●

●
●

●
●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●
●●

●
●

●●
●

●●
●

●

●
●

●

●●

●●

●●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●●●
●●

●
●

●

●

●

●

●

●
●

●

●
●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●●●●●●
●●

● ●
●

●●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●
●●

●
●
●

●●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●●
●

●●

●
●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●●
●●

●●
●●
●

●

●
●

●
●●

●

●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●●
●●

●
●

●
●

●
●

●
●

●●
●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●●●●●●●●
● ●

●
●
●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●
●●

●
●

●●
●●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●●
●●

●
●●

●
●

●

●
●
●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●
●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●●
●●●●●●●

●●
●●

●

●

●

●

●

●

●
●

●●

●●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●●
●●

● ●●
●●

●●

●
●

●
●

●
●

●●
●

●
●

●
●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●
●

●
●●
●●

●●

●●
●

●
●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●●
●

●
●

●
●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●
●●
●

●●
●

●
●
●

●●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

● ●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●●●●
●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●●

●●
●●

●
●●

●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●●
●

●●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●●

●●

● ●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●●
●

●●
●

●
●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●●

●●

●●
●

●●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●
●

●●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●
●●

●●

●●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●●
●

●●●
●
●

●
●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●●
●●

●●
● ●●

●●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●●
●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●
●

●
●

●
●●

●●

●●
●

●●

●
●

●

●

●

●●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●●
●●

●●
●

●
●

●●

●
●

●

●

●

●

●
●●●●
●●

●
●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●●
●

●

●
●

●

●

●
●

●
●

●●●●●●
●●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●●●●● ●●
●
●

●
●

●●
●●

●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●
●●

●●
●

●●
●●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●
●

●
●

●
●●

●●
● ●

●
●●

●
●

●

●●
●

●●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●
●

●
●●

●●

●●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●●
●●

●

●
●

●
●●
●●

●
●

●
●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●●
●

●●
●●

●
●

●
●

●
●

●
●

●
●
●

●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●
●●

●
●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●●

●
●

●

●

●

●●

●

●
●●

●

●

●●
●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●●
●

●●

●
●

●●

●

●

●

●

●

●

●
●

●
●

●●

●●

●

●

●

●

●

●

●
●

●●

●●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●●●

●●

●
●

●
●

●

●

●●
●

●
●

0.025

0.050

0.075

0.100

2.0 2.2 2.4 2.6 2.8

Mar

●●

●
●

●
●

●●
●●

●●
●●

●
●

●●
●● ●●●●●

●
●

●

●
● ●●●●●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●●●●
●

●
●

●
●

●
●

●●
●●
●● ●●●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●● ●● ●●
●●● ●●

● ●●●●
●

●
●

●

●

●

●
●●●●●●●

●●
●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●●

●
●

●
●

●
●

●●●●● ●
●

●

●

●

●

●

●

●

●
●

●
●●●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●●●
●

●
●

●

●
●

●
●

●
●

●
●●
●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●●

●●
●● ●

●

●●
●●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●●●●

●●
●●

●●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●
●●●

●●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●●

●●
●● ●●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●● ●●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●●●●●●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●● ●●● ●●

●
●●

●●●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●● ●●

●●
●●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●
●●●

●●
●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●● ●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●

●●
●●

●●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●● ●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●●●
●

●
●

●
●

●

●

●

●

●
●

● ●●● ●●
●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●

●● ● ●●

●●
●●

●●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●
●● ● ●● ●● ●● ●●

●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●● ●●●

●●
●●

●●
●●

●●
●●

●
●

●

●
●

●
●

●
●

●
●

●
●

● ●●● ●● ●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●●

●●
●●

●●
●● ●●●●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

● ●●● ●●
●●

●
●

●
●

●
●

●
●

●
●

●
●●

●●
●

●
●●●●

●
●

●
●

●
●

●
●●●●●

●●
●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●
●

●●
●●
●●

●●
●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●●

●●
●●

●●
●● ●●● ●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●
●●●

● ●●
●● ●●

●●●●●●●●●
●

●
●

●

●

●

●

●

●
●

●
●

●● ●●● ●● ●
●

●

●
●

●

●

●

●

●

●

●●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●●
●●●●●●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●● ●●● ●●

●●
●●

●●
●

●

● ●●●
●●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●●●●●●
●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●● ●●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●

●●
●●

●●
●●

●●●●● ●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●● ●●

●
●

●
●

●

●

●

●

●

●

●

●●
●●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●● ●●
●●

●●
●●

●

●
●

●
●

●
●

●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●● ●●●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●
●●

●● ● ●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●

●●
●● ●● ●●●●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●●●● ●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●● ●● ●●

●
●

●
●

●
●●

●●
●● ●●●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●●●●●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●●●
●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●

●● ● ●● ●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●

●● ●● ●● ● ●● ●●
●

●
●

●
●

●

●

●

●

●

●

●
●

● ●●● ●●
●

●
●

●
●

●

●

●

●

●

●

●
●●

●●
●●

●
●

●
●

●

●
●

●

●

●
●

●
●● ●●●
●●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●● ●● ●●
●●

●
●●

●● ●●●
●●

●
●

●
●

●

●●
●●

●●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

● ●●●
●●

●●
●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●● ●●● ●● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●●

●●
●●

●●
●● ●●●●

●
●

●
●

●
●

●

●

●
●

●
●

●●●●
●●

●
●

●
●

●
●

●

●

●

●

●
●●

●●
●●●●●●

●
●

●
●

●
●

●
●

● ●●●●● ●●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●● ●● ●

●
●●

●●
●●

●● ●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●
●● ●●● ●● ●● ●● ●● ●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●●
●●

●●
●●

●●
●●

●
●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●
●

●●●●● ●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●●

●
●

●
●

●
●

●● ●●●●
●

●

●
●

●

●

●

●

●

●

●
●

● ●●● ●●
●

●
●

●
●

●

●

●

●

●●

●
●

●
●

●●●●●●
●

●

●
●

●
●

●
●

●
●● ●●● ●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●●
●●

●●
●●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●●
●● ●● ●●● ●● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●● ●

●●
●●

●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●● ●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●● ●●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●● ●●
●

●
●

●

●
●

●

●●

●●
●●

●●●●●
●

●
●

●

●

●

●

●

●

●

●
●

●● ●●●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●●
●● ●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●● ●●● ●● ●● ●●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●●
●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●● ●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●●

●●● ●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●
●

● ●

●
●

●
●●

●●
●●

●●●●●
●

●
●

●

●

●

●

●

●

●

●

●
●●●●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●● ●●●

●●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●● ● ●● ●● ●●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●●●
●●

●●
●●

●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●●●●● ●●

●
●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●● ●●

●●
●

●

●
●●

●●
●●

●● ●●●●
●

●
●

●

●
●

●

●

●
●

●
●

●●●●
●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●
●

●

●

●

●
●

●
●

●● ●● ●● ●● ●●● ●● ●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●● ●

●●
●●

●●
●● ●●●● ●● ●
●

●

●
●

●
●

●
●

●
●●●● ● ●●

●
●

●
●

●

●

●

●

●●
●●

●●
●●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●●● ● ●●●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●● ●●● ●●

●
●●

●●
●

●●
●●
●●●●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●

●●
●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

0.025

0.050

0.075

0.100

2.0 2.2 2.4 2.6

Jun

●
●

●
●

● ●●● ●● ●
●

●
●

●

●
●

●

●

●

●

●
●

● ●

●●
●● ●● ●● ●● ●● ●● ●

● ●
●

●

●
●

●

●
●

●

●

●
●

●
●

●●●●
●● ●● ●● ●● ●

● ●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●

●●● ●●
●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

● ●
● ●
● ●● ●● ● ●● ●●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●
●●
● ●

●
●
●● ●● ●

●
●

●
●

●

●● ●● ●● ●●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

● ●
●

●
●

●
●● ●● ●
● ●

●
●

●
●

●
●

●
●

●
●

●●

●●
●●

●●
●●● ●

●
●

●
●

●
●● ●●● ●●

●
●

●

●
●

●
●

●

●

●
●

●
●

●●
●●

●● ●● ●● ●● ●● ●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

● ●
●●●● ●● ●● ●● ●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

● ●

● ●
●

●
●

●
●

●●● ●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

● ●
●●

●●
● ●● ● ● ● ●● ●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●●

●●
● ●

● ●●● ●
● ●
●

●

●

● ●● ●● ●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

● ●
● ●

● ●●● ●● ●
●

●

●
●

●
●

●
●

● ●

●
●

●●
●●

●
●

●
● ●● ●●

●
●

● ●
● ●● ● ●● ●● ●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●●●

● ●● ●● ●● ●● ●●
●

●
●

●
●

●
●

●
●

●

●

●
●

● ●

●●

●

●

●
●

●
●

● ●
●●●

● ●● ●● ●● ●● ●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

● ●

●●
● ●

● ●●● ●● ●
●

●

●

●

●
●

●
●

● ●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

● ●
●●

●●
●●●● ●● ●● ●

●
●

●
●

●
●

●
●

●

●

●
●

●●
●●

●●●●●●●● ●● ●
● ●

●

●● ●● ●● ●● ●●
●

●
●

●
●

●
●

●

●

●
●

●
●

●●
●●
●●●●

●● ●● ●
●

●
●

●
●

●
● ●
● ●

● ●
●●

●
●
●

●●
● ●●

●
●

● ●
● ●
● ●●● ●● ●● ●

●
●

●
●

●
●

● ●

●
●

● ●
●●

●●
●

● ●● ●● ●● ●● ●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

● ●

●

●
●

●
●

● ●
●●

●●●● ●● ●● ●● ●
● ●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●●
●●
●●

●●●● ●● ●
● ●
●

●

●
●

● ●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

● ●
● ●

●
● ●

●● ●● ●● ●●
●

●
●

●
●

●
●

●
●

●
●

●●
●●

●● ●● ●● ●● ●● ●
●

●●●● ●● ●● ●● ●
●

●
●

●
●

●

●

●

●

●

●
●

● ●
●●

●●●● ●● ●● ●● ●
●

●
●

●
●

●
● ●

● ●

●
●

●
●

●●
●●

●●

●
●

●
●

● ●
●●●● ●● ●● ●

● ●
● ●

●
●

●
●

●
●

●
●

●
●

●●
●●

●●●●
●● ●● ●● ●● ●

●
●

●
●

●
●

●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

● ●
●●

●● ●● ●● ●● ●● ●●
●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

● ●
● ●

●● ●● ●
●

●
●

●

●
●

●

●● ●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
● ●●● ●● ●

●
●

●
●

●
●

●

●

●
●

●
●

● ●

●●
●●●● ●●●●●●

●
●

● ●
●

●
● ●● ● ●● ●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●●
●●●●●●●● ●● ●

● ●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●
●

● ●
● ●● ●●● ●● ●

● ●
●

●
●

●
●

●

●
●

●
●

●
●

● ●

●●
●●

● ●
●

●
●

● ●● ●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

● ●
●●●

● ●● ●● ●● ●● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●● ●● ●
●

●

●
●

●

●● ●● ●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●
● ● ●●

●
●

●

●

●

●
●

●
●

●
●

●
●

●●
●

●●
● ●● ●● ●●

●
●

● ●
●

●
● ●● ●● ● ●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●
●●●● ●● ●● ●● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●

●

●

●

●

●
●

● ●
●●● ●● ●●● ●● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●●

●●
● ●

●
●● ● ●●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●●
●●

●● ●● ●● ●● ●● ●●
●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

● ●
● ●

●
●

● ●
●● ●

●
●

●
●

●

●● ●● ●● ●
●

●
●

●

●
●

●
●

●

●

●

●

●
●

● ●

● ●
●

●
● ●●● ●● ●

●
●

●
●

●

●

●
●

●
●

● ●

●●
●

● ●
● ●

● ●● ●●

●
●

● ●
● ●

● ●● ● ●● ●● ●
●

●

●
●

●
●

●
●

●
●

●
●

●●
●●●● ●● ●● ●● ●●

●
●

●
●

●
●

●

●
●

● ●

●
●

● ●

●●

●

●

●

●

●
●

● ●
●●

●●●●●● ●● ●
●

●
●

●
●

●

●
●

●
●

●
●

● ●

● ●
●●

●●
●● ●● ●● ●● ●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

● ●
●●

●●●
● ●● ●● ●● ●● ●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●●
●●
●●

● ●
●● ●● ●

●
●

●

●● ●● ●● ●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

● ●
●●
● ●● ●●● ●● ●

●
●

●
●

●
●

● ●
● ●

●●
●●

●
● ●

● ●
● ●●

●
●

● ●
● ●
● ●●●●● ●● ●●

●
●

●
●

● ●
●●

●●●
● ●● ●● ●● ●● ●

●
●

●
●

●
●

●
●

● ●

●
●

● ●

●

●
●

●
●

●
●

●●
●●●

● ●● ●● ●● ●
● ●

●
●

●
●

●
●

● ●
● ●

●
●

● ●
●●

●●
●●●● ●● ●● ●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
● ●

●
●

● ●
● ●

●●
●●●●

●● ●● ●● ●●
●

●
●

●
●

●
●

●

●

●
●

● ●

●●
●●
●●●●●● ●● ●

●

●●

●
●

●
●

● ●
●●

●●●● ●● ●● ●
● ●
●

●
● ●

● ●
● ●

● ●

●●
●●

●●
●●

●
●

●
●

●
●

●
●

● ●
● ●●● ●● ●● ●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●●

●● ●● ●● ●● ●● ●● ●
●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

● ●
●●●● ●● ●● ●● ●● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●● ● ●● ●
●

●

●
●

●
●

●

●● ●
● ●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

● ●
● ●

● ●
● ●● ● ●● ●

●
●

●
●

●

●

●

●

●

●

●
●

● ●

●●
●●
● ●

● ●
●●●●

●●●●●● ●● ●● ●● ●●
●

●
●

●

●

●

●

●

●

●

●

●
●

● ●
● ●

● ●
● ●●● ●● ●

●
●

●
●

●
●

●
●

●
●

●
●

●●

●●
●●

●

●

●

●

●

●

●
●

●
●

● ●
● ●● ● ●● ●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●●
●●

●● ●● ●● ●● ●● ●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●
●● ●● ●● ●● ●● ●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●
●
● ● ●●

●
●

●

●

●

●

●● ●● ●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
● ●

●
●
●

●● ● ●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●●

●●
● ●

● ●●●

●●
●●●●●● ● ● ●● ●●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●
● ●
● ●

● ●●●
●● ●

●
●

●
●

●
●

●
●

● ●
● ●

●●
●●

●●

●

●

●

●

●

●
●

●
●

● ●
● ●● ●●● ●

●
●

●
●

●
●

●
●

●
●

● ●

●
●

●●
●●

●
● ●● ●● ●● ●● ●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●●
●●●● ●● ●● ●● ●● ●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

● ●

● ●

●● ●● ●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

● ●
●●
● ●● ● ●● ●●

●
●

●

●

●

●

●

●
●

●
●

●
●

●●
●

●●
● ●● ●● ●●

●●
●●

●●●● ●● ●● ●●
●

●
●

●
●

●

●

●
●

●

●

●
●

● ●
●●

●●
● ●

●●●● ●
●

●
●

●
●

● ●
● ●
●●

●●
●●

●

●

●

●
●

●
●

●
●

● ●
● ●

● ●●● ●● ●
●

●
●

●

●
●

●
●

● ●

●
●

●●
●●

●
● ●

● ●● ●● ●● ●● ●
●

●
●

●

●

●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●●
●●●

● ●● ●● ●● ●● ●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

● ●

●●
●●
● ●

● ●●● ●● ●
●

●

●

●● ●● ●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

● ●
●●

●●
●●●● ●● ●●

●
●

●

●
●

●
●

● ●

●
●

●●
●●

●
● ●

● ●
● ●●

● ●
● ●

●●
●●●● ●● ●● ●●

●
●

●
●

●

●
●

●
●

●
●

● ●

●●
●●

●●●● ●● ●● ●
● ●

●
●

●
●

● ●
● ●
● ●

●●
●●

●

●
●

●
●

●
●

●
●

● ●
●●
●●●● ●● ●● ●

● ●
●

●
●

●
● ●
● ●

● ●
●●

●●
●●

●●●● ●● ●● ●● ●●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

● ●
●●

●●●● ●● ●● ●● ●● ●●
●

●
●

●
●

●
●

●

●

●
●

●
●

●●
●●
● ●

●●●● ●● ●
●

●● ●● ●● ●● ●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

●
●

● ●
● ●

● ● ●●● ●
●

●

●
●

●
●

● ●

●
●

●

●●
●

●●
●●

●
●

●
●

●
● ●
● ●

● ●● ● ●● ●● ●
●

●
●

●

●
●

●

●

●
●

●
●

●●
●●
● ●●● ●● ●● ●

●●
●

●
●

● ●

● ●

●
●

●
●

●

●
●

●

●

●

●

●
●

●
●

●● ●●
●● ●● ●

● ●
●

●
●

●

●
●

●
●

●
●

●
●

●
●●

●●
● ●

●● ● ●● ●●●
●

●

●● ●
●

●
●

●

●
●

●
●

●
●

●
●

● ●
●●

●●●
● ●● ●● ●● ●● ●●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●● ●●

0.025

0.050

0.075

0.100

2.25 2.50 2.75

Sep

●● ●●● ●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●●

●●
●●

●●
●

●
●

●
●●●●

●
●

●
●

●

●

●

●

●
●

●
●● ●●●

●
●

●
● ●● ●● ●● ●● ●● ●● ●●●●●●

● ●
●

●

●
●

●

●

●

●

●

●

●

●
●

●●
●●● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ●●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●● ●●● ●● ●●

●●
●

●
●

●
●

●

●
●

●
● ●

● ●●
● ●

● ●

●
●

●
●

●
●

●
●

● ●●●●● ●● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●
●● ●● ●●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●●
●● ●●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●● ●

●

●
●

●
●

●
●

●
●●

●● ●● ●● ●●●●●●
● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●
●

●

●

●

●

●
●

●
●

●
●

●
●● ●●● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ● ●●
●●

●●
●●

●
●

●
●

●

●
●

●● ●●●●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●●●●● ●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ● ●
●● ●● ●●● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●●

●●● ●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●
●

● ●● ●● ●● ●● ●●● ●●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●
●●●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●● ●● ● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●●●
●●

●●
●●

●●
●

●

●
●● ●● ●● ●●
● ●

●
●

●
●

●

●

●

●

●
●

●
●

●
●● ●●● ●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●●

●●●●● ●● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●●
●●

●● ●●● ●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●
●

●
●

● ●● ●● ●● ●● ●●●●●●● ●
●

●

●
●

●
●

●
●

●
●

●
●●●●●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
● ●
●●

● ●
●

●

●
●

●
●

●
●

● ●●●●● ●● ●● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●● ●● ● ●●
●●

●●
●

●● ●●●●●●
● ●

●
●

●
●

●
●

●

●
●

●
●

● ●● ●●● ●●
●●

●●
●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
● ●

●●●●●●● ●● ●● ●
● ●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●●
●

●
●●

●●● ●● ●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●
●● ●●

●●
●●

●
●

●
● ●●●●

● ●
●

●

●
●

●

●

●

●

●
●

● ●●●●●
●●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

● ●●
●●

● ●
● ●

●
●

●
●

●
●

● ●● ●● ●●● ●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●

●●
●●

●●
●●

●
●

●
●

●
● ●

● ●●
● ●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●●

●● ●● ●● ● ●●●●●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●
● ●● ●● ●● ●●●●● ●● ●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●
●

●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●●●●
● ●

●
●

●

●

●

●

●

●

●
●

●
●● ●●●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
● ●
● ●●

●●
● ●

●
●

●
●

●
●

●
●

●
●

● ●●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●●
●

●
●

●
●

● ●● ●●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●● ●●● ●● ●● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

● ●● ●●● ●● ●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●● ●●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●●
●●

●
●

●
●

●
●

●

●

●

●

●

●● ●● ●●●●
● ●

●
●

●
●

●

●

●

●

●
●

●
●

●
●● ●●● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●

● ●
●

●
●

● ●● ●● ● ●
● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●● ●● ●● ● ●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●● ●●● ●● ●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●●● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●● ●●● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●●
●

●

●
●

●
●

●
●

●

●

●
●● ●● ●● ●●●●

● ●

●
●

●
●

●
●

●
●

●
●

● ●●● ●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●●

●●
●

● ●● ●●●●● ●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●● ●● ●● ● ●● ●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
● ●● ●● ●●● ●● ●● ●●

●●
●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●
●●●●●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●●
●● ●●●●● ●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●
●●● ●●

●●
●●

●
●

●
●

●
●●

●●
●● ●● ●●●●

● ●
●

●

●
●

●
●

●
●

● ●●●●● ●●
●●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●

●
● ●●●●●●● ●● ●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●●
●●

●●
●●

●●●●●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

● ●● ●● ●● ●● ●● ●● ●●●●● ●
●

●

●
●

●

●

●

●

●
●

●
●

●
●●●●● ●●

●
●

●
●

●

●

●

●

●

●

●

●

●●●●
● ●

● ●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●
●●●●● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●● ●●● ●● ●●
●●

●

●
●

●
●

●
●

●
●

●
● ●●

●●
● ●

●
●

●
●

●
●

●
●

● ●● ●●●●● ●●
●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●
● ●● ●●●●●●● ●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●●

●●
●●

●●
●●

●● ●●●●
● ●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●● ●●

●
●

●
●

●

●

●

●

●

●

●

●

●●●●●●
● ●

● ●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●● ●●● ●●

●

●
●

●
●

●
●

●
●

●
● ●●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●● ●●● ●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

● ●● ●●●●● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●
●●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●●
●●

●● ●●●●● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●●●
●●

●
●

●

●

●

●

●

●

●

●

●

●●● ●● ●● ●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●● ●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●● ● ●● ●●

●

●
●

●
●

●
●

●● ●● ●●
● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
● ●●● ●●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

● ●● ●●● ●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●●

●●● ●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●●
●● ●● ●●●●● ●

●
●

●
●

●

●

●

●

●

●

●
●

●
●●● ●●

●●
●

●

●
●

●

●

●

●

●

●

●● ●●● ●● ●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

● ●●●●● ●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●●
● ●● ●

●
● ●● ●● ●● ●●●●● ●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●● ●●● ●●

●●
●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

● ●● ●●●●● ●●
●●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●●

●●● ●●
●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●●
●●

●●
●● ●●●●● ●

●
●

●
●

●

●

●

●

●
●

●
●

● ●●●
●●

●●
●

●
●

●

●
●

●

●

●
●

●
●

●
●

●
● ●●

●

●
● ●● ●● ●● ●● ●●●● ●

●
●

●
●

●
●

●

●●

●

●
●

●
●

●
● ●● ●●● ●● ●●● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●
●

●
● ●● ● ●●● ● ●●

●
●

●
●

●
●

●

●
●

●

●

●

●
●

●
●

●
●

●●
●●●●●

●
●

●

●

●

●

●

●

●
●

● ●
●

●●●●
● ●

●
●

●
●

●

●

●

●
●

●● ●●
●

●
●

●

●
●

●

0.025

0.050

0.075

0.100

2.0 2.2 2.4 2.6

Dec

●

●●●

●●●●●●●●●●● ●● ●● ●● ●●

●●● ●● ●● ●● ●● ●● ●● ●●●● ●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●● ●

●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●● ●● ●● ●● ●●

● ●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●●●

●●●● ●● ●● ●● ●● ●●

●● ●● ●● ●● ●●●●●●●

●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●● ●● ●●

●●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●●● ●● ●

●

●● ●● ●
●●●●●●●● ●● ●

●●●●●●●●●●●●●●● ●● ●

● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●● ●● ●●

●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●

●● ●● ●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●

●● ●●

●● ●● ●● ●● ●● ●● ●● ●●●●●●

●● ●● ●● ●● ●● ●●●●●

●●●● ●● ●● ●●

● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●

● ●● ●● ●●

●

●●●●●●●●● ●● ●● ●● ●

● ●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●

●● ●● ●● ●●●●●●●●●●●● ●● ●● ●
●● ●● ●●●●●●●●

●●●

● ●

●

● ●● ●● ●● ●● ●● ●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●● ●● ●● ●●

●● ●● ●● ●● ●●●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●● ●●

●●●●●●●●●●● ●● ●●

● ●●●
●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●

●● ●● ●●● ●●●●●●●●●● ●● ●● ●● ● ●● ●● ●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●

● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●● ●● ● ●● ●● ●● ●●●● ●●●●●●●●●

●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●

●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●

● ●● ●● ●● ●● ●●●●●●●●●●

●● ●● ●● ●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●●

●
● ●● ●● ●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●● ●●●●●●●●●●●●●●● ●

●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●● ●● ●● ●● ●●

●●●●●●●●●●●●●

●●

● ●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●●●●●●●●

●

● ●● ●● ●● ●● ●●●● ●●●●●●●●●●●●●●● ●

●●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●●●●●●●●●●

● ●●

●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●

●●●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●

●● ●● ●● ●● ●● ●● ●● ●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●● ●● ●● ●● ●●

●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●● ●● ●● ●●

●● ●●●●●●●●●

●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●

●● ●● ●●●●●●●●●●●●●●● ●● ●● ●● ● ●● ●● ●●●●●●●●●●●●● ●● ●●

●● ●● ●●

●●●●●●●●●●●●●●●

●● ●● ●● ●● ●● ●●●●●●●

●● ●● ●● ●● ●● ●●●●

●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●

●

●● ●● ●●●●●●●●●●●●●●● ●

●● ●● ●●●●●●●●●●●●

●●

●● ●● ●● ●● ●● ●● ●●

●●●●●●●●●●● ●● ●● ●●

● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●

●●●●●●●●● ●● ●● ●● ●● ●●

●● ●●●●●

●● ●● ●

●●

● ●● ●● ●● ●● ●● ●● ●●

●●●●●●● ●● ●● ●● ●● ●● ●● ●●

●● ●●

● ●

●●●●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●●●

●●● ●● ●● ●● ●● ●● ●● ●●●●●●

●● ●● ●● ●●●●

●●●

● ●

●●●●●●●●●●●●● ●● ●● ●● ●● ●●

● ●● ●● ●●

●●●●●●●●●●● ●● ●● ●● ●● ●● ●●●● ●●●●●●●●●●●●●●● ●●

●●●

●●●●●●● ●● ●● ●●
●● ●● ●●●●●●

●●●●●
●●●● ●● ●● ●● ●● ●

●● ●● ●● ●● ●● ●● ●●

●●

●● ●
●●

●● ●● ●● ●● ●● ●● ●

●

●● ●●

●●●●● ●● ●●

●

●● ●●●●●●●●●●●●●●●

●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●● ●● ●● ●

●● ●● ●●●●●●●●●●●

● ●● ●● ●● ●● ●● ●●●●●●●●●●● ●● ●● ●● ●● ●● ●●●●●●

●● ●● ●● ●● ●● ●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●● ●● ●● ●● ●●

●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●● ●●●●●●●●●●●●● ●

●●●●●●●●●●● ●● ●● ●● ●● ●● ●●●● ●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●

●● ●●●●●●●●●●●

●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●

●● ●

●● ●●●●

●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●●●● ●● ●● ●●

●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●

●●● ●● ●● ●● ●● ●●

●●● ●● ●● ●● ●● ●● ●●●●●●●●

●●●●●

● ●● ●● ●● ●● ●● ●● ●●

●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●●●● ●

●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●● ●● ●● ●● ●●

●● ●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●

●● ●● ●● ●●●●●●●●●●●●●●●●● ●● ●● ●● ●●

●● ●● ●● ●● ●● ●● ●●

●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●● ●● ●●

●●●●●●●●

●●●●●●●●● ●● ●● ●● ●● ●● ●●●● ●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●

●● ●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●●●●

●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●●

●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●

●● ●● ●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●● ●● ●● ●●
●● ●● ●● ●●

●● ●● ●● ●● ●● ●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●● ●● ●● ●● ●● ●●

●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●● ●

●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●

●● ●● ●● ●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●

●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●● ●● ●● ●● ●●

●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●

●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●●●●●●●●

●● ●● ●● ●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●●

●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●● ●● ●● ●●

●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●

●● ●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●

●● ●● ●● ●●●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●● ●● ●● ●● ●● ●●

●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●● ●● ●●

●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●

●● ●●●●●●●●●●
●● ●● ●● ●● ●● ●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●● ●● ●● ●● ●● ●●

● ●● ●● ●● ●● ●● ●● ●● ●● ●●
●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●● ●●

●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●

●●● ●● ●● ●● ●● ●● ●●

●●●●●●●●● ●● ●●
●● ●● ●● ●● ●●

●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●● ●● ●● ●● ●●

●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●● ●● ●● ●● ●● ● ●● ●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●

●● ●● ●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●

●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●● ●● ●● ●● ●●

●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●●●

●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●

●● ●● ●● ●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●●

●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●

●●●● ●● ●●

●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●●●

● ●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●●●

●● ●● ●● ●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●● ●● ●● ●● ●● ●●

●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●● ●● ●●

●●●●●●●
●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●

●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●

0.025

0.050

0.075

0.100

4.0 4.5 5.0 5.5 6.0

Mar

●
●

●
●

●
●

●
●

●
●●

●
●●
●

●
●●

●
●

●
●

●
●

●●
●●

●●●
●●

●●
●●
●

●
●

●
●

●
●●

●●
●●

●● ●●
●

●
●

●
●

●
●

●●● ●● ●●
●

●
●

●●

● ●
●

●
●

●
● ●●

●●
●●

●●
●●

●
●

●
●

●
●

●●
●●
●●

● ●●
●●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
● ●●

●●

●
●●

●●

●
●

●●

●●
●●

● ●●
●●

●● ●●
●

●
●

● ●
●

●
●

●
● ●●

●●
●●● ●●

●●
●●

●●
●●

●
●

●
●

●
●

●
●

●

●
●● ●● ●

●
●

●
●●

●●
●●
●●

● ●
● ●●

●●
●●

●●
●●

●●
●

●
●

● ●
●

●
●

●●

●

● ●●
●●
●●

●●
●● ●●

●
●

●●
●●

●●

●●

●●
●●

●●
● ●●

●●
●

●
●

● ●
● ●

● ●
● ●

●●●●●●
●●

●●
●●

●

●●

●●

●●
● ●

●
●
● ●

● ●● ●●
●

●
●

●
●

● ●
● ●●

●●
●●

●●● ●●
●●

●●
●●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●●

●
●●

●●
●●

●●
●

●●
● ●

● ●●
●●

●● ●●
●

●
●

●
●

● ●

● ●
● ●●
●●
●●

●●
●●

●●

●●
●●

● ●● ●● ●●
●

●
●

●●
● ●

●●● ●●●● ●● ●● ●●
●●

●●
●●

●●
● ●

●
●

●
●● ●● ●

●
● ●

●
●

●
●●

●

●●

●●

●●

●●
● ●●

●● ●●●● ●
●

●
●

●
●

●
●

●
●

●●
●●

●●
●●● ●●

●●●●
●

● ●● ●
●

●
● ●

●
●

●
●

●
●

● ●●
●●

●●

●
●

●●

●●

●●
●

● ●
●

●●
● ●

●
●●

●●
●●

● ●
● ●

● ●●
●●

●●
●

●
●

●
●

●
●

●●●●● ●
●

●
● ●

● ●●
●●

●
●

●●
●●

● ●
●●

● ●●
●● ●●

●●
●

● ●
●

●
●

●
●

●●
●

●●
●●

●●●
●●

●● ●

●●
●●● ●● ●●

●● ●●
●●

●●
●●

●●
●●

●
●

●●

●●
●●

● ●●
●●
●● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●●●
●

●

●●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●●
●●● ●● ●● ●●

●●
●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●●
●●

●●
● ●●

●● ●●
●

●
●

●
●

●
●

●
●

●
●

●
●●
●●

●●
●●

● ●
● ●● ●●

● ●●
●● ●●

●
●

●
●

●
●

●
●

●●

●
●

●●
●●

●

●
●

●
●

●
●

●
●

●
●

●
●●
●●● ●●

●
●

●

●●
●●

● ●● ●● ●●
●● ●●

●●
●

●
●

●
●

●

●● ●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●●

●
●●
●●

●●

●●
● ●

● ●
● ●● ●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●●● ●●

●●
●●

●●
●●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●●
●●

●●
●●● ●●

●●
●●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●●
●●

●
●●

●●
●●

●●
●●

●
●

● ●● ●●
●●

●●
●

●
●

●
●

● ●● ●● ●●
●●

● ●
●

●
● ●●

●●
●●

●
●

●
●

●●● ●●
●

●●
●

●
● ●

●
●●

●●
●●

●●
●●

●●
●

●
●

●
●

●
●●
●●

●●
● ●●

●●
●● ●●
●

●
●

●
●

●
●

●
●

● ●
●●●●●●●

●
●●

●●

●●

●●

●●
● ●

●
●●

●●
●● ●● ●

●
●

●
●

●
●

● ●●
●●
●●

● ●●
●●

●●
●●

●
●

●●
●

●
●

●
●

●
●

●
●

●●
●●
●●

● ●●
●●

●●
●●

●●
●

●
●

●
●

●
●

● ●
● ●●

●
●●

●
●

●

● ●●
●● ●●

●●
●● ●●

●
●

●● ●● ●●
●●

●●
● ●

●
●

● ●
● ●●

●●
●●

●
● ●

● ●
● ●

● ●
●●●●●● ●●

●●
●

●●

●●
● ●

● ●
● ●●

●● ●● ●●
●● ●● ●● ●● ●●

●●
●●

●●
● ●●

●●
●●

●●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

●●

● ●● ●●
●●

●●

●●
●●

●●
●●● ●●

●
●

●
● ●

● ●
●

●
●

●
●

●●
●●

●●
●●

● ●

● ●
●

●
●

●
● ●

● ●● ●
●

●
●

●
●

●

●●● ●● ●● ●●
●● ●●

●
●

●
●

●●
●●

●●
●●

● ●
● ●● ●●

●
●

●

●●
●●
● ●●●●●● ●●●● ●

● ●● ●

● ●
●

●●
●● ●● ●● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●●●●

●●

●●

●●
● ●

● ●
● ●

●
●●
●● ●● ●

●
●

●
●

●
●

●
●●
●●

●●
●●

●●●●● ●●
●● ●

●
●

●
●

● ●
●

●
●

●
●

●●

● ●●
●●

●●

●●

●

●
●

●
●

● ●
● ●

●
●

●
●●
●●

●●
●●

● ●●
●●

●●
●

●
●

●
●

●
●

●
●

●●●●●●● ●
●

●
●

●
●

●●
●●

●●
●●

●●
● ●● ●●

●●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●●

●●
● ●●

●●
●● ●

●●
● ●

●●
● ●● ●● ●●

●● ●●
●

●
●

●
●

●
●●

●●

●●

●●
●●

● ●●
●●
●● ●

● ●
●

●
●

●
●

●
●

●
●

●●●●● ●

●

●●

●●

●●

●●
● ●

●●
● ●●

●●
●●

●
●

●
●

●
●

●
●

●
●

●●
●●

●●●
●●
●●
●

●
●

●
●

●
●

●
●

●●
●

●
●

●
●

●
●●

●●
●●
●●

●
●

●
●

●
●

●
●

●
●

●●
●●

● ●●
●●

●
●

●
●

●
●

●
●

●
●

●●
●●

●●
●●

●●● ●● ●●
●●
●●

●●
●

●
●

●
●

●
●

●
●●
●●

●●
●●● ●●

●●
●

●●
●●
● ●

●●●

●
●

●●
●●

●
●

●
●

●
●

●
●

●
●

●

●
●●

●●

●●

●●
●

●
●

●●
●●

●●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●●
●●● ●●

●●
●●
●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
● ●

●
●

●
●

● ●●
●

●
●●

●●
●●

●
●

●

●●
●●●

●● ●●
●●
●●

● ●● ●●
●●

●●
●●

●●
●●
●

●
●

●
●

●
●

●
●

●
●

●
●●

● ●●
●●

●

●●
●●

● ●
●

●●

●
●●

●
●

● ●●
●●

●● ●●
●

●
●

●
●

●
●

● ●
●●

●●●●●

●
●●

●●

●●

●●

●●
●

●●
●●

●●
●●

● ●● ●

●●

●
●

●
●

●●
●●

●
●●

●● ●

●
●●

●● ●●
●

●
●

● ●
● ●● ●● ●●

●●
●●

● ●
●●

●
●●

●● ●●
●●

●● ●● ●● ●●
●

●●

●●
● ●

●●
● ●● ●● ●●

●● ●●
●● ●● ●● ●●

●
●●

●
●

● ●
● ●

●
●●

● ●●
●

● ●
●

●
●●

●●
● ●● ●● ●●

●● ●●
●

●●
●●

●
●

●

●●

●
●

●●
●●

●
●

●
●

●●
●●
●●

●●● ●
● ●

● ●● ●●
●●

●●
●●

●
●

● ●
●

●●
●
●

●
●

●
●

●
●

●
●

●

●

●●

●●
●● ●●
●●● ●

●
●

●
●

●
●

●
●

●●
●

●
●

●
●

●
●

●

●
●●

●●

●●

●●

●●
● ●

●●●
●

●
●

●
●

●
●

●
●

●
●●

●●
● ●●

●● ●●
●●
●●
●

●
●

●
●

●
●

●● ●● ●
●

●
●

●●

●
●

●●
●●

●●
●●●

●
●

●
●

●
●

●
●

●
●

●
●●
●●

●●
●●

● ●●
●●

●● ●

●●
●●
● ●●●●
●●

●●
●

●
●

●
●

●
●

●
●●

●
●

●●
●●

● ●
●●

● ●●
●●
●● ●●

●
●

●
●

●
●

●
●

●
●

●● ●●● ●

●

●
●

●●

●●
●●

●●
●●●

●● ●●
●●

●● ●●
●

●
●

●
●●
●●

●●
●●

● ●●
●●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●●
●●
●●

●●

●●

●●
●●

● ●●
●●
●●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●●
●●● ●● ●●

●●
●●●

●
●

●
●

●
●

●
●●
●●

●●
● ●●

●●
●●

●

●

●
●

●●
●●
●●

●●
● ●

●
●●

●●
●●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●

●
●●

●●

●●
●●

● ●
● ●

●
●●

●●
●●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●●
●●●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●●
●●

●●
●●

●

●
●●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●●
●●● ●●

●●
●●

●●
●

●
●

●
●

●
●

●●
● ●● ●●
●

●
●

●
●

●
●

●
●●

●
●

●●
●●

●
●●

●●
●●

●●
●●
●

●
●

●
●

●
●

●
●

●
●

●
●●
●●

●●
●●

● ●●
●

●●
● ●

● ●
● ●●

●●
●●
●

●
●●

●
●

●
●

●
● ●● ●●
●●

●●
● ●

●
●●

●●
●● ●●

●
●

●
●

●
●

●
● ●

● ●
●●●●●

●
●●

●●

●●

●●
●●

● ●
● ●

● ●●
●●

●● ●●
●

●
●

●
●

●
●

●
●●

●●
●●●

●●
●●

●●
●

●
●

●

●
●● ●● ●●

●●
●●

●●
●● ●●
●

●
●

●
●

● ●
●

●
●

●
●

●●
●●

●●
● ●● ●●

●●

●
●●

●●
●● ●● ●

●
●

●
●

●
●

●
●●

●

●
●●
●● ●●

●
● ●● ●

●
●

●
●

●
●

● ●
●

●● ●●
●●

●
●●

●●
●●

●
● ●

●
●

●
●

●
●

●
●

●
●●

● ●● ●●
●●

●●
●●

●●
● ●

●
●
● ●

●
●●
●●

●● ●
● ●

● ●
● ●●

●
●

●

●

● ●●
●● ●● ●●

●●
●●

●

●
●●

● ●
● ●

● ●●
●●

● ●
● ●● ●●

●●
●●

●●
●

●●
●●
●●● ●● ●● ●●●

● ●
● ●●
●●
●●

●●
● ●

●●
● ●●

●●
●●
●● ●●

●
●

●
●

●
●

●
●

●●
●●

●

●●

●●
●●

●●
● ●● ●● ●●

●● ●●
●● ●●

●
●

●
●

●
●

●●

●●

●●
●●

●●
●

●
●

●
●

● ●●
●

●
●●

●●

●●

●●

●●

●●
● ●

● ●●●● ●●
●

●
●

●
●

●
●

●
●

●
●●
●●

●●●●●
●●

●●
●●
●

●
●

●
●

●
●

●●
● ●

●●●●● ●●
●

●
●

●
●

●
●

●
●●

●
●

●●
●●

●●
●●

● ●● ●● ●●
●●

●●
●

●
●

●
●

●
●

●
●

●
●●

●●
● ●

●

●●

●●
●●

●●
● ●● ●● ●●

●● ●●
●

●
●●

●
●

●
●

●●
●●

●●
●●

● ●●
●●

●●
●●
●●

●●

●●
●●

● ●
●

●●
●●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●●●●● ●●

●●
●●
●●
●

●
●

●
●

●
●●
●●

●●
●●

●●
●●

●●

●
●

●
●

●●
●●● ●● ●●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●
●●

● ●●
●●

●●
●●

●

●●

●●
●●●

●●
●● ●●

●
●

●
●

●
●

●●
●● ●●

●●
● ●

● ●● ●●
●●

●●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●

●
●●
●●
●●

● ●
●●

●
●●

●●
●●
●●

●●
●

●
●

●
●●

●●
●●
●●

●●
●●

● ●●
●●

●
●

●
●

●
●

●
●

●

●
●

● ●
●●

●
●●

●●
●●

●●
●●
●●

●●

●●
●●

●●
● ●●

●●
●

●
●

●
●

●
●

●
●

● ●
● ●●●●● ●●

●●
●●

●●
●

●
●

●
●

●
●

●

●
●●

●
●

●
●

●
●

●
●

●●
●

●
●●
●●

● ●●
●●

●●
●●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●●
●●

● ● ●
●●

●●
●

●●
●●

● ●
●

●●
●●

●●
●

●
●

●
●

●
●

●
●

●
●●

●●
●●

●●
● ●●

●●
●●

●●
●●
●●

●
●

●
●

●
●

●
● ●

● ●●●●

●
●●

●●

●●
●●

●●
● ●

● ●●
●●

●●
●●
●●

●●
●●

●●
●●

●●
●●

●●
● ●●

●●
●●

●
●

●
●

●
●

●
●

●
●

●
● ●

● ●● ●● ●● ●● ●●
●●
●●

●●
● ●

● ●
●

●●
●●

●●
●

●
●

●
●

●
●

●
●

● ●
● ●●

●●●●● ●●
●●

●●
●●
●●
●

● ●
●

●●
●●

●●
●●

●
●

●
●

●
●

●●
●●
●●

●●
● ●● ●● ●● ●● ●● ●

● ●
● ●

● ●
● ●

● ●● ●●
●●

●
● ●

●●
●

●●

●●
●●

●●
● ●● ●● ●● ●● ●● ●

● ●
● ●● ●● ●●
●●

● ●
●

●
●

●●
●●

●●
●●
●

●
●

●
●

●
●

●
●

●
●

●
●●

● ●● ●●
●●

●●
●●

● ●
● ●

● ●●
●●

●●
●●

●●
●

●
●

●
●

●
●

●
●●

●●
●●

●●● ●● ●● ●● ●
● ●

● ●
● ●

● ●

● ●● ●● ●● ●● ●●
●●

●●
●●

●●

●●
●●

●●● ●● ●● ●
● ●

● ●
● ●

● ●
● ●●

●●
●●● ●● ●●

●●
●●

●●
●

●●
●●

●●●●● ●● ●
● ●

●
●

●
●●

●
●

●●
●●

●●● ●● ●●
●●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●●

●●
●●

● ●

●●

●●

●●
●●

●●● ●● ●● ●●
●

●
●

●
●

●
●

●
●

●
●●
●●

●●
●●

●●
● ●● ●● ●●

●●
●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●●

●●

●●

●●

●●
●●

●●
● ●● ●● ●● ●●

●
●

●
●

●
●

●
●

●●
●●

●●
●●

● ●● ●●
●

●
●

●
●

●
●

●
●

●
●

● ●● ●● ●● ●●
●●

●●
●●
●●

●●

●●
●●

●●
● ●● ●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●●

●●● ●● ●●
●●

●

●●
●●

● ●● ●● ●●
●

●
●

●
●

●
●

●
●

●

●
●

●●
●●

●●● ●● ●●
●●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●●

●●
● ●

●

●
●

●●
●●

●●
●●● ●● ●●
●●

●
●

●
●

●
●

●
●

●
●

●●
●●

●●
●●

●
●

●●
●●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
●●

●●
●●

●●
●●

●●
● ●

● ●●
●●

●●
●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●●● ●●
●●

●
●

●
●

●
●

●
●

●

●
●●
●●
●●

●●
●●

●●
●●

●●
●●

●●

●●
●●

● ●● ●●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●● ●●●●●
●●

●●
●●

●

●●

●●
● ●

● ●● ●●
●●

●
●

●
●

●
●

●
●

●●
●●
●●

● ●●
●●

●●
●●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●
●●

●●

●
●●

●●
●●

●●
● ●●

●●
●●
●●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●●

●●
● ●

●
●●

●●
●●

●
●

●
●

●
●

●

●
●

●
●

● ●

●
●

●
●

●
●

●
●●

●●

●

● ●
●

●●
●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

● ●●
●●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ●●
●● ●●●

●●
●●

●

●●

● ●
● ●

●
●●

●●
●●

●
●

●
●

●
●

●
●

●
●

●●
●●
●●

● ●● ●●
●●

●●
●●
●●
●●

●
●

●
●

●
●

●
● ●● ●●

●●

●
●●

●
●

●●
●●

●●
● ●● ●●

●●
●●

●●
●●

●● ●● ●● ●●
●●

●●
● ●

●
●●

●●
●●

●●
●

●
●

●
●

●
●

●
●

● ●

● ●● ●● ●● ●● ●● ●●
●
●

●●
● ●

●
●
●

●●
●●

●●
●●

●
●

●
●

●
●

●
●

●
●

●●
●●●●● ●●

●●
●●
●●
●

●
●

● ●
●

●●
●●
●

●●
●●

●
●

●●

●●

●●
●●

●●● ●● ●● ●● ●
● ●

● ●
● ●● ●●
●●

●●
● ●●

●●
●●

●●
●●
●●
●

●
●

●
●

●
●

●
●

●
●

●
●●

● ●●
●●

●●
●●

●●
● ●

● ●● ●● ●●
●●

●●
●●

●
●

●
●

●
●

●●
●●

●●
●●

●●
● ●● ●● ●● ●
● ●

● ●
● ●

● ●

● ●● ●● ●● ●●
●●

●●
●●

●●

●●

●●
●

● ●
● ●● ●● ●● ●

● ●
●

●
●●
●●

●●
●

● ●● ●●
●●

●●
●

●
●

●●
●●

●●
● ●● ●● ●● ●●●

●●
●●

●●
●●● ●

●●
●●

●
●

●
●

●
●

●
●

●
●

●●
●

●●
●●

●●
● ●

●●

●●

●●
●●

●●
● ●● ●●●●

●
●

● ●● ●● ●●
●●
●●

●
●

●
●

●
●

●
●

●
●

●●

0.025

0.050

0.075

0.100

4.0 4.5 5.0 5.5

Jun

●
●

●

●●
●

●
●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●
●

●●

●●
●

●
●

●
●

●
●

●

●

●
●

●●

●●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●●
●

●●

●●

●
●

●
●

●

●●

●

●
●

●
●

●
●

●
●

●

●

●
●●

●●
●

●

●
●

●

●
●

●
●

●●
●●

●
●

●
●●
●

●●

●
●

●
●

●
●

●
●

●

●
●

●●

●●

●

●
●

●

●

●
●

●●

●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●●

●●

●
●

●
●

●
●

●

●●

●

●
●

●
●

●
●

●

●

●
●

●

●

●●

●
●

●
●

●
●

●
●

●

●●

●●

●●
●

●
●

●●
●

●●

●●

●●

●●

●
●

●
●

●
●●

●●

●●

●
●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●●

●
●

●

●●

●
●

●
●●
●

●●

●●

●
●

●

●

●

●
●

●
●

●●

●●

●●

●
●

●
●

●

●
●

●

●
●

●●

●●

●
●

●
●

●
●

●

●
●

●

●●

●
●

●

●

●

●
●

●
●

●●

●
●

●
●

●
●

●

●
●
●

●●

●●

●
●

●
●

●
●

●
●

●
●

●

●●
●●

●●

●

●

●

●
●

●
●

●

●
●

●
●

●

●
●

●●

●●

●
●

●
●

●
●

●
●

●
●

●

●●
●●

●●

●●

●●

●
●

●
●

●
●

●●

●●

●
●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●●

●●
●●

●●

●
●

●
●●
●

●●

●●

●
●

●

●

●
●

●●

●●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●

●

●
●

●

●
●

●
●

●●

●●

●

●
●

●

●
●

●●

●●

●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●●

●●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●●

●●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●
●

●
●

●
●

●●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●
●

●

●
●

●
●

●●
●

●

●●
●●

●
●

●

●●

●

●
●

●●

●
●

●
●

●

●
●

●●
●●

●
●

●
●

●
●●
●

●●

●●

●●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●
●

●

●
●

●●

●
●

●

●
●

●●

●

●
●

●

●●

●
●

●
●

●

●
●

●●

●

●
●

●●

●●

●
●

●

●

●

●

●●

●
●

●
●

●

●

●

●●

●

●
●

●
●

●●

●
●

●
●

●
●

●

●
●

●●

●●

●
●

●

●

●

●
●

●
●

●

●

●●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●
●

●

●●
●●

●●
●●

●
●

●

●●
●

●
●

●●

●●

●
●

●

●

●

●
●

●
●

●●

●
●

●

●
●

●
●

● ●

●

●

●

●

●

●
●

●
●

●

●
●
●

●

●●
●●

●

●
●

●

●

●

●●
●●

●●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●●
●●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

●
●

●
●

●●

●
●

●

●

●●

●●

●●

●
●

●
●

●
●

●

●●
●●

●
●

●

●
●

●
●

●

●

●
●

●
●

●●

●
●

●
●

●
●

●

●
●

●●

●●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●●
●●

●●

●
●

●

●●

●

●
●

●●

●●

●
●

●

●

●

●●
●●

●
●

●

●

●

●

●

●

●
●

●●
●●

●●
●●

●
●

●
●●
●

●●

●●

●●

●●
●

●
●

●
●

●●
●

●

●
●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●●

●●
●

●
●

●
●

●●

●
●

●

●
●

●●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●
●

●●

●●
●●

●
●

●

●

●

●
●

● ●
●

●●

●

●
●

●

●
●

●
●

●
●

●●

●●

●
●

●
●

●
●●
●

●●

●●

●

●
●

●

●●

●
●

●

●

●

●
●

● ●

●

●

●●

●
●

●
●●

●
●●

●●

●

●

●●

●
●

●

●
●

●●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●●

●●

●
●

●
●

●
●

●
●

●
●

●●

●●
●

●●

●●

●
●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●●

●

●●

●
●

●

●

●

●
●

●
●

●●

●●

●
●

●
●
●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●
●

●●

●●

●●

●●

●

●

●

●
●

●
●

●

●
●

●
●

●

●●
●●

●●

●●

●

●

●
●

●

●
●

●●

●
●

●●

●●

●
●

●
●

●

●●
●

●
●

●
●

●
●

●

●

●

●

●

●

● ●

●●

●
●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●
●

●
●

●●

●●

●
●

●

●

●

●
●

●

●
●

●●

●●

●●

●
●

●
●●●

●●

●
●

●
●

●
●

●

●

●

●●

●●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●
●

●
●

●●

●

●
●

●

●

●
●

●

●

●

●●

●
●

●
●

●●
●

●●

●●

●
●

● ●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●●

●

●
●

●
●

●
●

●
●

●

●●
●●

●
●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●
●

●
●

●
●

●●

●
●

●
●

●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●
●

●●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●●
●●

●
●

●

●
●

●●

●
●

●

●●

●●

●
●

●●

●

●

●

●

●

●
●

●

●●
●●

●●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●●

●
●

●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●
●

●●
●

●

●

●
●

●

●

●
●

●●

●

●●

●
●

●
●

●

●

●

●
●

●●

●

●
●
●

●

●
●

●

●
●

●●
●●

●
●

●

●
●

●●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●
●

● ●

●
●

●

●

●

●
●

●

●●
●

●
●

●
●

●●●

●●

●●

●●

●
●●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●●
●

●●

●
●

●
●

●
●

●

●

●●

●
●

●
●

●

●
●

●
●●

●●

●●

●
●

●
●

●
●

●
●

●●

●●

●
●

●
●

●
●
●

●●
●

●

●
●

●
●●
●

●
●

●

●
●

●●
●●

●●
●●

●●

●
●

●●●
●

●●

●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●●

●

●
●

●●

●●

●
●

●
●

●

●

●

●●

●

●
●

●●
●●

●●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●●

●
●

●●

●
●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●
●

●●

●●

●
●

●

●
●

●●
●

●●

●●

●
●

●

●

●

●
●

●

●
●

●
●

●●
●●

●●

●
●

●
●

●●

●●

●●

●●

●
●

●

●

●

●●

●●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●● ●●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●●

●●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●
●

●
●

●●

●●

●
●

●

●

●

●●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●●

●●

●
●

●

●

●

●●

●●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●●
●●

●●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●
●

●
●

●●
●●

●●
●●

●
●

●
●●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●●

●●

●
●

●

●
●

●●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●●

●●

●
●

●
●

●
●

●

●
●

●●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●●
●●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●

●
●

●

●●

●●
●

●
●

●
●

●●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●●

●
●

●
●

●

●
●

● ●

●

●
●

●
●

●

●

●

●
●

●
●

●●
●●

●
●

●

●
●

●
●

●
●

●
●●

●●
●●

●
●

●
●
●

●●
●

●●

●●

●
●

●
●

●
●

●

●
●

●●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●

●●
●

●

●
●
●

●
●

●●

●
●

●

●

●

●
●

●

●
●

●●

●●
●●

●
●

●

●
●

●
●

●

●
●

●●

●●

●
●

●
●

●
●●
●

●
●

●●

●●

●●

●
●

●●
●

●
●

●●
●●

●●

●
●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●●

●

●
●
●

●
●
●

●●

●●

●
●

●

●

●

●
●

●●

●●

●
●

●
●

●

●

●

●
●

●

●
●

●●

●
●

●
●

●

●●

●

●

●●

●●

●
●

●
●

●
●●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●
●

●●

●●

●
●

●
●

●

●

●

●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●●

●●

●●

●
●

●
●

●
●●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●●

●
●

●
●

●

●

●●
●●

●●
●●

●●

●
●

●
●●
●

●
●

●
●

●
●

●●

●

●

●
●

●
●

●

●
●

●●

●
●

●
●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●●

●●

●
●

●
●●

●

●●

●●

●
●

●

●

●
●

●

●
●

●●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●●●
●

●●

●●

●●

●
●

●

●
●

●
●

●
●

●●

●
●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●
●

●
●

●

●

●

●

●●

●
●

●
●●

●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●●

●●

●
●

●

●
●

●
●
●

●●

●●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●●

●●

●
●

●
●

●

●●
●

●●

●●

●
●

●●

●
●

●

●

●

●
●

●●

●●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

●
●

●●

●●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●

●

●

●
●

●
●

●●

●●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●
●

●
●

●
●

●●

●
●

●
●

●
●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●●

●●

●

●

●

●

●

●

●●

●●

●

●
●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●●
●●

●
●

●

●
●

●●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●●

●●

●

●

●
●

●
●

●●
●●

●●

●●
●

●
●

●
●

●
●

●

●●

●●

●
●

●
●

●
●

●

●

●

●●

●●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●
●

●
●

●
●

●
●

●
●

●

●
●

●●

●●

●
●

●

●●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●

●
●

● ●

●

●

●

●

●
●

●
●●

●

●●

●●

●
●

●
●

●
●

●

●
●

●●

●●

●
●

●

●
●

●
●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●
●

●●
●

●

●
●

●

●

●●
●

●

●
●

●

●●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●●
●

●
●

●

●

●
●

● ●

●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

●

●

●
●

●
●

●
●●

●●
●●

●
●

●
●

●

●●
●

●●

●●

●●

●●

●
●

●
●

●
●●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●●

●●
●

●
●

●●
●●

●●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●

●

●

●
●

●
●

●●

●●

●
●

●
●

●

●
●

●
●

●●
●

●

●●
●

●
●

●●
●

●●

●
●

●
●

●
●

●

●
●

●
●

●●

●●

●
●

●
●

●

●
●

●●
●

●
●

●●

●●

●
●

●
●

●
●

●
●

●
●●

●
●

●
●

●

●

●●

●

●

●
●

●
●●

●
●
●

●●

●●

●
●

●
●

●
●

●
●

●
●●
●●

●

●
●

●

●
●

●
●

●
●

●

●

●

●
●

●●

●●

●
●

●
●

●
●

●
●

●●
●●

●●
●●

●
●

●
●●

●
●●

●●

●●

●
●

●
●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●
●

●

●●

●●

●●

●●

●
●

●
●

●
●

●

●
●

●●

●●

●
●

●
●

●
●●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●●

●●

●●

●
●

●

●

●

●
●

●●

●●

●●

●●
●●●●

●●

●●

●
●

●
●

●

●
●

●
●

●●

●●

●
●

●
●

●

●

●

●●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●
●

●
●

●●

●
●

●
●

●●

●●

●
●

●
●

●
●●

●
●

●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●●

●●

●
●

●
●
●

●
●
●

●●

●
●

●
●

●

●

●

●
●

●●

●

●
●

●
●

●
●

●

●
●

●
●

●●

●●

●●

●
●

●
●●

●

●●

●●

●●

●
●

●

●

●

●
●

●●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●●●

●●

●●

●●

●
●

●
●

●

●
●

●
●

●●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●●

●
●

●

●

●

●
●

●

●●

●●

●
●

●
●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●●

●
●

●

●

●

●●

●

●
●

●●

●●

●
●

●
●

●

●

●

●
●

●●

●
●

●
●

●
●

●●

●●

●
●

●
●

●

●●
●

●
●

●●

●
●

●
●

●
●

●
●

●
●

●

●
●

●●

●●

●
●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●●

●●

●
●

●
●

●

● ●
●

●●

●
●

●
●

●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●
●

●●

●●

●●

●
●

●
●

●

●

●

●
●

●●

●●

●
●

●

●
●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●
●

●●

●●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●●

●●

●●

●
●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●

●●

●●

●
●

●
●

●

●
●

● ●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●●
●

●
●

●
●

●●
●

●
●

●●

●
●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●
●

●
●●●

●●

●●

●●

●
●

●
●

●
●

●

●●

●●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●
●●

●
●

●

●
●

●

●●

●●

●
●

●
●

●

●●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●
●

●●

●●
●

●
●

●
●

●
●

●
●

●
●
●

●●

●●

●●

●
●

●●

●
●

●●

●
●

●
●

●
●

●●

●●

●
●

●
●

●

●
●

●●
●

●●

●●

●●

●●

●
●

●
●

●
●●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●
●

●
●

●
●

●
●●

●●
●●

●
●

●
●

●

●●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●●

●●

●
●

●

●

●

●
●

●●

●

●

●

●

●●
●

●
●

●●●

●●

●●

●
●

●
●

●
●

●

●
●

●●

●●

●
●

●

●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●
●●

●

●

●
●

●
●

●
●

●
●●

●●
●●

●●

●
●

●
●

●

●
●

●
●
●

●●

●●

●
●

●
●

●

●

●

●
●

●
●

●
●

●
●

●●
●●

●●

●●

●
●

●
●

●
●●
●

●●

●●

●●

●
●

●
●

●
●

●

●
●

●●

●
●

●
●

●

●
●

●●

●

●
●

●
●

●
●

●

●

●

●

●●

●●

●
●

●
●

●
●

●
●●

●
●

●

●●

●●

●●

●
●

●
●●
●

●●

●
●

●
●

●
●

●

●
●

●●

●●

●●

●
●

●

●

●

●

●●

●

●

●●

●●

●●
●●●●

●●

●●

●●

●
●

●
●

●

●
●

●●

●●

●
●

●

●

●

●●

●
●

●

●
●

●
●

●
●

●

● ●

●

●

●

●
●

●●

●●

●
●

●
●

●
●

●●

●●

●
●

●

●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●●

●●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●
●

●●

●●

●
●

●
●

●
●
●

●●

●●

●●

●
●

●
●

●

●
●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

0.025

0.050

0.075

0.100

4.0 4.5 5.0 5.5 6.0

Sep

●
●

●● ●●
● ● ● ●● ●● ●

● ●

●
●

●
●

● ●

● ●

● ●
● ●
●

●
●

●●● ●● ●● ●● ●
● ●
● ●

●
●

● ●
●

●
● ●

● ●
● ●
● ●

●
●

●
●

● ●● ●
● ●
● ●

● ●
● ●

● ●

● ●
● ●

● ●
● ●

● ●
●

●● ● ●● ●● ●●
●

●
●

●
●

● ●

● ●

●

●
● ●

● ●

● ●

● ●
● ●

● ●
● ●
●

●● ● ●● ●● ●● ●
●

●
● ●
● ●

●
●

●
●

● ●

● ●
● ●
●

●● ● ●● ●● ●●
●

●
●

● ●
●

● ●● ●
● ●
● ●

● ●
● ●

● ●

●
●

●
●

●
●● ● ●● ●● ●● ●

● ●

● ●
● ●

● ●

● ●

● ●
●●

●●●●●● ●●
●●

●
● ●

●
●● ●●

● ●● ●● ●● ●
● ●

● ●

● ●

● ●

● ●

● ●

●
●

● ●●●●● ●●
●● ●●

●
● ●
● ●

●
●

● ●
● ●

● ●
● ●

● ●

●

● ●

● ●
● ●
●

●
●

●●● ●● ●● ●● ●
● ●

● ●
● ●

● ●

● ●
● ●

● ●
● ●
● ●●

●●
● ● ● ●●

●● ●● ●
● ●

● ●
● ●

● ●

●

●
● ●

● ●

● ●

● ●
● ●

● ●

● ●
● ●
●●●●●● ●●

●● ●●
●

●
●

●
●●●●●●● ●●●● ●

● ●
●●

● ●
● ●

● ●
● ●

●
●

●
●● ● ●● ●● ●

● ●
● ●

● ●

● ●
● ●

● ●

● ●
● ●

●
●●

●● ●● ●

●
● ●
●

●
●

●● ●●
●● ●●● ●

● ●
● ●

● ●

● ●

● ●

● ●

● ●

●
●

●
●● ●● ●●● ●● ●● ●

● ●● ●
● ●

● ●
● ●

● ●
● ●

●

●

● ●

● ●

● ●

●
●

●
●

●
●

●

●
● ●

● ●
● ●

● ●
● ●
●

●
●

●●
●●

● ● ● ●● ●
●

●
● ●

● ●
● ●

●

●●●
●●

● ●
●●

● ●

● ●
● ●

● ●
●

●
●

●● ●●
● ●● ●● ●● ●

● ●
● ●

● ●

● ●

● ●

●
●

●
●

●
●

●
●● ●●● ●● ●● ●

●

●● ●●● ●●●● ●● ●● ●
● ●

● ●

● ●

●
●

●
●

●
●

●
●

●
●● ●●●●● ●

● ●
● ●

● ●

● ●
● ●

● ●

● ●
● ●
●

●● ●● ●

●

●
●

●
●

●
●

●
●
●

●● ●●●●●

● ●

● ●

● ●

● ●
● ●
●

●● ●● ●●●●● ●● ●● ●
●

●
●

●

●

● ●

● ●

● ●

● ●

●
●

●
●● ●● ●●● ●● ●● ●

● ●
● ●

● ●
● ●

● ●

●
●

●
●

●
● ●
●

●● ●● ● ●● ●● ●
● ●

●
●

●

●●

●

●
●

●
●

●
●● ●●● ●● ●● ●

● ●
● ●

● ●

●
●

●
●

●
●

●
●

● ●●●●● ●● ●
●

●
●

●
●

●
●

●
●●● ●●●● ●

● ●
● ●

● ●
● ●

● ●

● ●
● ●
●

●
●

●●●●● ●● ●● ●
●

●
● ●

●
●

●
●

● ●

●
●

●
●

●
●

●
●●

●

●
● ●

● ●
●

●
●

●
●

●
●

●●● ●● ●
● ●

● ●

●
●

●
●

● ●

● ●

●
●

● ●
●

●
●

●● ●●● ●● ●● ●● ●
●

●
●

●
● ●

●
●

●
●

●

●●●●

● ●
●

●
● ●

●
●● ● ●● ●● ●

●
●

●
●

●
●

●
●

●●●● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
●

●
●

●● ●
● ●● ●●

●
●

●
●

●

● ●

●
●

●
●

●
●

● ●
● ●
●●●● ●● ●●

●●

●
●

●
●● ●● ● ●● ●● ●● ●

● ●
●

●

● ●

● ●

● ●

● ●
● ●

●
●

●
●● ●●● ●

●●
●

● ●
● ●

● ●
● ●

● ●
● ●
●

● ●

●
●

● ●
●

●
●● ●

● ●
● ●

● ●

● ●

● ●

● ●
● ●
● ●●● ●● ●

●●
●●

●
●

●
●

●
●

●
● ●

●

●
● ●

● ●

● ●

● ●

● ●
● ●
● ●●● ●● ●● ●● ●

● ●
● ●

●
●

● ●
● ●

● ●
● ●

● ●
● ●

●

●
●

●
● ●

●

●● ●● ●● ●
● ●
● ●

● ●
● ●

● ●

● ●
● ●

● ●
●

●
●

●●
● ● ● ●● ●● ●

● ●
● ●

● ●

● ●
● ●

● ●
●●

●●●● ●●
●●

●●

●
●

●
●

●● ●●
● ●● ●● ●●

● ●

●

●● ●
●

●
● ●

●
●

● ●
● ●

● ●
● ●

● ●
● ●

● ●

●
● ●

● ●
● ●

● ●
●

●
●

●● ● ●● ●● ●● ●
● ●

● ●
● ●

● ●

● ●
● ●

● ●
● ●
●

●● ● ● ● ● ● ●● ●● ●
● ●

●
● ●

● ●

● ●

● ●

● ●

● ●

●
●

●
●

●
●●● ●●●● ●● ●● ●

● ●
● ●

●

● ●● ●
●

●
●

●
●●

● ●
●

●

●
● ●

●
●● ● ●

● ●
●● ● ●● ●

● ●
● ●

●●

●●● ●●

●
● ●

●

●
●

●
●

●
● ●●● ●●●● ●

● ●
● ●

● ●
●●

● ●
● ●

●
●● ● ● ● ●● ●● ●● ●

●
●

● ●
● ●

●
●●

● ●

● ●

● ●
● ●

●
●

●
●

●
●● ● ●● ●● ●● ●● ●● ●

● ●
● ●

● ●
● ●

● ●
●

●
●

●
●●●●●●● ●● ●

● ●
● ●

● ●
● ●

● ●
● ●

●
● ●

● ●

● ●

● ●

● ●

● ●
●

●
● ●● ●●●

●
● ●
●

●
●

●
●

●● ●●
●● ●●●

●● ●
● ●

● ●

● ●

● ●

● ●

●
●

●
●

●
●● ● ●● ●● ●● ●

● ●
● ●

●
●

● ●
●

●
●

●
●

●
●

●
● ●

●
●

● ●

● ●
● ●
●

●
●

●

●

● ●●●

●

●● ●● ●●
●

●
●

●
●●●●●●● ●● ●

● ●
●

● ● ●

●

●
●

●
●

●
●● ●

●
● ●

● ●
●

●
●

● ●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

● ●
●

●
●

●

●
● ●

● ●

● ●

● ●

● ●

●
●

●
●

●
●

● ●●● ●● ●● ●
● ●

● ●
● ●

● ●
● ●

●
●● ●●

●●
●

●
●

●
●

●

●● ●●

●● ● ●● ●● ●● ●●
●

●
●

●
●

● ●
●

●

●
●

●
●

● ●
● ●
●●●● ●

●
●

●
●●● ●● ●● ●

● ●
● ●
● ●

●
●

● ●
● ●

● ●
● ●

● ●
●

●
●

●● ● ●● ●
●

●
● ●

● ●
●

●

● ●
● ●

● ●

●

●
● ●

● ●
● ●
●

●
●

●
●

●● ●●● ●● ●
● ●

● ●
● ●

● ●

● ●

● ●

● ●

●
●

● ●●● ●● ●●
●

●
●

● ●
● ●

●● ●
● ●

●
●

●●
●

● ●● ●●

●● ●●

●

●
●

● ● ● ●● ●
●

● ●● ●● ●● ●● ●
● ●

● ●
● ●

● ●
● ●

●
●

●
●●● ●● ●● ●● ●

●
●

● ●
●

●

● ●
● ●

● ●
● ●

● ●
● ●

●
● ●

●
●● ●● ●● ●

● ●

● ●

● ●

● ●

● ●

● ●

● ●
●

●
● ●● ● ●● ● ●

● ●
●

●●●●●
● ●

● ●

● ●

●

● ●
● ●
● ●

● ●
● ●

● ●

●
●● ● ● ● ●● ●● ●● ●

●● ●●●●
●

● ●●●
● ●

●●
● ●

● ●
● ●

●

● ●
● ●

● ●

● ●

●
●

●
●

● ●
●

●
● ●●● ●● ●

● ●●●● ●
● ●
● ●

● ●
● ●

● ●

● ●
● ●
●

●

●
● ●

● ●

●
● ●
●

●
●

●
● ●
●

●● ● ●● ●● ●● ●● ●● ●
●

●
● ●

● ●

●●●● ●
●●

●●
● ●

● ●

● ●
● ●
●

●
●

●●● ●●●● ●● ●● ●
● ●
● ●

● ●
● ●

● ●
● ●

●
●

●
●

●
●●

●● ●●● ●● ●
●

● ●●● ●●●● ●
● ●

● ●
● ●

● ●
● ●

● ●

● ●
●

●
●

● ●
● ●

● ●

● ●

● ●
● ●

● ●● ●●● ●●

●
●

●
●

●
●

●●●● ●
● ●

● ●

● ●

● ●

●
●

●
●

●
●

●
●●●●● ●

● ●
● ●

●
●

● ●
● ●

●
●

●●
●

●
●

●
● ●

● ●

● ●

●
●

●
●

●
●

●
●● ●● ●●●●● ●

● ●
● ●

● ●

●
●

● ●

● ●

● ●
● ●
●

●●
●● ●● ●●● ●● ●● ●●

●
●

●
●

●●●●
●

● ●

● ●

● ●

● ●

● ●

● ●
●

●
●

●
●

●● ●●●●● ●● ●● ●
● ●
● ●

● ●

●
●

●
●

●
●

●
●

●
●

●
●● ●●● ●● ●●

●
●● ●

●● ●● ●● ●
● ●

● ●
●

● ●● ●● ●● ●
●

●

●
●

●
●

●
●

● ●

● ●
● ●

● ●● ●●●

●

● ● ● ●● ●● ●● ●
● ●

● ●

●
●

●
●

●
●

● ●
● ●

●

●
● ●

● ●
● ●

●
●

●
●

●
●

●
●

●
●

● ●●● ●● ●● ●
● ●

● ●
● ●

●
●

● ●
● ●

● ●
● ●
● ●● ● ●● ●● ●●

●
●

●
●

●
●

●
●

●● ●● ●● ●
● ●

● ●

● ●

● ●

● ●

● ●
● ●
● ●●● ●● ●● ●● ●

●
●

● ●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●

● ●●● ●●●● ●
● ●
● ●

●
●

● ●
● ●

● ●
● ●

● ●
● ●
● ●

●
●● ●● ● ●● ●●

●
● ●
● ●

● ●

●
●

● ●

● ●
●●

●●●●●●

●

● ●

● ●
● ●

●
●

●
●● ●●

● ●● ●● ●
● ●
● ●

● ●
● ●

● ●

● ●
● ●

●●●● ●● ●● ●● ●
●

●
● ●
●

●
●

●
●

●
●

●
● ●

●

●● ●
● ●

● ●
● ●

● ●
● ●

● ●
●

●
●

●●● ●● ●
● ●

● ●
●

●
● ●

● ●

● ●

● ●
● ●

● ●
● ●
●

●● ● ● ● ●● ●● ●●
●

●
●

●

● ●
● ●

● ●
● ●

● ●

● ●

● ●
● ●

● ●
●

●● ●●● ●● ●● ●● ●● ●● ●
●

●
● ●

● ●
● ●

● ●
●●● ●● ● ●● ●●

●
●

●
●● ● ●●●● ●● ●● ●

● ●
● ●

● ●
●

●

●

● ●
●●

● ●
● ●

●
●●

● ● ● ●● ●● ●● ●
● ●

● ●

● ●

● ●

● ●

● ●
● ●
●

●
●

●● ● ●● ●● ●● ●
● ●● ●

● ●
● ●

● ●
●

● ●
●

● ●●●● ●
● ●

● ●
● ●

●●
● ●

● ●
● ●●

●● ● ●●
●●

●● ●● ●●

●
●

●●
●●

● ●

●

●
● ●

● ●
●

●● ●●● ●● ●● ●● ●● ●
● ●

● ●

●
●

● ●

● ●

●
●

●
●

●
●● ● ●●

●
●

●
●
●

●● ●●● ●● ●● ●● ●
● ●

● ●
● ●

● ●

● ●

●
●

●
●

●
●

●
●● ● ●● ●● ●●●

● ●
● ●

● ●
● ●

● ●

● ●
● ●

● ●

●
● ●

● ●
● ●

● ●
●

●
●

●
●

●
●

●● ● ●● ●●●
●●

● ●

● ●

● ●

● ●

● ●

●
●

●
●● ●●● ●● ●● ●● ●

● ●
● ●

●
●

● ●
●

●●●● ●
●●

●●
● ●

● ●

● ●

●
●

●
●

●
●

●
●●● ●●●● ●

● ●
● ●

● ●
● ●

● ●

● ●
● ●

● ●
●

●
●

●●
●●

● ●● ●●
●●

●
●● ●

● ●●● ●●●
● ●

● ●
● ●

● ●

● ●

● ●

●
●

●
●

●
●

●
●● ● ● ● ●●●● ●

● ●
● ●

● ●
● ●

● ●

● ●
● ●
●

●● ●●

●

●
●

●
●

●
●

●
●●●●●●● ●

● ●
● ●

● ●
● ●

● ●
●

●
●

●
●

●● ●●● ●
● ●
● ●

● ●

●
●

●
●

● ●

●
●

●
●

●
●

●●●● ●
● ●

● ●

● ●

● ●

●
●

●
●

●
●

●
●

●
●

● ●●● ●●●● ●
● ●
● ●

●
●

● ●
● ●

●
●

● ●
●

●
●

●
●

●● ●● ● ●● ●●

●
●

●
●● ●●●●● ●

● ●
● ●

● ●
● ●

● ●

● ●

● ●
● ●
● ●

●
●● ● ●● ●● ●● ●● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●● ●

●

● ●

●
●

●
●
●

●● ● ●● ●● ●● ●
● ●
● ●

● ●

●
●

●
●

●
●

●
●

●
●

●
●

● ●●● ●● ●● ●
●

●
● ●

●
●

●
●

● ●
● ●

● ●
●

●
● ●

● ●
● ●

●
●

●
●

●
●

●
●

●
●● ●●● ●● ●● ●

● ●

●
●

● ●

● ●

● ●

● ●

● ●
● ●

●●●● ●● ●●
●

●
●●

●
●

●
●

●
●

●● ●● ●● ●
● ●

● ●

● ●

● ●

● ●

● ●

●
●

●
●●●●● ●● ●

● ●
● ●

●
●

● ●
●

●
● ●

● ●

●
●

● ●
● ●
●

●
●

●● ● ●●
●●

●
●

●
●●● ●● ●● ●● ●

● ●
● ●

●
●

● ●

● ●

● ●
● ●

● ●
● ●

●
●● ● ● ● ●●

●●
●● ●

● ●
● ●

●
●

●
●

● ●

● ●
● ●●●

●

● ●
● ●

●
●

●
●
●

●● ● ●● ●● ●● ●
● ●
● ●

● ●
● ●

● ●

● ●
● ●
● ●●● ●● ●●

●● ●
●

●
●

●
● ●

●
●

● ●
● ●

● ●

●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

●
●● ●● ● ●● ●● ●

● ●
● ●

● ●

● ●

● ●

● ●

● ●
● ●

● ●● ●●● ●● ●● ●●
●●

●●
●

●

● ● ●● ●● ●
● ●

● ●

● ●

● ●

● ●

● ●

● ●
● ●

●
●● ●●● ●● ●● ●● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●
● ●● ● ●● ●●

●
●

●
●

●● ●●● ●● ●● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●● ●● ● ●
● ● ● ●● ●● ●

● ●
● ●

● ●

● ●

● ●

● ●
● ●

● ●

●
● ●

● ●
● ●
● ●● ●●

● ● ● ●● ●● ●● ●
● ●

● ●
● ●

● ●

● ●

● ●
● ●
●

●● ●●● ●● ●● ●● ●
● ●

● ●
● ●

● ●
● ●

●

●● ●
● ●

● ●
● ●

● ●
● ●

● ●
●

●
●

●
●

●● ●●● ●● ●
●

● ●● ●● ●● ●●
●●

●
●

●
●● ●●●●●●●●

●●
● ●

● ●

● ●

● ●
● ●
●

●● ●●

●
●

●
●● ●● ●

●
●●●●● ●● ●● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
●

●
●

●
●

●●
●●

● ●● ●● ●
● ●

● ●
● ●

● ●

● ●
● ●

● ●

●
● ●

● ●

● ●
●

●
●

●
●

●●
●●

●● ●●● ●● ●
● ●

● ●

● ●

● ●

● ●

● ●
●

●
●

●● ●●● ●● ●● ●
● ●

● ●
● ●

● ●
● ●

●

●●●● ●
● ●

● ●
● ●

● ●

● ●
●

●
●

●
●

●● ●●●●● ●● ●
● ●

● ●

● ●

● ●

● ●

● ●

● ●
●

●
●

●●
●● ● ● ● ●● ●● ●●

●
●● ●● ●●●●● ●

● ●
● ●

● ●

● ●

● ●

●
●

●
●

●
●

●
●● ●● ●●● ●● ●● ●

● ●
● ●

● ●
● ●

● ●
●

●
●

●
●

●●
●● ●

●

●
●

●
●

●
●

●
●● ●●●●● ●● ●

● ●
● ●

● ●
● ●

● ●
● ●

●
●

●
●

●
●● ●●

● ●● ●● ●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
● ●

● ●

● ●
● ●
●

●
●

●
●

●● ●●
● ●● ●● ●

● ●
● ●

● ●

●
●

●
●

●
●

●
●

●
●

●
●●●●● ●● ●● ●

● ●
● ●

●
●

●
●

●

●● ●● ●
● ●

● ●
● ●

● ●

●
●

●
●

●
●

●
●

●
●

● ●●● ●● ●
● ●

● ●
● ●

● ●

● ●

● ●

● ●
● ●

● ●
●

●● ● ● ● ●●
●●

●●

●
●

●
●

●
●●●●● ●
● ●

● ●

● ●

● ●

● ●

● ●

● ●
● ●

●
●● ●●● ●● ●● ●●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●● ●

●

● ●
● ●

●
●

●
●●●●● ●● ●● ●

● ●
● ●

● ●
● ●

● ●

● ●

●
●

●
●

●
●

●
●● ●● ● ●● ●● ●

●
●

●
●

●
●

●
●

● ●

● ●
●

●
● ●

● ●

● ●

● ●
● ●
●

●
●

●
●

●● ●● ● ●● ●● ●
● ●

● ●

● ●

● ●

● ●

● ●
● ●
● ●●● ●● ●●

●●
●

●
●

●
●

●
●

●
●

●

●● ●● ●
● ●

● ●
● ●

● ●

● ●

● ●
● ●

●
●●● ●● ●● ●

● ●
●

●
●

●
●

●
●

●

● ●

● ●
● ●

● ●
● ●● ●● ● ● ● ●●

●●

●
●

●● ●●● ●● ●
● ●

● ●
● ●

● ●

● ●

● ●

● ●

● ●
● ●
●

●● ●● ● ●● ●● ●● ●● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●●●

●

● ●

● ●
● ●
●

●
●

●● ● ●● ●● ●● ●● ●
● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●● ●●● ●● ●●

●
●

●
●

●
●

●

●
●

● ●

● ●
●

●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

●
●●

● ● ● ●● ●● ●
● ●

● ●

● ●

● ●

● ●

● ●

● ●
● ●
● ●●● ●● ●● ●● ●● ●

● ●
● ●
●

● ● ●● ●● ●● ●
● ●

● ●

● ●

● ●

● ●
● ●
●

●
●

●●●●● ●● ●● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●● ● ● ● ●●

●●

●
●

●
●

●● ●●●●● ●● ●
● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
●

●● ● ● ● ●● ●● ●● ●
● ●
● ●

● ●
● ●

● ●

● ●
● ●

● ●

●

● ●

● ●
● ●

●
●

●
●● ●●● ●● ●● ●● ●● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
●

●● ●● ● ●● ●● ●● ●
● ●

● ●
● ●

● ●
●

●
● ●

● ●
● ●

● ●
● ●

● ●
● ●
●

●
●

●● ●●
●●● ●● ●● ●

● ●
● ●

● ●

● ●

● ●
● ●

● ●● ●●● ●● ●● ●● ●● ●
●

●

●
●●

●● ●●●●●●
● ●

● ●

● ●

● ●

● ●
● ●

●
●● ●●● ●● ●● ●● ●

● ●
● ●

● ●
● ●

● ●
● ●

● ●
●

●
●

●●
●●

●● ●

●
● ●

●
●

●●●●●●● ●
● ●

● ●
● ●

● ●

● ●

● ●

●
● ●
●

●
●

●●
●●

● ● ● ●● ●● ●● ●
● ●

● ●

● ●

● ●
● ●

● ●

●● ●●●● ●● ●
● ●

● ●
● ●

●
● ●

● ●
●

●
●

●● ●●● ●● ●● ●
● ●

● ●
●

●
●

●

●

0.025

0.050

0.075

0.100

4.0 4.5 5.0 5.5 6.0

Dec

Figure A.9.10: Estimated exceedance probability λd,x (y-axis) at Heysham (top row),
Lowestoft (middle row) and Newlyn (bottom row), in March, June, September and
December (from left to right by column) with respect to x being peak tide (x-axis in
metres) and dj being day in month at Sheerness. Darker (lighter) points represent days
later (earlier) in the month.
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Table A.9.1: Parameter estimates for the scale parameter Models S2 and S4, and the
rate parameter Model R1 with 95% confidence intervals, at each site.

Heysham Lowestoft Newlyn Sheerness

Model S2

ασ 0.14 (0.13, 0.15) 0.15 (0.14, 0.16) 0.076 (0.073, 0.080) 0.11 (0.10, 0.12)

βσ 0.060 (0.050, 0.070) 0.080 (0.070, 0.090) 0.024 (0.020, 0.028) 0.052 (0.043, 0.061)

ϕσ 271.51 (262.77, 280.23) 266.32 (260.01, 272.63) 273.58 (265.06, 282.10) 272.11 (262.66, 281.56)

ξ 0.002 (-0.042, 0.051) 0.024 (-0.023, 0.071) -0.040 (-0.074, 0.006) 0.037 (-0.029, 0.10)

Model S4

ασ 0.13 (0.063, 0.19) 0.16 (0.078, 0.24) 0.053 (0.026, 0.79) 0.14 (0.074, 0.14)

βσ 0.060 (0.049, 0.071) 0.080 (0.070, 0.090) 0.024 (0.020, 0.027) 0.053 (0.043, 0.061)

ϕσ 272.20 (263.31, 281.09) 266.10 (259.65, 272.56) 278.97 (270.32, 287.61) 271.37 (262.91, 281.32)

γ
(x)
σ 0.002 (-0.005, 0.009) -0.0051 (-0.040, 0.030) 0.0048 (-0.00048, 0.010) -0.012 (-0.026, 0.0011)

ξ 0.0049 (-0.044, 0.054) 0.024 (-0.023, 0.071) -0.037 (-0.071, -0.003) 0.033 (-0.033, 0.099)

Model S4 with prior on shape

ξ 0.019 (-0.021, 0.059) 0.014 (-0.024, 0.052) -0.027 (-0.058, 0.004) 0.008 (-0.039, 0.054)

Model R1

βλ 0.0087 (0.0004, 0.017) 0.022 (0.015, 0.030) 0.024 (0.018, 0.030) 0.022 (0.014,0.032)

ϕλ 155.66 (100.74, 210.59) 175.16 (155.86, 194.46) 209.50 (195.48, 223.52) 184.31 (160.94,207.69)

α
(x)
λ -0.13 (-0.18, -0.079) -0.055 (-0.101, 0.009) -0.063 (-0.099, 0.108) -0.32 (-0.37,-0.26)

β
(x)
λ 0.14 (0.068, 0.21) -0.016 (-0.084, 0.051) 0.061 (0.014, 0.108) 0.23 (0.14, 0.31)

ϕ
(x)
λ 311.86 (281.78, 341.94) 359.95 (265.77, 454.15) 352.38 (299.32, 405.44) 278.54 (260.44, 293.63)
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Figure A.9.11: Monthly maxima sea level return level estimates (y-axis in metres) for
different return periods (x-axis in years) at Heysham, Lowestoft, Newlyn and Sheerness
(from top to bottom row) in March, June, September and December (from left to right
by column) estimated using the baseline (black solid), seasonal surge (dot-dashed),
seasonal tide (dotted), full seasonal (dashed) and interaction (blue solid) models. Em-
pirical estimates are shown by black points.
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Figure A.9.12: Annual maxima sea level return level estimates (y-axis in metres) for
different return periods (x-axis in years) at Heysham (top left), Lowestoft (top right),
Sheerness (bottom left) and Newlyn (bottom right), estimated using the current (dot-
dashed), baseline (black solid), full seasonal (dashed), interaction (dotted) and temporal
dependence (blue solid) methods. Empirical estimates are shown by black points.
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Figure A.9.13: Return level estimates (y-axis in metres) for different return periods (x-
axis in years) from the final model (temporal dependence) (solid), with the maximum
and minimum year-specific return level estimates (dashed) and empirical estimates
(black) at Newlyn (left) and Sheerness (right).
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Figure A.9.14: Annual maxima sea level return level estimates (y-axis in metres) for
different return periods (x-axis in years) at Heysham (top left), Lowestoft (top right),
Newlyn (bottom left) and Sheerness (bottom right) estimated using the final model
(temporal dependence) shown by the solid black line, with year-specific return levels
shown by the red-yellow lines. Empirical estimates are shown by black points.
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Figure A.9.15: 100 year return level estimates (y-axis in meters) for Heysham (top left),
Lowestoft (top right), Newlyn (bottom left) and Sheerness (bottom right) estimated
using the year-specific final model over the years of observation (x-axis).
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Figure A.9.16: Annual mean skew surges (y-axis in meters) against year (x-axis) at
Heysham (top left), Lowestoft (top right) and Newlyn (bottom).
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Figure A.9.17: p values from the Kolmogorov-Smirnov test for uniformity (y-axis) of
yearly (x-axis) samples of the transformed skew surge observations through the final
skew surge distribution function (expression (4.14)) at Heysham (top right), Lowestoft
(top left), Newlyn (bottom left) and Sheerness (bottom right) before (black) and after
(red) we remove the annual mean trends of the skew surge series. The 5% significance
level is shown by the black dashed line.
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Figure A.9.18: 95% bootstrap confidence intervals on the final (temporal dependence) re-
turn level estimates at Heysham (top row), Lowestoft (middle row) and Newlyn (bottom
row) before (black) and after (blue) adding a prior distribution to the shape parameter
(left). Empirical estimates are shown by black points. Histograms of the shape param-
eter estimates and their densities (right) for these two models in their corresponding
colours.
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Figure A.9.19: PP plots for the transformed annual maximum sea levels to a uniform
scale at Heysham (top row), Lowestoft (middle row) and Newlyn (bottom row). These
are transformed using the baseline (left column) and final (temporal dependence) (cen-
tral column) distribution function for the annual maxima, as well as the year specific
final model (right column). The black line shows the line of equality, y = x.
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Figure A.9.20: Estimates of P̂M(j; z) for months j = 1 − 12 at Heysham (top left),
Lowestoft (top right) and Newlyn (bottom), for p = 1 (black solid), 0.1 (long-dashed),
0.01 (dot-dashed), 0.001 (dotted), and 0.0001 (dashed). The blue line is the empirical
estimate P̃M(j; z1), 95% confidence intervals are for P̂M(j; z1).
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Figure A.9.21: Return level estimates from the final (temporal dependence) model with
95% confidence intervals before (black) and after (blue) adding a prior distribution
to the shape parameter at Heysham (top row), Lowestoft (middle row) and Newlyn
(bottom row), where the 0.95 quantile is used for the skew surge distribution (left
column); estimates are also shown at the 10, 100, 1000 and 10,000 year levels when
the 0.9 (crosses) and 0.99 (dots) quantiles are used in the skew surge model, both with
(blue) and without (black) the prior distribution on the shape parameter of the GPD.
The corresponding difference between the estimates from the original approach (0.95
quantile) with the 0.9 (crosses) and 0.99 (dots) quantiles, compared with confidence
intervals (right column).
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ESLestimation: An R package for

estimating extreme sea levels

B.1 Introduction

We develop the ESLestimation R package to accompany the methodologies presented

in Chapter 3. The package version is currently v1.0.4. All documentation can be

found at https://github.com/eleanordarcy/ESLestimation/. The package can be

installed and loaded as follows:

library(devtools)

install_github(‘eleanordarcy/ESLestimation’)

library(ESLestimation)

The package consists of five functions and a dataset that are described in the follow-

ing sections. First, we present data from Lowestoft (UK) in Section B.2 that is used as

an example throughout the documentation and throughout the remainder of this chap-

ter. We discuss the functions relevant for model fitting to skew surges in Section B.3;

namely, fitting the scale and shape parameters of the generalised Pareto distribution

(GPD) in Section B.3.1, fitting the regression model for the GPD rate parameter in

291

https://github.com/eleanordarcy/ESLestimation/


APPENDIX B. 292

Section B.3.2 and fitting our parametric extremal index model in Section B.3.3. Then

in Section B.4 we detail the functions for estimating extreme sea levels, that use the

models from the preceding sections. We have a function for estimating return levels

(Section B.4.1) and for obtaining measures of uncertainty (Section B.4.2).

B.2 Data

We provide an illustrative dataset of peak tide and skew surge observations (in metres,

relative to chart datum) at Lowestoft (UK), named Lowestoft. This is a processed

and quality-controlled version of that from BODC (2020), as part of the UK National

Tide Gauge Network; this original data source is discussed in detail in Section 3.3.1 of

Chapter 3. To load in the data, use the following command:

data(Lowestoft)

This loads a dataframe with 8 columns and 26848 rows. The first four columns cor-

respond to the observation time in terms of the year, month, day (in year) and hour

(in day). Observations are recorded for every tidal cycle, i.e., every 12.5 hours approxi-

mately, from 1964 to 2016 with 4% of observations missing. The fifth and sixth columns

are skew surge (named skews) and peak tide (named maxTide) observations, respec-

tively. The seventh column gives a date object for the date of observation. The eighth

column is a standardised version of the peak tide column (named stTide), where the

standardisation is done by subtracting the mean and dividing by the standard deviation

of all peak tides.
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B.3 Model fitting

B.3.1 GPD.fit

The GPD.fit function fits the non-stationary GPD model of Chapter 3 to skew surge

exceedances of a monthly threshold. The function is used as follows

GPD.fit(data, q = 0.95, optim.method = "BFGS",

init.par = c(0.2, 0, 100, 0.1, 0.1))

It takes the following arguments:

• data: A data frame of skew surge observations (named skews), along with month,

day (in year) and maxTide observations.

• q: The quantile of monthly skew surges to obtain exceedances, it must be between

0 and 1. The default is 0.95 but this should be investigated using standard

threshold selection techniques.

• optim.method: The method to be used for optimisation of the log-likelihood

function for the GPD. The default is ‘BFGS’ but see optim of R Core Team

(2016) for details and alternative options.

• init.par: The initial values for parameters to be optimised over in optim. The

default are c(0.2,0,100,0.1,0.1) but these can be altered.

As discussed in Chapter 3, this function uses maximum likelihood estimation to fit a

non-stationary GPD to skew surge exceedances of a monthly threshold, corresponding

to the q-quantile of the data for that month. Non-stationarity is introduced to the

scale parameter of the GPD using a harmonic to capture seasonal variations and a

linear trend for the tide covariate, to capture skew surge-peak tide dependence; see

equation (3.4.12) of Chapter 3. The GPD log-likelihood is given within the GPD.fit
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function, but omitted here for brevity, and is then optimised using optim to obtain

parameter estimates.

A normal prior distribution, expressed as a penalty function, is incorporated in

the log-likelihood to reduce uncertainty associated with shape parameter estimation.

This prior information is based on spatial information about shape parameter esti-

mates across the UK, as was done by Environment Agency (2018) and is discussed in

Section 3.5.4 of Chapter 3.

The function returns a vector of 5 parameters for the GPD model of Section 3.4.4

in Chapter 3, namely (α̂σ, β̂σ, ϕ̂σ, γ̂σ, ξ̂).

The following code demonstrates the GPD.fit function:

library(ESLestimation)

# Load in available data

data(Lowestoft)

# Check the data has the required variables that are correctly named

head(Lowestoft)

# Fit the non-stationary GPD model to extreme skew surges

# In this example we use all default arguments

GPD.fit(Lowestoft)

B.3.2 rateparam.fit

The rateparam.fit function fits a non-stationary regression model to the GPD rate

parameter for skew surge exceedances of a monthly threshold. It has arguments identical

to those in Section B.3.1:

rateparam.fit(data, q = 0.95, optim.method = "BFGS",
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init.par = c(0.2, 0.2, 0.2, 0.2, 360))

As discussed in Section X of Chapter 3, this function uses maximum likelihood

estimation to fit a harmonic-based regression model to the GPD rate parameter, used

for skew surge exceedances of a monthly threshold (determined by the value of q). Non-

stationarity is introduced to the rate parameter of the GPD using two harmonics to

capture seasonal variations and skew surge-peak tide dependence; this is mathematically

defined in equation (3.4.11) of Chapter 3. To fit the model, we use an indicator function

to determine whether an observation exceeds its monthly quantile and assume this

binary variable follows a Bernoulli distribution. The Bernoulli log-likelihood is provided

within the function and is then optimised using optim (R Core Team, 2016).

The output of the function is a vector of parameter estimates for the rate parameter

model: (α̂
(x)
λ , β̂

(d)
λ , β̂

(x)
λ , ϕ̂

(d)
λ , ϕ̂

(x)
λ ).

The following code demonstrates its use:

library(ESLestimation)

# Load in available data

data(Lowestoft)

# Fit the rate parameter model with default arguments

rateparam.fit(Lowestoft)

B.3.3 extremalindex.fit

The final model fitting function is extremalindex.fit that fits a parametric model to

empirical estimates of the extremal index (defined in Section 2.3 of Chapter 2) of skew

surge observations:

extremalindex.fit(data, run.length = 10, thresh.quantile = 0.99)
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The function requires the following arguments:

• data: A data frame of skew surge observations (variable named skews)

• run.length: This is the number of consecutive non-exceedances between two

extreme observations, where we would say they belong to different clusters (as for

the standard runs estimate). The default is 10 (i.e., 5 days) but it can be inferred

from autocorrelation (acf) plots, i.e., the maximum lag before the acf remains

close to zero.

• thresh.quantile: The quantile of skew surges above which the exponential decay

model is required, i.e., the empirical estimates become noisy above this value. This

is a single value between 0 and 1. The default is 0.99.

The extremalindex.fit consists of two stages, as outlined in Section 3.4.5 of Chap-

ter 3. For values below the threshold (thresh.quantile), the empirical runs estimate

(defined in Section 3.4.5 of Chapter 3) is used as this is smooth over skew surges in this

range. For computational efficiency purposes, these empirical estimates are evaluated

on a regular grid of 100 values from the minimum skew surge up to this threshold.

The empirical runs estimate is found using the extRemes R package (Gilleland and

Katz, 2016). Linear interpolation is used for values between those on the regular grid.

For skew surges above the threshold, we fit a parametric exponential decay model.

Parameters of this model are estimated using a weighted-least squares approach via

optim (R Core Team, 2016). The full model and the inference procedure are outlined

in Section 3.4.5 of Chapter 3.

This function outputs a vector of parameter estimates for the model of equa-

tion (3.4.16) in Chapter 3: (ψ̂, θ̂).

We demonstrate the implementation of this function below:

library(ESLestimation)
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# Load in available data

data(Lowestoft)

# Infer the run length from the acf plot

acf(Lowestoft$skews)

# Run length of 10 is reasonable

# Check when empirical estimates become noisy

library(evd)

plot(Lowestoft$skews, sapply(Lowestoft$skews, function(y)

extremalindex(Lowestoft$skews, y,

method=‘runs’, run.length=10)[1]),

xlab=‘Skew surge (m)’, ylab=expression(tilde(theta)))

abline(v=quantile(Lowestoft$skews, 0.99, names=F))

# 0.99-quantile is reasonable

# Fit the extremal index model to skew surges using default arguments

extremalindex.fit(Lowestoft)

Supporting figures for the run length and threshold choice are given in Figure A.9.5

and A.9.8 of Appendix A, respectively.

B.4 Estimation

B.4.1 returnlevel.est

Now we bring together the non-stationary model for skew surges of Chapter 3 with the

known tidal regime, to estimate extreme sea levels for a specified annual exceedance

probability p in the returnlevel.est function:
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returnlevel.est(p, data, gpd_par, rate_par, extremalindex_par,

gpd.quantile = 0.95, extremalindex.quantile = 0.99,

run.length = 10)

The function takes the following arguments:

• p: The annual exceedance probability (equal to the reciprocal of the return period)

for the required return level estimate. This can be a single value or a vector of

probabilities. This must take values between 0 and 1.

• data: A data frame of skew surge observations (named skews), along with month,

day (in year) and maxTide observations for covariate information.

• gpd_par: Scale and shape parameters for the GPD fit to skew surges (found via

GPD.fit function of Section B.3.1). This should be a vector of length 5.

• rate_par: Rate parameter for the GPD fit to skew surges (found via rateparam.fit

function of Section B.3.2). This should be a vector of length 5.

• extremalindex_par: Parameters for the extremal index model fit (found via

extremalindex.fit function of Section B.3.3). This should be a vector of length

2.

• gpd.quantile: The quantile used to define exceedances and fit the GPD model

for skew surges. This is a single value between 0 and 1. The default is 0.95.

• extremalindex.quantile: The quantile of skew surges for the extremal index

model, above which the exponential decay model is required, i.e., the empirical

estimates become noisy above this value. This is a single value between 0 and 1.

The default is 0.99.

• run.length: This is the number of consecutive non-exceedances between two

extreme observations, where we would say they belong to different clusters (as for



APPENDIX B. 299

the standard runs estimate). The default is 10 (i.e., 5 days) but can be inferred

from acf plots, i.e., the maximum lag before the acf remains close to zero.

To estimate sea level return levels, we use the derived annual maxima distribution

for sea levels of equation (3.4.15) in Chapter 3. This uses the fact that sea levels Zt

can be decomposed into the sum of skew surge Yt and peak tide Xt. We summarise the

methodology for estimating return levels below, but refer the reader to Chapter 3 for

details.

Skew surges are modelled using a non-stationary GPD for exceedances of a monthly

threshold (gpd.quantile), and a non-stationary monthly empirical distribution for

non-exceedances. We account for non-stationarity and skew surge-peak tide depen-

dence, using daily, monthly and peak covariates within the model. This model is fit

using the GPD.fit function (see Section B.3.1 for details) and the output of that func-

tion (i.e., a vector of GPD parameter estimates) is used as an input to this function. The

rate parameter is separately modelled, with the same covariate information, through

the rateparam.fit function (see Section B.3.2 for details) and its output (i.e., a vec-

tor of parameter estimates) is also an input to this function. Lastly, we model the

temporal dependence of skew surges through a model for the extremal index fit via

extremalindex.fit (see Section B.3.3), the output to this function is used as an input

to this function.

As tides are deterministic, we chose tidal samples to input into our skew surge

distribution to derive a model for the skew surges. Then the sea level distribution

is derived via a joint probabilities methodology, assuming that skew surge-peak tide

dependence has been fully captured through the non-stationary skew surge model. Then

the annual maxima distribution for sea levels is found by taking the product over the

skew surge distribution, to the power of the extremal index model, for observations

and their associated covariates within a year; see equation (3.4.10) of Chapter 3. To

account for tidal seasonality, we first derive the sea level monthly maxima distribution
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using month-specific tidal series; see equation (3.4.15) of Chapter 3. To account for

interannual tidal variations, we do this for each year in the record, using the associated

tidal sequence, and then average over all years; see equation (3.4.15) of Chapter 3.

We use the numerical solver uniroot (R Core Team, 2016) to find the return level

zp for the associated annual exceedance probability p. That is, to solve the equation

Pr(M ≤ zp) = 1 − p for M the annual maxima. uniroot requires an interval to test

over for values of zp which is set as the 0.5 quantile of sea levels and the maximum sea

level plus 3m for the lower and upper endpoints, respectively. If these endpoints are

not wide enough, they will be increased by 0.1m recursively.

The function returns the sea level return level (in metres relative to chart datum)

for the required annual exceedance probability p. If the input p is a vector, the output

will also be a vector of corresponding return levels.

Implementation of returnlevel.est is as follows:

library(ESLestimation)

# Load in available data

data(Lowestoft)

# Estimate 10 year return level (p=0.1)

# Use model fit functions to get parameter estimates

# Default arguments are used elsewhere

returnlevel.est(p = 0.1, data = Lowestoft,

gpd_par=GPD.fit(Lowestoft),

rate_par=rateparam.fit(Lowestoft),

extremalindex_par=extremalindex.fit(Lowestoft))
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B.4.2 CI.est

The final function available to the user is CI.est that gives confidence intervals on the

sea level return level estimates from the non-stationary model of Chaper 3:

CI.est(p, data, ci.prob, gpd_par, rate_par, extremalindex_par,

block.length = 10, n.boot = 200, gpd.quantile = 0.95,

optim.method = "BFGS", EI.run.length = 10, EI.quantile = 0.99)

The arguments are defined as follows

• p: The annual exceedance probability (equal to the reciprocal of the return period)

for the required return level estimate. This can be a single value or a vector of

probabilities. This must take values between 0 and 1.

• data: A data frame of skew surge observations (named skews), along with month,

day (in year) and maxTide observations for covariate information.

• ci.prob: The probability for the confidence interval width. The default is 0.95.

This should be a value between 0 and 1.

• gpd_par: Scale and shape parameters for the GPD fit to skew surges (found via

GPD.fit function of Section B.3.1). This should be a vector of length 5.

• rate_par: Rate parameter for the GPD fit to skew surges (found via rateparam.fit

function of Section B.3.2). This should be a vector of length 5.

• extremalindex_par: Parameters for the extremal index model fit (found via

extremalindex.fit function of Section B.3.3). This should be a vector of length

2.

• block.length: The block length for the stationary bootstrap procedure, and

should represent the approximate duration of a storm. The default is 10, corre-

sponding to approximately 5 days.
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• n.boot: The number of bootstrap samples to use to obtain confidence intervals.

The default is 200.

• gpd.quantile: The quantile used to define the GPD threshold, we the model is

fit to skew surge exceedances. This is a single value between 0 and 1. The default

is 0.95.

• optim.method: The optimisation method when refitting the models to bootstrap

samples. The default is ‘BFGS’, see R Core Team (2016) for more details on the

optim function.

• EI.run.length: This is the number of consecutive non-exceedances between two

extreme observations, where we would say they belong to different clusters (as for

the standard runs estimate). The default is 10 (i.e., 5 days) but can be inferred

from acf plots, i.e., the maximum lag before the acf remains close to zero.

• EI.quantile: The quantile of skew surges for the extremal index model, above

which the exponential decay model is required, i.e., the empirical estimates be-

come noisy above this value. This is a single value between 0 and 1. The default

is 0.99.

This function uses the stationary bootstrap procedure to obtain confidence intervals

on the sea level return level estimates given by the returnlevel.est function (see

Section B.4.1). The block length is simulated from a Geometric distribution with mean

equal to the reciprocal of the input block.length. This can be inferred from an acf

plot.

Details of the uncertainty quantification procedure adopted here are given in Sec-

tion 3.5.4 of Chaper 3. In summary, we account for uncertainty at each stage of the

modelling procedure by recalculating thresholds, re-estimating model parameters and

the empirical distribution for each bootstrap sample. Once the required number of
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bootstrap samples is reached (n.boot), we find the required quantiles (indicated by

ci.prob) for confidence intervals. A normal prior distribution is used to penalise fits

of the non-stationary GPD (via GPD.fit) to restrict shape parameter estimates and

ultimately reduce the width of confidence intervals.

The function outputs the (1 − ci.prob/2), 0.5, and ci.prob + (1 − ci.prob/2)

quantiles of return level sea level estimates (in metres) over the specified number of

bootstrap samples.

We demonstrate the implementation of CI.est below:

library(ESLestimation)

# Load in available data

data(Lowestoft)

# Estimate 95% CI for 10 year return level (i.e., p=0.1)

# Use model fit functions to get parameter estimates

# Default parameters are used everywhere

CI.est(0.1, data = Lowestoft, ci.prob = 0.95,

gpd_par = GPD.fit(Lowestoft),

rate_par = rateparam.fit(Lowestoft),

extremalindex_par = extremalindex.fit(Lowestoft),

block.length=10, n.boot=200, gpd.quantile=0.95,

optim.method=‘BFGS’, EI.run.length=10, EI.quantile = 0.99)



Appendix C

Additional proofs for Chapter 6:

Extremal properties of

max-autoregressive moving average

processes for modelling extreme

river flows

C.1 Introduction

In this chapter, we provide an additional proof for the stationarity property of max-

autoregressive moving average, Max-ARMA(p, q), process. Recall, from Remark 6.2.1

in Chapter 6, that a Max-ARMA(p, q) process is stationary when 0 ≤ αi < 1 for

i = 1, . . . , p − 1 and 0 < αp < 1, and the scale parameter γ > 0 of the Fréchet

304
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distribution for the innovation process {Zt} given by

γ := σ

(
∞∑
τ=0

max
Sτ

{
βj

∏
i=1,...,p:
αi>0

αaii

})−1

<∞,

if {Xt} has Fréchet distribution with scale parameter σ for 0 < σ <∞, where

Sτ =
{
ai ∈ {0, 1, . . . , τ} for i = 1, . . . , p, j = 0, . . . , q :

p∑
i=1

iai + j = τ

}
.

This result was originally proved by Davis and Resnick (1989) but we detail an alter-

native approach to proving this stationarity condition and obtaining the form of the

scale parameter γ of the innovation process {Zt}, and fix the margins of {Xt} to be

independent of the Max-ARMA parameters α and β, unlike Davis and Resnick (1989).

In Section C.2, we give the necessary notation for the proof. Then in Section C.3,

we state a lemma that is required for the proof and prove this. Finally, in Section C.4

we prove the stationarity result of Davis and Resnick (1989), given in Remark 6.2.1 in

Chapter 6.

C.2 Notation for proofs

The following notation is used across the proofs here. Let αM = max{α1, . . . , αp} and

βM = max{β0, . . . , βq} which, by definition of the Max-ARMA process, satisfy αM > 0

and βM ≥ 1. We also define βM :j = max{β0, β1, . . . , βj} so that 1 ≤ βM :j ≤ βM for all

j = 0, 1, . . . , q and βM :q = βM . Similarly, we let βm = min{βj, j = 0, . . . , q : βj > 0}, so

0 < βm ≤ βM . Furthermore, we take iM = arg{i = 1, . . . , p : αi = αM}, where here if

multiple such indices achieve this equality, we take the largest such index.
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C.3 Lemma needed for Proof of Remark 6.2.1

Lemma C.3.1. For coefficients α>0 = {αi > 0}pi=1 and β>0 = {βj > 0}qj=0 satisfying

the conditions of formulation (6.2.1) in Chapter 6, then if αM = max{α1, . . . , αp} < 1,

the summation S(α>0,β>0) is finite, where

S(α>0,β>0) =
∞∑
τ=0

max
Sτ

{
βj

∏
i=1,...,p:
αi>0

αaii

}
, (C.3.1)

with Sτ defined by expression (6.2.3) in Chapter 6. Otherwise, S(α>0,β>0) is infinite.

Proof. Assume for the moment that αM < 1. Then

S(α>0,β>0) ≤ βM

∞∑
τ=0

max
Sτ

{ ∏
i=1,...,p:
αi>0

αaii

}
.

Then, since the power function to a non-negative power is an increasing function,

S(α>0,β>0) ≤ βM

∞∑
τ=0

max
Sτ

{αa1+...+apM }.

By the definition of Sτ , we know that

p∑
i=1

ai ≥
p∑
i=1

i

p
ai =

τ − j

p
≥ τ − q

p
.

Then,

S(α>0,β>0) ≤ βM

∞∑
τ=0

α
(τ−q)/p
M <∞.

This final sum converges as it is a geometric series with common ratio term less than

one. So the sum is finite when αM < 1.
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Now consider αM ≥ 1. Then,

S(α>0,β>0) ≥ βm

∞∑
τ=0

max
Sτ

{ ∏
i=1,...,p:
αi>0

αaii

}
> 0.

Then, we remove the maximum over Sτ by focusing only on one of the terms the

maximum is over, specifically the term with the highest power of αM . Then, if ααα−iM

denotes the vector of the non-zero elements of α>0 that excludes αM and the function

Cτ (ααα−iM ) corresponds to the remainder term after the product of the powered αi terms

is divided by α
⌊τ/iM ⌋
M , where ⌊·⌋ denotes the floor function. So we can say that,

S(α>0,β>0) ≥ βm

∞∑
τ=0

α
⌊τ/iM ⌋
M Cτ (ααα−iM ) > 0.

Consider only the subsequence of terms in the sum with τ = iMj, for j = 0, 1, . . . then

there are no remainder terms for this particular subsequence of τ . Then,

S(α>0,β>0) > βm

∞∑
τ=iM j:j=0

α
⌊τ/iM ⌋
M > βm

∞∑
j=0

1 = ∞.

with the first inequality holding as the omitted terms from the sum, that are not in this

subsequence, are all positive. The second inequality comes from each of the terms in

this subsequence being larger than, or equal to 1, due to αM ≥ 1 and then this resulting

sum being divergent. So when αM ≥ 1, S(α>0,β>0) is infinite.

C.4 Proof of Remark 6.2.1 in Chapter 6

Proof. Let {Xt} be a Max-ARMA(p, q) process, defined in Section 6.2. We aim to find

the value of γ, with 0 < γ < ∞, the scale parameter of the Fréchet distribution of the

IID innovation process {Zt}, and the domains for the process parameters α>0 = {αi >

0}pi=1 and β>0 = {βj > 0}qj=0 such that {Xt} is a stationary process.
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We begin with the distribution function FXt(x) and use the formulation of the Max-

ARMA(p, q) process for all −∞ < t < ∞, exploiting the independence of Xt and Zs

for s > t and the IID nature of {Zt} to find conditions that make FXt not a function of

time t. This is as follows,

FXt(x) = Pr(Xt ≤ x) = Pr(max{α1Xt−1, . . . , αpXt−p, β0Zt, β1Zt−1, . . . , βqZt−q} ≤ x).

This follows from the definition of Xt in expression (6.2.1). Since αi ≥ 0 for i =

1, . . . , p− 1 by definition, when αi = 0 we interpret Pr(Xt ≤ x/αi) as Pr(Xt ≤ ∞) = 1

for arbitrary t, similarly for Zt terms. Then for the maximum of the variables in the

above expression to be less than x, each individual term must be less than x, so we can

rewrite this above expression as a joint probability,

FXt(x) =Pr(Xt−1 ≤ x/α1, . . . , Xt−p ≤ x/αp, Zt−1 ≤ x/β1, . . . , Zt−q ≤ x/βq)×

Pr(Zt ≤ x/β0).

We factorise out the probability for Zt from the joint distribution since it is independent

of all other terms, by definition of the process. Then, we use the same procedure to

replace the highest order X term on the left hand side, in this case Xt−1, by its Max-

ARMA definition. We also use the independence of Zt−1 and (Xt−2, . . . , Xt−(p+1), Zt−2,

. . . , Zt−(q+1)), to factorise out the Zt−1 term. Following from the above expression, this
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gives,

FXt(x) = Pr(Xt−2 ≤ x/max{α2
1, α2}, Xt−3 ≤ x/max{α1α2, α3}, . . . ,

Xt−p ≤ x/max{α1αp−1, αp}, Xt−(p+1) ≤ x/α1αp,

Zt−2 ≤ x/max{α1β1, β2}, . . . , Zt−q ≤ x/max{α1βq−1, βq},

Zt−(q+1) ≤ x/α1βq)×

Pr(Zt ≤ x/β0) Pr(Zt−1 ≤ x/max{α1β0, β1}).

Notice in the above expression, we write the joint probability of the same random

variable as a single term. For example, the joint event {Xt−1 ≤ x/α2
1, Xt−1 ≤ x/α2}

becomes {Xt−1 ≤ x/max(α2
1, α2)}, since for Xt−1 to be less than both x/α2

1 and x/α2,

Xt−1 must be less than min{x/α2
1, x/α2}, or equivalently, x/max{α2

1, α2}. We continue

in the same way, replacing the highest order term, say Xs for −∞ < s ≤ t − 2 using

the Max-ARMA definition, then factorising out the independent Zs term from the joint

probability and grouping the joint probabilities for the same random variable. We

demonstrate this procedure below for two more steps, replacing Xt−2 by its definition

and factorising out Zt−2 firstly, then the same for Xt−3 and Zt−3.
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FXt(x) = Pr(Xt−3 ≤ x/max{α3
1, α1α2, α3}, . . . ,

Xt−p ≤ x/max{α2
1αp−2, α2αp−2, α1αp−1, αp},

Xt−(p+1) ≤ x/max{α2
1αp−1, α2αp−1, α1αp},

Xt−(p+2) ≤ x/max{α2
1αp, α2αp, α1αp−3, αp−2},

Zt−3 ≤ x/max{α2
1β1, α2β1, α1β2, β3},

Zt−4 ≤ x/max{α2
1β2, α2β2, α1β3, β4}, . . . ,

Zt−q ≤ x/max{α2
1βq−2, α2βq−2, α1βq−1, βq},

Zt−(q+1) ≤ x/max{α2
1βq−1, α2βq−1, α1βq},

Zt−(q+2) ≤ x/max{α2
1βq, α2βq}) Pr(Zt ≤ x/β0)×

Pr(Zt−1 ≤ x/max{α1β0, β1}) Pr(Zt−2 ≤ x/max{α2
1β0, α2β0, α1β1, β2})

= Pr(Xt−4 ≤ x/max{α4
1, α

2
1α2, α1α3, α

2
2, α4}, . . . ,

Xt−p ≤ x/max{α3
1αp−3, α1α2αp−3, α3αp−3, α

2
1αp−2, α2αp−2},

Xt−(p+1) ≤ x/max{α3
1αp−2, α1α2αp−2, α3αp−2, α

2
1αp−1, α2αp−1, α1αp},

Xt−(p+2) ≤ x/max{α3
1αp−1, α1α2αp−1, α2αp−1, α

2
1αp, α2αp, α1αp−3, αp−2},

Xt−(p+3) ≤ x/max{α3
1αp, α1α2αp, α3αp},

Zt−4 ≤ x/max{α3
1β1, α1α2β1, α3β1, α

2
1β2, α2β2, α1β3, β3}, . . . ,

Zt−(q+3) ≤ x/max{α3
1βq, α1α2βq, α3βq})×

Pr(Zt ≤ x/β0) Pr(Zt−1 ≤ x/max{α1β0, β1})×

Pr(Zt−2 ≤ x/max{α2
1β0, α2β0, α1β1, β2})×

Pr(Zt−3 ≤ x/max{α3
1β0, α1α2β0, α3β0, α

2
1β1, α2β1, α1β2, β3}).

(C.4.1)

This recurrence continues indefinitely. Repeating this recurrence until the leading term
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is for Xt−υ, where υ > p, then the expression becomes

FXt(x) = Ct,υ(x;α>0,β>0)Dt,υ(x;α>0,β>0), (C.4.2)

where

Ct,υ(x;α>0,β>0) = Pr(∩pi=1{Xt−υ−i ≤ x/Aυ,i},∩qj=1{Zt−υ−j ≤ x/Bυ,j}),

and

Dt,υ(x;α>0,β>0) =
υ−1∏
τ=0

Pr

(
Zt−τ ≤ x/Eτ

)
,

where Aυ,i, Bυ,j > 0 for i = 1, . . . , p, j = 1, . . . , q and Eτ > 0 are constants for all υ

and τ ∈ N, with these constants depending on the Max-ARMA parameters α>0 and

β>0, through expressions we will derive later and consider all three terms as υ → ∞

for different parameters α>0 and β>0.

First consider the Dt,υ(x;α>0,β>0) term. To derive a general formula for Eτ , ini-

tially consider E3 when p ≥ 3, q ≥ 3, αi > 0 for i = 1, 2, 3 and βj > 0 for j = 1, 2, 3.

Expression (C.4.1) gives that E3 = max{α3
1, α1α2, α3, α

2
1β1, α2β1, α1β2, β3}. Notice that

for each term contributing to the maximum to give E3 the sum of the product of the

sub- and superscript of each αaii where i = 1, . . . , 3 and ai ∈ {0, . . . , 3} plus the super-

script of the βj for j = 0, . . . , 3 is equal to 3. For example, looking at each term within
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this maxima gives:

α3
1β0 = α3

1α
0
2α

0
3β0 : (1× 3) + (2× 0) + (3× 0) + 0 = 3,

α1α2β0 = α1
1α

1
2α

0
3β0 : (1× 2) + (2× 1) + (3× 0) + 0 = 3,

α3β0 = α0
1α

0
2α

1
3β0 : (1× 0) + (2× 0) + (3× 1) + 0 = 3,

α2
1β1 = α2

1α
0
2α

0
3β1 : (1× 2) + (2× 0) + (3× 0) + 1 = 3,

α2β1 = α0
1α

1
2α

0
3β1 : (1× 0) + (2× 1) + (3× 0) + 1 = 3,

α1β2 = α1
1α

0
2α

0
3β2 : (1× 1) + (2× 0) + (3× 0) + 2 = 3,

β3 = α0
1α

0
2α

0
3β3 : (1× 0) + (2× 0) + (3× 0) + 3 = 3.

This is an exhaustive list of all possible combinations such that (a1+2a2+3a3)+j = 3.

The generalisation of this maximum term, over combinations of possible components

covering cases with an arbitrary set of {αi} and {βj} coefficients being zero, is that

Eτ = γτ , where γτ is given by expression (6.3.4). As Zt ∼ Fréchet(γ), for all t, we have

then that

Dt,υ(x;α>0,β>0) = exp

(
− γ

x

υ−1∑
τ=0

γτ

)
→ exp

(
− γ

x
S(α>0,β>0)

)
,

as υ → ∞, where S(α>0,β>0) is defined by summation (C.3.1), and the limit does

not depend on t. From Lemma C.3.1, 0 < S(α>0,β>0)∞ if max{α1, . . . , αp} < 1, so

this constraint imposes feasible parameters for obtaining a non-degenerate distribution

from expression (C.4.2). In contrast, Lemma C.3.1, gives that S(α>0,β>0) is infinite

when max{α1, . . . , αp} ≥ 1, in which case Dt,υ(x;α>0,β>0) → 0 as υ → ∞, so in

that case FXt(x) must be a degenerate distribution from expression (C.4.2), as 0 ≤

Ct,υ(x;α>0,β>0) ≤ 1 so cannot offset the zero limit for Dt,υ(x;α>0,β>0).

Now consider the Ct,υ(x;α>0,β>0) term focusing only on when αM < 1 as the other

parameter values have been ruled out as feasible possibilities for having a stationary
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Max-ARMA process. Then we have that

Ct,υ(x;α>0,β>0) ≥ Pr(∩pi=1{Xt−υ−i ≤ x/Amax
υ,i ,∩

q
j=1{Zt−υ−j ≤ x/Bmax

υ,j }), (C.4.3)

where Amax
υ,i is Aυ,i when we set αi = αM for all i = 1, . . . , p and Bmax

υ,j is Bυ,j when we

set βj = βM for all j = 0, . . . , q, with inequality (C.4.3) arising owing to Amax
υ,i ≥ Aυ,i

and Bmax
υ,j ≥ Bυ,j for all υ, i and j. To find the form of Amax

υ,i and Bmax
υ,j we consider

maximum Max-ARMA process, {X∗
t } with these coefficients, i.e.,

X∗
t = max{αMX∗

t−1, . . . , αMX
∗
t−p, βMZt, βMZt−1, . . . , βMZt−q}.

Using the same recursive approach for X∗
t , as in expression (C.4.1) for Xt−1, after one

step

X∗
t = max{αMX∗

t−2, . . . , αMX
∗
t−p, α

2
MX

∗
t−p−1, βMZt−1, . . . , βMZt−q, αMβMZt−q−1 : Zt},

where Zt is treated separately since it is independent of the remaining terms. Note that

only the newly introduced terms {X∗
t−p−1, Zt−q−1} have a different form of coefficients

from the other like terms, this is as all other new terms are multiplied by αM < 1 which

cannot contribute to the overall maximum. Stepping back a further term, it is only the

last two coefficients for the X∗ and Z terms that differ from the other coefficients, each

with the extra factor αM .

Recursively stepping back until the leading term of the X∗ terms is X∗
t−υ−1 we get

the coefficients of (X∗
t−υ−1, . . . , X

∗
t−υ−p) are (A

max
υ,1 , . . . , A

max
υ,p ) and of (Zt−υ−1, . . . , Zt−υ−q)

which are (Bmax
υ,1 , . . . , B

max
υ,q ). To express these coefficients most effectively we need to

consider how υ is linked to p and q. Specifically, for each υ ∈ N, we write υ = παp+ rα

and υ = πβq+rβ, where πα, πβ ∈ N and rα ∈ {0, 1, . . . , p−1} and rβ ∈ {0, 1, . . . , q−1}.
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Then it follows that

X∗
t = max{απα+1

M X∗
t−υ−1, α

πα+1+I(rα≥p−1)
M X∗

t−υ−2, . . . , α
πα+I(rα≥1)+1
M X∗

t−υ−p,

α
πβ
M βMZt−υ−1, α

πβ+I(rβ≥q−1)
M βMZt−υ−2, . . . , α

πβ+I(rβ≥1)
M βMZt−υ−q : Tυ(Zt−υ:t)},

where I is the indicator function and Tυ is a function of the variablesZt−υ:t = (Zt−υ, . . . , Zt)

that covers events in the partition of terms that are covered by the probabilityDt(x;α>0,β>0),

so are not detailed here. Hence

Amax
υ,i = α

πα+I(rα≥i)+1
M and Bmax

υ,j = α
πβ+I(rβ≥j)
M βM ,

for i = 0, . . . , p− 1 and j = 0, . . . , q − 1.

As υ → ∞ it follows, from αM < 1, that Amax
υ,i → 0 and Bmax

υ,j → 0, so the probability

on the right hand side of inequality (C.4.3) tends to 1, and so does Ct,υ(x;α>0,β>0)

for all x and t.

So combining the limiting expressions for Ct,υ(x;α>0,β>0) and Dt,υ(x;α>0,β>0),

as υ → ∞, we have that the distribution function FXt(x) as υ → ∞ is

FXt(x) = Ct,υ(x;α>0,β>0)Dt,υ(x;α>0,β>0) → exp
(
−γ
x
S(α>0,β>0)

)
:= FX(x),

for x > 0, when αM < 1. So in this case FXt is non-degenerate for all t. As this

distribution function is not a function of t, then this process is stationary with marginal

distribution function FX(x). If we want {Xt} to have Fréchet(σ) margins, with 0 <

σ <∞, so that FX(x) = exp(−σ/x), then rearranging gives that γ must satisfy,

γ = σ

(
∞∑
τ=0

max
Sτ

{
βj

∏
i=1,...,p:
αi>0

αaii

})−1

.

It follows that 0 < γ < ∞ in this case, giving the result for Proposition 6.2.1 when
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αM < 1. As there is no value of γ > 0 which would make FXt(x) > 0 for any value

of x > 0 when αM ≥ 1; then there is no stationary Max-ARMA(p, q) process if αM ≥

1.



Appendix D

Supplementary material for

Chapter 7: A marginal modelling

approach for predicting wildfire

extremes across the contiguous

United States

D.1 Spatio-temporal neighbourhoods

As alternatives to the spatial neighbourhoods Ni, i ∈ {1, . . . , N}, defined in equa-

tion (7.3.1) in Chapter 7, we also considered neighbourhoods of the form

N t
i :=

{
j ∈ {1, . . . , N} : ∥si − sj∥ ≤ kCNT1 ,mj = mi,

yj ∈ {yi − kCNTy , yi − kCNTy + 1, . . . , yi + kCNTy }
}
,

316



APPENDIX D. 317

and

N c
i :=

{
j ∈ {1, . . . , N} : ∥si − sj∥ ≤ kCNT1 ,mj = mi, yj = yi, cj = ci

}
,

for some kCNT1 ≥ 0 and kCNTy ∈ N, where cj denotes a covariate-based cluster assign-

ment for each observation j ∈ Ni. Analogous neighbourhoods were also considered for

BAP.

With the observation month fixed and the spatial range defined as in Ni, the neigh-

bourhood N t
i incorporates additional observations from neighbouring years, thus in-

creasing the amount of data available for marginal estimation and adding a temporal

element to the modelling procedure. On the other hand, the month and year are fixed

for N c
i so that only those data points with the same cluster assignment as observation

i are considered, thus reducing the amount of information available for a fixed kCNT1

or kBAP1 value. However, assuming we can define clusters such that observations in the

same cluster have more similar marginal tail properties, this additional step has the

potential to improve marginal estimation.

Cluster assignments used within the N c
i neighbourhoods were computed using di-

visive hierarchical clustering (Rokach and Maimon, 2005) for two different covariates:

temperature and precipitation. We select these variables since they have been shown

to be positively and negatively associated, respectively, to wildfire events (Duane et al.,

2021; Crockett and Westerling, 2018), and therefore may allow us to group together

locations with similar marginal properties for CNT and BAP.

We use hierarchical clustering since this technique has been used in practice to

approximate spatial clusters with similar wildfire properties (Rodrigues et al., 2019a,b;

Rahimi et al., 2020). The clustering procedure is as follows:

1. Standardise the auxiliary variable data (temperature or precipitation) for every

location in Ni.
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Table D.1.1: Total scores obtained using neighbourhood N t
i .

Distance ky = 1 ky = 2 ky = 3 ky = 4 ky = 5 ky = 6

k1 = 50 8393.3 8089.3 8003.6 7991.2 7925.9 7909.3

k1 = 75 8225.5 8134.2 8161.9 8187.4 8162.6 8159.6

k1 = 100 8295.6 8222 8264.4 8293.9 8275.5 8274.1

k1 = 125 8439.9 8401.4 8457 8487.2 8474.1 8474

k1 = 150 8547 8519 8578.2 8608.6 8599.5 8600.6

k1 = 175 8624.8 8604.8 8664.5 8694.1 8687.5 8689

k1 = 200 8711.2 8696.7 8755.2 8784.2 8778.4 8781.5

k1 = 225 8779.8 8768.9 8823.8 8852.3 8848 8851.2

k1 = 250 8843.9 8838.3 8892 8919.1 8915.4 8919.4

2. Apply hierarchical clustering, using the standardised covariate data, to obtain

two clusters, i.e., for each j ∈ Ni, cj = 1 or 2.

3. Compute the subset of locations with the same cluster assignment as location i,

i.e., {j ∈ Ni | cj = ci}.

In our analysis, we found that both the neighbourhoodsN t
i andN c

i resulted in worse

prediction scores compared to the simpler spatial neighbourhood approach outlined in

Section 7.3 of Chapter 7. This is illustrated by the results in Tables D.1.1 and D.1.2,

where we present the overall prediction scores, as outlined in Opitz (2023), for N t
i and

N c
i , respectively; recall that we aim to minimise this score. For these scores, we let

kCNT1 = kBAP1 := k1 ∈ {50, 75, . . . , 250} to incorporate a variety of spatial distances

and set kBAP2 = 0.5 to match the existing selected tuning parameter from Section 7.3.4

of Chapter 7. For N t
i , we let kCNTy = kBAPy := ky ∈ {1, 2, 3, 4, 5, 6}, resulting in time

windows of up to 13 years. Note that these scores correspond to the final prediction

scores, i.e., when the missing data are known, and in practice, one would need to select

the tuning parameters using the cross validation procedure outlined in Section 7.3.4 of

Chapter 7.
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Table D.1.2: Total scores obtained using neighbourhood N c
i with clusters computed

using temperature and precipitation.

Distance Temperature clusters Precipitation clusters

k1 = 50 11149 11161

k1 = 75 9608.8 9607.7

k1 = 100 9245.2 9309.2

k1 = 125 8651.9 8718.5

k1 = 150 8522.9 8582.1

k1 = 175 8431.5 8505.2

k1 = 200 8460.3 8489.5

k1 = 225 8470.2 8511.1

k1 = 250 8493.6 8539.5

One can observe that all the prediction scores from Tables D.1.1 and D.1.2 exceed

the final score obtained using the method described in Section 7.3 of Chapter 7, and in

many cases, the scores obtained were significantly worse. The fact that these predictions

were worse for a wide range of tuning parameter combinations gives further support to

our main modelling approach.

In the case of temporal neighbourhoods, since the predictive scores do not tend to

decrease with the parameter ky, our results suggest that marginal wildfire behaviour

can vary significantly over neighbouring years. Therefore, even though incorporating

information from neighbouring years increases the amount of data available for model

fitting, it does not appear to improve the quality of marginal estimates.

In the case of cluster-based neighbourhoods, our results indicate that observations

with similar temperature and precipitation values may not be those with similar wildfire

behaviour. We suspect this may occur due to the complex nature of the relationships

between the wildfire and auxiliary variables described in Section 7.4 of Chapter 7. Such

relationships are unlikely to be picked up by incorporating this additional clustering

step. Clustering also reduces the amount of data available for model fitting, which also
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appears to reduce the quality of marginal estimates.

On the whole, these results suggest that incorporating additional information, both

from temporal windows and covariate-based clusters, does not improve the quality of

marginal estimates for either CNT or BAP under our modelling approach. Combined

with the principle of parsimony, we do not consider these alternative neighbourhoods

further.



Appendix E

Supplementary material for

Chapter 8: Extreme value methods

for estimating rare events in Utopia

In this chapter, we present additional figures to support the work of Chapter 8 that

concerns the Extreme Value Analysis (EVA) conference in 2023. All notation and

terminology follow from that introduced in Chapter 8.

E.1 Additional figures for Section 8.3

In this section, we present additional figures for Section 8.3 of Chapter 8, concerned

with challenges C1 and C2. Figures E.1.1-E.1.4 support the exploratory analysis for

challenges C1 and C2. We explore the within-year seasonality of the response variable Y

in Figure E.1.1, looking at the distribution of Y per month and across the two seasons.

This shows that there is a significant difference in the distribution of Y between seasons

1 and 2, but within each season there is little difference across months.

Figure E.1.2 shows a scatter plot of Y against each covariate V1, . . . , V8, excluding V6

which corresponds to season. Covariates V1, V2 and V8 do not seem to have a relationship

321
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Figure E.1.1: Box plot of the response variable Y with each month and season (season
1 in grey and season 2 in red).

with Y , whilst there appears to be dependence for the remaining covariates. These

observed relationships are complex and non-linear.

Figure E.1.3 shows wind rose plots before and after the changepoint we find for

V6 (wind speed) and V7 (wind direction). These graphs demonstrate the direction of

wind observed, as well as the speeds for each direction (divided into eight sectors). We

find that wind speeds are greater before the changepoint, and mostly come from the

south-westerly direction. Whilst after the changepoint, winds tend to come from the

north-easterly direction and with lower speeds.

Figure E.1.4 details the auto-correlation function (acf) values for the response Y

and explanatory variables V1, . . . , V4, V6, . . . , V8, up to lag 60. All variables have neg-

ligible acf values beyond lag 0, except V6 (wind speed), V7 (wind direction) and V8

(atmosphere).

Figure E.1.5 shows the QQ-plots corresponding to a standard GPD model fitted

to the excesses of Y above a constant (left) and seasonally-varying threshold (right).

95% tolerance bounds (grey) show a lack of agreement between observations and the

standard GPD model above a constant threshold. The second plot demonstrates a
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Figure E.1.2: Scatter plots of explanatory variables V1, . . . , V4, wind speed (V6), wind
direction (V7) and atmosphere (V8), from top-left to bottom-right (by row), against the
response variable Y .

significant improvement in model fit.

Figure E.1.6 shows a detailed summary of the pattern of missing data in the data

and can be produced using the missing_pattern function in the finalfit package in R

(Harrison et al., 2023). To interpret the figure note that blue and red squares represent

observed and missing variables, respectively. The number on the right indicates the

number of missing random variables (i.e., the number of red squares in the row), while

the number on the left is the number of observations that fall into the row category.

On the bottom, we have the number of observations that fall into the column category.

For example, 18,545 observations are fully observed (denoted by the first row), there

are 407 observations where only V 4 is missing (denoted by the second row), there are

13 observations where both V 4 and V 6 are missing (denoted by the fourth row), there

are 456 observations where V 4 and at least one other predictor is missing (denoted by

the last column in the table) etc. There are very few observations where more than one

predictor is missing.
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Figure E.1.3: Wind rose plot before (left) and after (right) the changepoint.
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Figure E.1.4: Autocorrelation function plots for the response variable Y and explana-
tory variables V 1, . . . , V 4, wind speed (V 6), wind direction (V 7) and atmosphere (V 8),
from top-left to bottom-right (by row), against the response variable Y .
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Figure E.1.5: QQ-plots showing standard GPD model fits with 95% tolerance bounds
(grey) above a constant (left) and stepped-seasonal (right) threshold.
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Figure E.1.6: Detailed pattern of missing predictor variables in the Amaurot data set.
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E.2 Additional figures for Section 8.4

In this section, we present additional plots related to Section 8.4 of Chapter 8. Fig-

ure E.2.1 illustrates the time series of both covariates for the first 3 years of the obser-

vation period. We observe how the seasons vary periodically over each year, as well as

the discrete nature of the atmospheric covariate.
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Figure E.2.1: Plots of St (left) and At (right) against t for the first 3 years of the
observation period.

Bootstrapped χ estimates for the groups GA
I,k, k ∈ {1, . . . , 10}, I ∈ I \ {1, 2, 3} and

GS
I,k, k ∈ {1, 2}, I ∈ I are given in Figures E.2.2 - E.2.5. These estimates illustrate the

impact of atmosphere on the dependence structure.
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Figure E.2.2: Boxplots of empirical χ estimates obtained for the subsets GA
I,k, with

k = 1, . . . , 10 and I = {1, 2}. The colour transition (from blue to orange) over k
illustrates the trend in χ estimates as the atmospheric values are increased.
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Figure E.2.3: Boxplots of empirical χ estimates obtained for the subsets GA
I,k, with

k = 1, . . . , 10 and I = {1, 3}. The colour transition (from blue to orange) over k
illustrates the trend in χ estimates as the atmospheric values are increased.
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Figure E.2.4: Boxplots of empirical χ estimates obtained for the subsets GA
I,k, with

k = 1, . . . , 10 and I = {2, 3}. The colour transition (from blue to orange) over k
illustrates the trend in χ estimates as the atmospheric values are increased.
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Figure E.2.5: Boxplots of empirical χ estimates obtained for the subsets GS
I,k, with

k = 1, 2. In each case, pink and blue colours illustrate estimates for seasons 1 and
2, respectively. From top left to bottom right: I = {1, 2, 3}, I = {1, 2}, I = {1, 3},
I = {2, 3}.
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For a 3-dimensional random vector, the angular dependence function, denoted λ,

is defined on the unit-simplex S2 and describes extremal dependence along different

rays ω ∈ S2. As noted in Section 8.4 of the Chapter 8, we can associate each of the

probabilities from C3, p1 and p2, with points on S2, denoted ω1 and ω2 respectively.

With I = {1, 2, 3}, we consider λ(ω1) and λ(ω2) over the subsets GS
I,k, k ∈ {1, 2}

and GA
I,k, k ∈ {1, . . . , 10}. We note that λ(ω1) is analogous with the coefficient of tail

dependence η ∈ (0, 1] (Ledford and Tawn, 1996), with η = 1/3λ(ω1); this corresponds

with the region where all variables are simultaneously extreme. Furthermore, λ(ω2),

which corresponds to a region where only two variables are extreme, is only evaluated

after an additional marginal transformation of the third Coputopia time series; see

Section 8.4.2 of Chapter 8.

Estimation of λ for each simplex point and subset was achieved using the Hill

estimator (Hill, 1975) at the 90% level, with uncertainty subsequently quantified via

bootstrapping. These results are given in Figures E.2.6 - E.2.9. These plots provide

further evidence of a relationship between the extremal dependence structure and the

covariates.

To illustrate the estimated trend in dependence, Figure E.2.10 illustrates the es-

timated scale functions, σ (ω | xt), over atmosphere for parts 1 and 2. Under the

assumption of asymptotic normality in the spline coefficients, 95% confidence intervals

are obtained via posterior sampling; see Wood (2017) for more details. We observe

that σ tends to increase and decrease over atmosphere for parts 1 and 2, respectively,

although the trend is less pronounced for the latter. Under our modelling framework,

we note that higher values of σ are associated with less positive extremal dependence

in the direction ω of interest; to see this, observe that the survivor function of the GPD

with fixed ξ is negatively associated with σ. Considering the trend in σ (ω | xt), our

results indicate a decrease in dependence in the region where all variables are extreme.
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Figure E.2.6: Boxplots of empirical λ(ωi) estimates obtained for the subsets GA
I,k, with

k = 1, . . . , 10 and I = {1, 2, 3}. The colour transition (from blue to orange) over k
illustrates the trend in λ estimates as the atmospheric values are increased.
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Figure E.2.7: Boxplots of empirical λ(ωi) estimates obtained for the subsets GS
I,k, with

k = 1, 2 and I = {1, 2, 3}. In each case, pink and blue colours illustrate estimates for
seasons 1 and 2, respectively.
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Figure E.2.8: Boxplots of empirical λ(ωii) estimates obtained for the subsets GA
I,k, with

k = 1, . . . , 10 and I = {1, 2, 3}. The colour transition (from blue to orange) over k
illustrates the trend in λ estimates as the atmospheric values are increased.
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Figure E.2.9: Boxplots of empirical λ(ωii) estimates obtained for the subsets GS
I,k, with

k = 1, 2 and I = {1, 2, 3}. In each case, pink and blue colours illustrate estimates for
seasons 1 and 2, respectively.
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Figure E.2.10: Estimated σ functions (green) over atmosphere for part 1 (left) and
2 (right). In both cases, the regions defined by the black dotted lines represent 95%
confidence intervals obtained using posterior sampling.
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E.3 Additional figures for Section 8.5

Figure E.3.1 shows a heat map of empirically estimated η(·) dependence coefficients

and provides further evidence of the existence of the 5 dependence subgroups identi-

fied in our exploratory analysis for challenge C4. It also suggests that between group

independence as well as within group asymptotic independence – in the sense that the

extremes of within group variables do not occur simultaneously – are both reasonable

modelling assumptions.
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Figure E.3.1: Heat map of estimated empirical pairwise η(u) extremal dependence
coefficients with u = 0.95.

Figure E.3.2 shows the bootstrapped estimated individual group and overall probabili-

ties with respect to conditioning threshold quantile for part 2 of challenge C4.
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Figure E.3.2: Part 2 subgroup and overall bootstrapped probability estimates on the
log scale for C4. The red points indicate the original sample estimates and the colour-
ing of the boxplots indicates the choice of conditioning threshold, with the conditioning
quantile indices 1-6 referring to the quantile levels {0.7, 0.75, 0.8, 0.85, 0.9, 0.95}, respec-
tively.
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