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1. Introduction. In 1940, Ulam [22] first raised the stability problem of functional
equations: ‘For which metric groups G is it true that an ε-automorphism of G is
necessarily near to an automorphism?’ In the next year, Hyers [9] gave a partial
affirmative answer to the question of Ulam in the context of Banach spaces, and
in 1978, Th. M. Rassias [19] proved the following theorem, which subsumes Hyers’
theorem in the case where p = 0.

Let E and F be real normed spaces with F complete, let f : E → F be a mapping
such that, for each fixed x ∈ E, the mapping t �→ f (tx) is continuous on �, and let ε ≥ 0
and p ∈ [0, 1) be such that

‖f (x + y) − f (x) − f (y)‖ ≤ ε(‖x‖p + ‖y‖p) (x, y ∈ E). (1.1)

Then there exists a unique linear mapping T : E → F such that

‖f (x) − Tx‖ ≤ ε‖x‖p/(1 − 2p−1) (x ∈ E).

In 1990, Th. M. Rassias [20] asked whether such a theorem can also be proved for
p ≥ 1. In 1991, Gajda [7], following the same approach as in [19], gave an affirmative
solution to this question when p > 1, but it was proved by Gajda [7] and Rassias and
Šemrl [21] that one cannot prove an analogous theorem when p = 1. The result of
Rassias, which is also true for p < 0 (where we adopt the convention that ‖0‖p = ∞),
has influenced the development of what is now called the Hyers–Ulam–Rassias stability
phenomenon. In 1994, a generalization of Rassias’ theorem, the so-called generalized
Hyers–Ulam–Rassias stability theorem, was obtained by Găvruta [8]: he replaced the
bound ε(‖x‖p + ‖y‖p) in (1.1) by a general control function ϕ(x, y).
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During the last decades several stability problems of functional equations have
been investigated by a number of mathematicians [3, 5, 10, 15, 20]. These results have
many applications in information theory, physics, economic theory and social and
behavioural sciences [1, 2]. We briefly mention some applications within the theory of
Banach algebras. In each case a key step is the use of an analogue of our Theorem 3.5.

About 20 years ago, papers appeared dealing with perturbation theory: they
asked when is it true that a mathematical object which satisfies a certain property
approximately is necessarily close to something which satisfies the property exactly.
Many of these result are described in [12]. For example, let A be a Banach algebra, and
let T : A → � be a linear functional such that

|T(ab) − T(a)T(b)| < δ |T(a)| |T(b)| (a, b ∈ A).

Then ‖T‖ ≤ 1 + δ. Next, let A and B be subalgebras of a Banach algbera C such
that A and B are ‘geometrically close’. Then it often follows (see [12]) that A and B
are isomorphic. Similarly, let a Banach space A have two multiplications that make it
into an algebra and are such that the two products are close as bilinear maps. Then
the two algebras so formed often have common algebraic properties. These ideas are
related to that of approximately multiplicative maps, as studied by Johnson in [13]
and [14]. A pair (A, B) of Banach algebras is AMNM if, for each ε > 0 and each
K > 0, there exists δ > 0 such that, for each bounded linear map T : A → B such
that ‖T‖ ≤ K and ‖T(ab) − T(a)T(b)‖ ≤ δ ‖a‖ ‖b‖ for all a, b ∈ A, there is a bounded
homomorphism θ : A → B such that ‖T − θ‖ ≤ ε. The theorems of Johnson discuss
which Banach algebras are AMNM; the proofs and conditions involve the cohomology
theory of Banach algebras. Related matters involving approximate cohomology groups
and approximate amenability are discussed in [18].

In this paper, following [6], we define multi-normed spaces, and investigate some
properties of multi-bounded mappings on multi-normed spaces. Moreover, we prove a
generalized Hyers–Ulam–Rassias stability theorem associated to the Cauchy additive
equation for mappings from linear spaces into multi-normed spaces by using a fixed
point approach in the style of [4, 11, 17]. The theory of multi-normed spaces and of
multi-Banach algebras originated in [6].

Our expectation is that our Theorem 3.5 will have similar applications to the above
in the theory of multi-normed spaces and algebras.

Let (E, ‖ · ‖) be a complex linear space, and let k ∈ �. We denote by Ek the linear
space E ⊕ . . . ⊕ E consisting of k-tuples (x1, . . . , xk), where x1, . . . , xk ∈ E. The linear
operations on Ek are defined coordinatewise. When we write (0, . . . , 0, xi, 0, . . . , 0) for
an element in Ek, we understand that xi appears in the ith coordinate. The zero element
of either E or Ek is denoted by 0. We denote by �k the set {1, 2, . . . , k} and by Sk the
group of permutations on k symbols; we set � = {z ∈ � : |z| = 1}.

2. Multi-normed spaces and multi-bounded operators. We start this section by
recalling the notion of a multi-normed space from [6]. Throughout this section (E, ‖ · ‖)
denotes a complex normed space.

DEFINITION 2.1. A multi-norm on {En : n ∈ �} is a sequence

(‖ · ‖n) = (‖ · ‖n : n ∈ �)
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such that ‖ · ‖n is a norm on En for each n ∈ �, such that ‖x‖1 = ‖x‖ for each x ∈ E,
and such that the following axioms are satisfied for each n ∈ � with n ≥ 2:

∥∥(xσ (1), . . . , xσ (n))
∥∥

n = ‖(x1, . . . , xn)‖n (σ ∈ Sn, x1, . . . , xn ∈ E) ; (A1)

‖(α1x1, . . . , αnxn)‖n ≤ (max
i∈�n

|αi|) ‖(x1, . . . , xn)‖n (α1, . . . , αn ∈ �, x1, . . . , xn ∈ E) ;

(A2)

‖(x1, . . . , xn−1, 0)‖n = ‖(x1, . . . , xn−1)‖n−1 (x1, . . . , xn−1 ∈ E) ; (A3)

‖(x1, . . . , xn−1, xn−1)‖n = ‖(x1, . . . , xn−1)‖n−1 ( x1, . . . , xn−1 ∈ E). (A4)

In this case, we say that ((En, ‖ · ‖n) : n ∈ �) is a multi-normed space.

Motivations for the study of multi-normed spaces (and multi-normed algebras)
and many examples are given in [6].

Suppose that ((En, ‖ · ‖n) : n ∈ �) is a multi-normed space. The following
properties are almost immediate consequences of the axioms. First

‖(x, . . . , x)‖k = ‖x‖ (k ∈ �, x ∈ E). (a)

Secondly, let j, l ∈ � with j ≤ l, and let x1, . . . , xj, y1, . . . , yl ∈ E be such that
{x1, . . . , xj} is a subset of {y1, . . . , yl}. Then

‖(x1, . . . , xj)‖j ≤ ‖(y1, . . . , yl)‖l . (b)

Thirdly, we have

max
i∈�k

‖xi‖ ≤ ‖(x1, . . . , xk)‖k ≤
k∑

i=1

‖xi‖ ≤ k max
i∈�k

‖xi‖ (k ∈ �, x1, . . . , xk ∈ E). (c)

It follows from (c) that, if (E, ‖ · ‖) is a Banach space, then (En, ‖ · ‖n) is a Banach
space for each n ∈ �; in this case ((En, ‖ · ‖n) : n ∈ �) is a multi-Banach space.

Now we recall three important examples of multi-norms for an arbitrary normed
space E ; see [6] for details and many other examples.

EXAMPLE 2.2. The sequence (‖ · ‖n : n ∈ �) on {En : n ∈ �} defined by

‖(x1, . . . , xn)‖n := max
i∈�n

‖xi‖ (x1, . . . , xn ∈ E)

is a multi-norm called the minimum multi-norm. The terminology ‘minimum’ is justified
by property (c). �

EXAMPLE 2.3. Let {(‖ · ‖α
n : n ∈ �) : α ∈ A} be the (non-empty) family of all multi-

norms on {En : n ∈ �}. For n ∈ �, set

|||(x1, . . . , xn)|||n := sup
α∈A

‖(x1, . . . , xn)‖α
n (x1, . . . , xn ∈ E).

Then (|||·|||n : n ∈ �) is a multi-norm on {En : n ∈ �}, called the maximum multi-
norm. �

EXAMPLE 2.4. Let (E, ‖ · ‖) be a Banach lattice, and define

‖(x1, . . . , xn)‖n := ‖ |x1| ∨ . . . ∨ |xn| ‖ (x1, . . . , xn ∈ E).
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Then (‖ · ‖n : n ∈ �) is a multi-Banach space. �
DEFINITION 2.5. Let ((Ek, ‖ · ‖k) : k ∈ �) be a multi-normed space. A sequence

(xn) in E is a multi-null sequence if, for each ε > 0, there exists n0 ∈ � such that

sup
k∈�

‖(xn, . . . , xn+k−1)‖k < ε (n ≥ n0).

Let x ∈ E. Then

Lim
n→∞ xn = x

if (xn − x) is a multi-null sequence; in this case, the sequence (xn) is multi-convergent to
x in E.

DEFINITION 2.6. Let ((Ek, ‖ · ‖k) : k ∈ �) and ((Fk, ‖ · ‖k) : k ∈ �) be multi-normed
spaces, and let x ∈ E. A mapping f : E → F is multi-continuous at the point x if
Lim n→∞f (xn) = f (x) in F whenever Lim n→∞xn = x in E.

Now we give the definition from [6] of a multi-bounded operator between multi-
normed spaces; this is similar to the notion of bounded linear operator between two
normed spaces.

DEFINITION 2.7. Let ((Ek, ‖ · ‖k) : k ∈ �) and ((Fk, ‖ · ‖k) : k ∈ �) be multi-normed
spaces. A linear operator T : E → F is multi-bounded if

‖T‖mb := sup
n

sup
{‖(Tx1, . . . , Txn)‖n

‖(x1, . . . , xn)‖n
: (x1, . . . , xn) �= 0

}
< ∞.

The collection of multi-bounded operators from E to F is denoted by M(E, F).
It is easy to see that (M(E, F), ‖ · ‖mb) is a Banach subspace of the Banach space
B(E, F) of all bounded linear operators from E to F , and that M(E, F) contains all
nuclear operators. In fact,M(E, F) is also a multi-Banach space in a canonical way; see
[6, Chapter 4].

THEOREM 2.8. Let ((Ek, ‖ · ‖k) : k ∈ �) and ((Fk, ‖ · ‖k) : k ∈ �) be multi-normed
spaces. Then a linear mapping T : E → F is multi-continuous if and only if it is multi-
bounded.

Proof. Suppose that T is multi-bounded, and let (xn) be a multi-null sequence in
E. Then, for each ε > 0, there exists n0 ∈ � such that

sup
k∈�

‖(xn, . . . , xn+k−1)‖k < ε (n ≥ n0).

But now

sup
k∈�

‖(Txn, . . . , Txn+k−1)‖k ≤ ‖T‖mb ε (n ≥ n0),

and so (Txn) is a multi-null sequence in F . Thus T is multi-continuous.
Conversely, suppose that T is multi-continuous and assume that T is not multi-

bounded. Then, for each n ∈ �, there exists a positive integer kn ≥ n such that

sup
{‖(Tx1, . . . , Txkn )‖kn

‖(x1, . . . , xkn )‖kn

: (x1, . . . , xkn ) �= 0
}

> n2.
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Hence there exists (y1,n, . . . , ykn,n) ∈ Ekn such that

‖(Ty1,n, . . . , Tykn,n)‖kn

‖(y1,n, . . . , ykn,n)‖kn

> n2.

Now set

xj,n = yj,n

n2‖(y1,n, . . . , ykn,n)‖kn

(j ∈ �kn ).

Then

‖(x1,n, . . . , xkn,n)‖kn <
1
n2

and ‖(Tx1,n, . . . , Txkn,n)‖kn > 1.

Consider the sequence

(zi) = (x1,1, . . . , xk1,1, x1,2, . . . , xk2,2, . . . , x1,n, . . . , xkn,n, . . .)

in E. We claim that the sequence (zi) is multi-null in E. Indeed, given ε > 0, there exists
j ∈ � with j ≥ 2 such that

∑∞
i=j1/ i2 < ε, and then

‖(x1,j, . . . , xkj,j, . . . , x1,j+n, . . . , xkj+n,j+n)‖kj+...+kj+n ≤
j+n∑
�=j

‖(x1,�, . . . , xk�,�‖k�

≤
j+n∑
�=j

1
�2

< ε (n ∈ �). (2.1)

Fix n0 = k1 + · · · + kj−1 + 1. For n, k ∈ � with n ≥ n0, choose m ∈ � with

kj + · · · + kj+m > (n − k1 − · · · − kj−1) + k − 1.

Then {zn, . . . , zn+k−1} ⊆ {x1,j, . . . , xkj,j, . . . , x1,j+m, . . . , xkj+m,j+m}, and so it follows
from (2.1) and property (b) that

‖(zn, . . . , zn+k−1)‖k ≤ ‖(x1,j, . . . , xkj,j, . . . , x1,j+m, . . . , xkj+m,j+m)‖kj+...+kj+m ≤ ε.

Hence supk∈� ‖(zn, . . . , zn+k−1)‖k ≤ ε (n ≥ n0), and so (zi) is multi-null. The sequence
(Tzi) is clearly not a multi-null sequence in F , and so T is not multi-
continuous, giving the required contradiction. �

3. Generalized Hyers–Ulam–Rassias stability. We begin this section with ‘the
alternative fixed point theorem’ [16]. A generalized metric space is a pair (X, d), where
X is a non-empty set and d : X × X → [0,∞] satisfies the usual axioms. A map J :
X → X is strictly contractive if there exists a ‘Lipschitz constant’ 0 ≤ L < 1 such that
d(Jx, Jy) ≤ Ld(x, y) (x ∈ X).

THEOREM 3.1. Let (X, d) be a complete generalized metric space, and let J : X → X
be a strictly contractive mapping with a Lipschitz constant L < 1. Then, for each element
x ∈ X, either
(F1) d(Jnx, Jn+1x) = ∞ (n ≥ 0), or
(F2) there exists n0 ≥ 0 such that:
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(F20) d(Jnx, Jn+1x) < ∞ (n ≥ n0);
(F21) the sequence (Jnx) converges to a fixed point y∗ of J;
(F22) y∗ is the unique fixed point of J in the set U = {y ∈ X : d(Jn0 x, y) < ∞};
(F23) d(y, y∗) ≤ d(y, Jy)/(1 − L) (y ∈ U). �

The following lemma gives a useful strictly contractive mapping. We adopt the
convention that inf ∅ = ∞.

LEMMA 3.2. Let k ∈ �, and let E and F be linear spaces such that (Fk, ‖ · ‖) is a
Banach space. Suppose that there exist 0 ≤ M < 1, λ > 0, and a map ψ : Ek → [0,∞)
such that

ψ(λx1, . . . , λxk) ≤ λMψ (x1, . . . , xk) (x1, . . . , xk ∈ E).

Set X := {g : E → F : g(0) = 0}, and define d : X × X → [0,∞] by

d(g, h) = inf{c > 0: ‖(g(x1) − h(x1), . . . , g(xk) − h(xk))‖
≤ cψ(x1, . . . , xk) for all x1, . . . , xk ∈ E}.

Then (X, d) is a complete generalized metric space, and the mapping J : X → X defined
by (Jg)(x) := g(λx)/λ (x ∈ X) is a strictly contractive mapping.

Proof. It is easy to see that (X, d) is complete generalized metric space.
For elements g, h ∈ X with d(g, h) < ∞, take c > d(g, h). Then, for each

x1, . . . , xk ∈ E, we have ‖(g(x1) − h(x1), . . . , g(xk) − h(xk))‖ ≤ cψ(x1, . . . , xk), and so

∥∥∥∥
(

1
λ

g(λx1) − 1
λ

h(λx1), . . . ,
1
λ

g(λxk) − 1
λ

h(λxk)
)∥∥∥∥ ≤ 1

λ
cψ(λx1, . . . , λxk)

≤ cMψ(x1, . . . , xk).

Thus d(Jg, Jh) ≤ cM. Hence d(Jg, Jh) ≤ Md(g, h) for all g, h ∈ X , and so J is a strictly
contractive mapping on X with Lipschitz constant M. �

PROPOSITION 3.3. Let E be a linear space, and let ((Fn, ‖ · ‖n) : n ∈ �) be a multi-
Banach space. Let L, k ∈ � with L ≥ 2, and let there exist 0 ≤ M0 < 1 and a function
ϕ : E2k → [0,∞) satisfying

ϕ(Lx1, Ly1, . . . , Lxk, Lyk) ≤ LM0ϕ (x1, y1 . . . , xk, yk) (3.1)

for all x1, . . . , xk, y1, . . . , yk ∈ E. Suppose that f : E → F is a mapping with f (0) = 0
and

‖(f (µx1 + µy1) − µf (x1) − µf (y1), . . . , f (µxk + µyk) − µf (xk) − µf (yk))‖k

≤ ϕ(x1, y1, . . . , xk, yk) (3.2)

for all µ ∈ � and x1, . . . , xk, y1, . . . , yk ∈ E. Then there exists a unique linear mapping
T : E → F such that

‖(f (x1) − Tx1, . . . , f (xk) − Txk)‖k ≤ M0

1 − M0
ψ(x1, . . . , xk), (3.3)
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where

ψ(x1, . . . , xk) :=
L−1∑
j=1

ϕ (jx1/L, x1/L, jx2/L, x2/L, . . . , jxk/L, xk/L)

for all x1, . . . , xk ∈ E.

Proof. Let x1, . . . , xk ∈ E. Setting µ = 1, y1 = x1, . . . , yk = xk in (3.2), we obtain

‖(f (2x1) − 2f (x1), . . . , f (2xk) − 2f (xk))‖k ≤ ϕ(x1, x1, x2, x2, . . . , xk, xk).

By using induction one can easily see that

‖(f (Lx1) − Lf (x1), . . . , f (Lxk) − Lf (xk))‖k ≤ ψ(Lx1, . . . , Lxk). (3.4)

It follows from (3.1) that ψ(Lx1, . . . , Lxk) ≤ LM0ψ(x1, . . . , xk), and so, by (3.4), we
have

∥∥∥∥
(

1
L

f (Lx1) − f (x1), . . . ,
1
L

f (Lxk) − f (xk)
)∥∥∥∥

k
≤ 1

L
ψ(Lx1, . . . , Lxk)

≤ M0ψ(x1, . . . , xk). (3.5)

Let X := {g : E → F : g(0) = 0} and d be as in Lemma 3.2, with M and λ replaced
by M0 and L, respectively. Define the mapping J0 : X → X by

(J0g)(x) := g(Lx)/L (x ∈ X).

Then J0 is a strictly contractive mapping. By (3.5), we have d(f, J0 f ) ≤ M0 < ∞. By
Theorem 3.1 (with f for x), there exists n0 ∈ � such that the sequence

(
Jn

0 f
)

converges
to a fixed point T of J0 (so that T(Lx) = LT(x) (x ∈ E)), T is the unique fixed point
of J0 in the set U0 = {g ∈ X : d(Jn0

0 f, g) < ∞}, and

d(g, T) ≤ d(g, J0f )/(1 − M0) (g ∈ U0).

Since limn→∞d(Jn
0 f, T) = 0, we easily conclude that

lim
n→∞

f (Lnx)
Ln

= T(x) (x ∈ E),

where we are using property (a). Clearly d(f, Jn0
0 ) < ∞, and so f ∈ U0. Hence

d(f, T) ≤ 1
1 − M0

d(f, J0f ) ≤ M0

1 − M0
,

and so

‖(f (x1) − T(x1), . . . , f (xk) − T(xk))‖k ≤ M0

1 − M0
ψ(x1, . . . , xk) (x1, . . . , xk ∈ E).

Fix x, y ∈ E and µ ∈ �. Let us replace all x1, . . . , xk by Lnx and all y1, . . . , yk by
Lny in (3.2), divide both sides by Ln, and pass to the limit as n → ∞. Then, using
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property (a) again, we obtain

‖T(µx + µy) − µT(x) − µT(y)‖ ≤ lim sup
n→∞

1
Ln

ϕ(Lnx, Lny, . . . , Lnx, Lny)

≤ lim sup
n→∞

Mn
0ϕ(x, y, . . . , x, y) = 0.

Thus T(µx + µy) = µT(x) + µT(y) for all µ ∈ � and x, y ∈ E.
Next, let ξ ∈ �, and take K ∈ � with K > |ξ |. By an easy geometric argument,

one can see that there are µ1, µ2 ∈ � such that 2ξ = K(µ1 + µ2). Using the additivity
of T , we obtain

T(ξx) = T
(

K
2

· 2 · ξ

K
x
)

= KT
(

1
2

· 2 · ξ

K
x
)

= K
2

T
(

2 · ξ

K
x
)

= K
2

T(µ1x + µ2x) = K
2

(T(µ1x) + T(µ2x))

= K
2

(µ1 + µ2)T(x) = K
2

· 2 · ξ

K
= ξT(x)

for all x ∈ E. Thus the mapping T is linear.
If S is another linear mapping satisfying (3.3), then S(Lx) = LS(x) and so S is a

fixed point of J0. Moreover,
∥∥∥∥
(

f (Ln0 x1)
Ln0

− S(x1), . . . ,
f (Ln0 xk)

Ln0
− S(xk)

)∥∥∥∥
k

≤ M0

1 − M0
ψ(x1, . . . , xk)

for all x1, . . . , xk ∈ E. Hence S is a fixed point of J0 in the set U0, and so T = S. �
COROLLARY 3.4. Let (E, ‖ · ‖) be a normed space, and let ((Fn, ‖ · ‖n) : n ∈ �) be a

multi-Banach space. Let k ∈ �, p ∈ [0, 1), α, β ≥ 0, and let f : E → F be a mapping
satisfying f (0) = 0 and

‖(f (µx1 + µy1) − µf (x1) − µf (y1), . . . , f (µxk + µyk) − µf (xk) − µf (yk))‖k

≤ α + β(‖x1‖p + ‖y1‖p + · · · + ‖xk‖p + ‖yk‖p)

for all µ ∈ �, and x1, . . . , xk, y1, . . . , yk ∈ E. Then there exists a unique linear mapping
T : E → F such that

‖(f (x1) − Tx1, . . . , f (xk) − Txk)‖k ≤ 2p−1α + β(‖x1‖p + · · · + ‖xk‖p)
1 − 2p−1

for all x1, . . . , xk ∈ E.

Proof. Set L = 2, M0 = 2p−1 < 1, and

ϕ(x1, y1, . . . , xk, yk) = α + β(‖x1‖p + ‖y1‖p + · · · + ‖xk‖p + ‖yk‖p),

so that ϕ satisfies (3.1) in Proposition 3.3. We have

ψ(x1, . . . , xk) = α + 21−pβ(‖x1‖p + · · · + ‖xk‖p) (x1, . . . , xk ∈ E),

and so there exists a linear mapping T with the required property. �
The following result is our main theorem.
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THEOREM 3.5. Let ((En, ‖ · ‖n) : n ∈ �) be a multi-normed space, let ((Fn, ‖ · ‖n) :
n ∈ �) be a multi-Banach space, let α ≥ 0, and let f : E → F be a mapping satisfying
f (0) = 0 and

‖(f (µx1 + µy1) − µf (x1) − µf (y1), . . . , f (µxk + µyk) − µf (xk) − µf (yk))‖k ≤ α

for all k ∈ �, µ ∈ � and x1, . . . , xk, y1, . . . , yk ∈ E. Suppose that f is multi-continuous
at some point of E. Then there exists a unique multi-bounded linear mapping T : E → F
such that

‖f (x) − Tx‖ ≤ α

for all x ∈ E.

Proof. By Corollary 3.4 with p = β = 0, for each k ∈ �, there exists a unique linear
mapping Tk : E → F such that

‖(f (x1) − Tkx1, . . . , f (xk) − Tkxk)‖k ≤ α (x1, . . . , xk ∈ E).

By (A3), in fact Tk = T1 (k ∈ �), say T = T1. Therefore ‖f (x) − Tx‖ ≤ α (x ∈ E).
We shall prove that T is multi-continuous. Indeed, suppose that f is multi-

continuous at x0 ∈ E, and assume towards a contradiction that T is not multi-
continuous at 0. Then there exist a sequence (xn) in E and η > 0 with Lim n→∞xn = 0
and

lim sup
n→∞

sup
k

‖(Txn, . . . , Txn+k−1)‖k > η.

Set ε > 2α/η. Then

lim sup
n→∞

sup
k

‖(T(εxn + x0) − T(x0), . . . , T(εxn+k−1 + x0) − T(x0))‖k > 2α.

For n ∈ �, we have

sup
k

‖(T(εxn + x0) − T(x0), . . . , T(εxn+k−1 + x0) − T(x0))‖k

≤ sup
k

‖(T(εxn + x0) − f (εxn + x0),

. . . , T(εxn+k−1 + x0) − f (εxn+k−1 + x0))‖k

+ sup
k

‖(f (εxn + x0) − f (x0), . . . , f (εxn+k−1 + x0) − f (x0))‖k

+‖(f (x0) − T(x0), . . . , f (x0) − T(x0))‖k.

Since Lim n→∞f (εxn + x0) = f (x0), we have

lim sup
n→∞

sup
k

‖(T(εxn + x0) − T(x0), . . . , T(εxn+k−1 + x0) − T(x0))‖k ≤ 2α,

a contradiction. Hence T is multi-continuous. By Theorem 2.8, T is multi-
bounded. �

PROPOSITION 3.6. Let E be a linear space, and let ((Fn, ‖ · ‖n) : n ∈ �) be a multi-
Banach space. Let L, k ∈ � with L ≥ 2, and let there exist 0 ≤ M1 < 1 and a function
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ϕ : E2k → [0,∞) satisfying

ϕ(x1, y1 . . . , xk, yk) ≤ 1
L

M1ϕ(Lx1, Ly1, . . . , Lxk, Lyk)

for all x1, . . . , xk, y1, . . . , yk ∈ E. Suppose that f : E → F is a mapping with f (0) = 0
and

‖(f (µx1 + µy1) − µf (x1) − µf (y1), . . . , f (µxk + µyk) − µf (xk) − µf (yk))‖k

≤ ϕ(x1, y1, . . . , xk, yk) (3.6)

for µ = 1, i and for all x1, . . . , xk, y1, . . . , yk ∈ E. Further, suppose that, for each fixed
x ∈ E, the function t �→ f (tx) is continuous on �. Then there exists a unique linear
mapping T : E → F such that

‖(f (x1) − Tx1, . . . , f (xk) − Txk)‖k ≤ 1
1 − M1

ψ(x1, . . . , xk) (3.7)

where

ψ(x1, . . . , xk) :=
L−1∑
j=1

ϕ (jx1/L, x1/L, jx2/L, x2/L, . . . , jxk/L, xk/L)

for all x1, . . . , xk ∈ E.

Proof. Let x1, . . . , xk ∈ E. Setting µ = 1, y1 = x1, . . . , yk = xk in (3.6), we obtain

‖(f (2x1) − 2f (x1), . . . , f (2xk) − 2f (xk))‖k ≤ ϕ(x1, x1, x2, x2, . . . , xk, xk).

By using induction, one can see that

‖(f (Lx1) − Lf (x1), . . . , f (Lxk) − Lf (xk))‖k

≤
L−1∑
j=1

ϕ(jx1, x1, jx2, x2, . . . , jxk, xk). (3.8)

Replacing xj (1 ≤ j ≤ k) by xj/L in (3.8), we obtain

‖(f (x1) − Lf (x1/L), . . . , f (xk) − Lf (xk/L))‖k ≤ ψ(x1, . . . , xk). (3.9)

Let X := {g : E → F : g(0) = 0} and d be as in Lemma 3.2, with M and λ replacing
M0 and 1/L, respectively. Define the mapping J1 : X → X by (J1g)(x) := Lg (x/L).
Then J1 is a strictly contractive mapping. By (3.9), we have d(f, J1f ) ≤ 1 < ∞.
Essentially, as in the proof of Proposition 3.3, we see that there exists a mapping
T : E → F such that T(µx + µy) = µT(x) + µT(y) for all x, y ∈ E and µ = 1, i, and
that T is unique among maps satisfying (3.7).

Now we use the strategy of [19] to show that T is linear. Fix x0 ∈ E and ρ ∈ F ′.
Then the mapping � : � → � defined by �(t) := ρ(T(tx0)) = limn→∞ Lnρ(f (L−ntx0))
is additive. Since � is the pointwise limit of a sequence of continuous functions
Lnρ(f (L−ntx0)), it is measurable. Thus the additive mapping � is continuous, and
hence �-linear. For all ξ = a1 + ia2 ∈ �, where a1, a2 ∈ �, we then have

T(ξx) = T(a1x) + iT(a2x) = a1T(x) + ia2T(x) = ξT(x).

Therefore T is a linear mapping. �
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COROLLARY 3.7. Let (E, ‖ · ‖) be a normed space and let ((Fn, ‖ · ‖n) : n ∈ �) be a
multi-Banach space. Let k ∈ �, p > 1, β ≥ 0, and let f : E → F be a mapping satisfying
f (0) = 0 and

‖(f (µx1 + µy1) − µf (x1) − µf (y1), . . . , f (µxk + µyk) − µf (xk) − µf (yk))‖k

≤ β(‖x1‖p + ‖y1‖p + · · · + ‖xk‖p + ‖yk‖p)

for µ = 1, i and for all x1, . . . , xk, y1, . . . , yk ∈ E. If for each fixed x ∈ E the function
t �→ f (tx) is continuous on �, then there exists a unique linear mapping T : E → F such
that

‖(f (x1) − T(x1), . . . , f (xk) − T(xk))‖k ≤ β

2p−1 − 1
(‖x1‖p + · · · + ‖xk‖p)

for all x1, . . . , xk ∈ E.

Proof. Set

ϕ(x1, y1, . . . , xk, yk) = β(‖x1‖p + ‖y1‖p + · · · + ‖xk‖p + ‖yk‖p),

and let M1 = 21−p < 1 in Proposition 3.6. Then

ψ(x1, . . . , xk) = 21−pβ(‖x1‖p + · · · + ‖xk‖p) (x1, . . . , xk ∈ E),

and there exists a unique linear mapping T with the required property. �
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