EXPONENTIATION IN BANACH STAR ALGEBRAS

by H. G. DALES[†] (Received 28th January 1975)

In their recently published book Bonsall and Duncan ask the following question ((1), p. 65): if A is a Banach star algebra with an identity, is it true that

$$\exp(a^*) = (\exp a)^* \quad (a \in A)?$$
 (1)

Of course, if the involution * is continuous, this result does hold. However, in this note, we record a counter-example. In fact, the example is a slight modification of a result of Loy (3), in turn based on a construction in (2), which demonstrates the possible non-uniqueness of the exponential of an element in a commutative Banach algebra with two inequivalent complete norms.

Proposition 1. There exists a commutative Banach star algebra B with identity and an element $b \in B$ for which $\exp(b^*) \neq (\exp b)^*$.

Proof. Let A denote the disc algebra, let X denote the Banach space C[0, 1] (with the usual notation), and let $T \in B(X)$ be the Volterra operator defined by

$$(Tx)(t) = \int_0^t x(s)ds \quad (x \in X).$$

Then, with respect to the operation $(f, x) \rightarrow f \cdot x = f(T)x$, $A \times X \rightarrow X$, X is a commutative Banach A-module (cf. (2)). Now let $\mathfrak{A} = A \oplus X$, let

 $(a_1, x_1)(a_2, x_2) = (a_1a_2, a_1 \cdot x_2 + a_2 \cdot x_1),$

and let $||(a, x)||_1 = ||a|| + ||x||$. Then $\mathfrak{A}_1 = (\mathfrak{A}, ||.||_1)$ is a commutative Banach algebra with identity.

Let * be the standard involution on A defined by $f^*(z) = \overline{f(\overline{z})}$ $(f \in A)$, where $\overline{}$ denotes complex-conjugation, and define *: $\mathfrak{A} \to \mathfrak{A}$ by

$$(f, x)^* = (f^*, \bar{x}) \quad ((f, x) \in \mathfrak{A}).$$

To check that * is indeed an involution on \mathfrak{A} , it suffices to check that

$$\overline{(f.x)} = f^* \cdot \overline{x} \quad (f \in A, x \in X).$$

But, if $f(z) = \sum_{0}^{\infty} \lambda_n z^n$, so that $f^*(z) = \sum_{0}^{\infty} \overline{\lambda}_n z^n$, $f^* \cdot \overline{x} = \sum_{0}^{\infty} \overline{\lambda}_n T^n \overline{x} = \sum_{0}^{\infty} \overline{\lambda}_n (\overline{T^n x}) = (\overline{f \cdot x}),$

as required. Thus $(\mathfrak{A}_1, *)$ is a Banach star algebra.

† Supported in part by NSF grant GP-33431.

Let $D: A \to X$ be a discontinuous derivation with D(p) = 0 for p a polynomial, but with $D(E) = x_0 \neq 0$, where $E(z) = e^z$. Such a derivation is constructed in (2). Define

$$\|(f, x)\|_{2} = \|f\| + \|Df - x\|$$
 $((f, x) \in \mathfrak{A})$

(This norm is introduced in (3).) It is clear that $\| \cdot \|_2$ is an algebra norm on \mathfrak{A} . We check directly that it is complete. Let $((f_n, x_n))$ be a $\| \cdot \|_2$ -Cauchy sequence, so that (f_n) is Cauchy in A and $(Df_n - x_n)$ is Cauchy in X. Let $f_n \rightarrow f \in A$ and let $Df_n - x_n \rightarrow y \in X$. Then it is clear that

$$(f_n, x_n) \rightarrow (f, Df - y)$$
 (2)

with respect to $\| \cdot \|_2$. Thus, $\mathfrak{A}_2 = (\mathfrak{A}, \| \cdot \|_2)$ is a commutative Banach algebra.

Let B denote the direct sum $\mathfrak{A}_1 \oplus \mathfrak{A}_2$ with the norm

$$||(a, b)|| = \max \{||a||_1, ||b||_2\},\$$

with the product

$$(a_1, b_1)(a_2, b_2) = (a_1a_2, b_1b_2),$$

and the involution

$$(a, b)^* = (b^*, a^*).$$

Then B is a commutative Banach star algebra with a discontinuous involution ((1), Example 36.11).

Let $a = (z, 0) \in \mathfrak{A}$, where z denotes the coordinate functional in A, and let $\exp_i a$ denote the exponential of a in \mathfrak{A}_i (i = 1, 2). Precisely,

$$\exp_i a = \lim_{\|\cdot\|_i} \sum_{k=0}^n \frac{a^k}{k!} \quad \text{as } n \to \infty.$$

Then $\exp_1 a = (E, 0)$, but, by (2), $\exp_2 a = (E, x_0) \neq \exp_1 a$. Finally, let $b = (a, 0) \in B$. Then, noting that a is self-adjoint in \mathfrak{A} ,

$$\exp(b^*) = \exp(0, a^*) = \exp(0, a) = (0, \exp_2 a),$$

whereas

$$(\exp b)^* = (\exp (a, 0))^* = (\exp_1 a, 0)^* = (0, \exp_1 a)$$

so that exp $(b^*) \neq (\exp b)^*$, and we have constructed the required example.

Remark. By taking $h = (a, a) \in B$ we obtain an Hermitian element h in B for which $\exp h \neq (\exp h)^*$, so answering a question raised by B. E. Johnson in the review of (3), *Math. Reviews* 50 #2918.

We do have a positive result in a special case. We say that a commutative Banach algebra A has a unique functional calculus if, for each $a \in A$, there is a unique unital algebra homomorphism $\Theta_a: \mathcal{O}_{\sigma(a)} \to A$ such that $\Theta_a(z) = a$. Here $\sigma(a)$ denotes the spectrum of a in \mathbb{C} , and $\mathcal{O}_{\sigma(a)}$ denotes the algebra of analytic functions on $\sigma(a)$ (cf. (2)).

164

165

Proposition 2. Let (A, *) be a commutative Banach algebra with a unique functional calculus. Then $\exp(a^*) = (\exp a)^*$ $(a \in A)$.

Proof. Let $a \in A$. First note that $\sigma(a^*) = \overline{\sigma(a)}$, so that, if $F \in \mathcal{O}_{\sigma(a)}$, then $F^* \in \mathcal{O}_{\sigma(a^*)}$, where $F^*(z) = \overline{F(\overline{z})}$. Define $\Theta_a^* : \mathcal{O}_{\sigma(a)} \to A$ by

$$\Theta_a^*(F) = [\Theta_{a^*}(F^*)]^* \quad (F \in \mathcal{O}_{\sigma(a)}).$$

Then Θ_a^* is clearly a unital algebra homomorphism, and

$$\Theta_a^*(z) = [\Theta_{a^*}(z)]^* = (a^*)^* = a,$$

so that, by the uniqueness of the functional calculus $\Theta_a^* = \Theta_a$. In particular, $(\exp(a^*))^* = \exp a$, as required.

Note that a Banach algebra with a finite-dimensional radical has a unique functional calculus (2). It is easy to give examples of such algebras which have a discontinuous involution.

REFERENCES

(1) F. F. BONSALL and J. DUNCAN, Complete normed algebras (Springer-Verlag, 1973).

(2) H. G. DALES, The uniqueness of the functional calculus, Proc. London Math. Soc. 27 (1973), 638-648.

(3) R. J. Loy, Commutative Banach algebras with non-unique complete norm topology, Bull. Austral. Math. Soc. 10 (1974), 409-420.

SCHOOL OF MATHEMATICS UNIVERSITY OF LEEDS LEEDS LS2 9JT