
 1

Interoperating with Services in a Mobile Environment

Paul Grace1, Gordon S. Blair1 and Sam Samuel2

1Distributed Multimedia Research Group, Computing Department,

Lancaster University, Lancaster, LA1 4YR, UK.
p.grace@lancaster.ac.uk, gordon@comp.lancs.ac.uk

2Global Wireless Systems Research, Bell Laboratories, Lucent Technologies,
 Quadrant, Stonehill Green, Westlea, Swindon, SN5 7DJ.

lsamuel@lucent.com

ABSTRACT

Mobile computing is characterised by users carrying portable devices that allow communication
between people and continuous access to networked services independent of their physical location.
A mobile application must discover and interoperate with the required application services available
to them in their present location. However, these services will be developed upon a range of
middleware types (e.g. remote method invocation, publish-subscribe, message-oriented and tuple
spaces) and advertised using different service discovery protocols (e.g. UPnP and SLP) unknown to
the application developer. Wireless environments are also subject to changes in network QoS and
connectivity, and mobile applications operate on devices with limited resources. Given these
properties, existing middleware technologies are inappropriate to support mobile client-based
applications; developing upon a single middleware platform restricts the possible mobile services
that can be interacted with. Therefore, a middleware platform for mobile computing must adapt its
behaviour to interoperate with any type of discovered service, provide the best level of service in an
environment that is frequently changing and finally, be lightweight in resource use due to the
constraints of mobile devices. This paper proposes reflection as a well-suited technology to
implement the adaptive features of mobile middleware and identifies what the key requirements of a
dynamic middleware platform are. In addition, we describe ReMMoC (Reflective Middleware for
Mobile Computing), a middleware platform that dynamically adapts its structure to interoperate with
a range of middleware types that may exist in the mobile environment. Finally, the use of ReMMoC in
a typical mobile scenario is presented and the memory footprint cost of utilising reflection to create a
mobile middleware platform is evaluated.

1. INTRODUCTION

The emergence of new wireless network and mobile device technology has increased the prominence of mobile
computing. This has led to novel application types emerging to exploit this domain (e.g. context aware applications,
m-commerce, ad-hoc communities, mobile gaming and many others). Consequently, it is envisioned that a variety of
application services will be available to the mobile user in their current locale. However, the mobile computing
domain presents a number of challenges for middleware, for example, overcoming the problems of weak connection
and limited resources. Research into this area has concentrated on addressing these issues, ranging from extensions to
well-established platforms for fixed networks [Haahr et al, 00][Seitz et al, 98][Reinstorf et al, 01] and middleware
systems designed explicitly to support mobile applications [Meier et al, 02][Davies et al, 98][Capra et al, 01] (for a
more detailed description of these see section 2). Therefore, a wide choice of middleware platforms is available to
develop mobile application services upon; possible middleware paradigms that may be utilised include: remote
method invocation, publish-subscribe, message-oriented and tuple spaces. This demonstrates middleware
heterogeneity within the mobile environment [Roman, 01]; a client application based upon publish-subscribe cannot
interoperate with an RMI-based service of the same application type. Likewise, variations in the implementations of
middleware paradigms, e.g. SOAP/ CORBA and different publish-subscribe services, means that clients developed
on one type cannot interoperate with services developed upon another. As an example, a tourist guide client
implemented upon a publish-subscribe system would only be able to interoperate with specific publishers of the same
middleware type. Conversely, tourist guide services at a different location implemented using an alternative
middleware (e.g. a SOAP service), would require a separate client application and middleware implementation.

Similarly, the services available to the user as they roam from location to location are advertised using one
of the contrasting service discovery protocols available. At present, there are four main service discovery
technologies: Jini, SLP, UPnP and Salutation; in addition, new technologies are emerging to better support the

 2

discovery of services in mobile environments (e.g. JESA [Preuss, 02] & Centaurus [Kagal et al, 01] and across
wireless ad-hoc network types (e.g. SDP in Bluetooth and Salutation Lite). Utilising only one of these technologies
on a mobile device to discover services will mean that services advertised by the other types will be missed. For
example, a set of embedded devices within a room (lights, video, CD player) advertising their services using UPnP
cannot be used by a mobile device looking for services using the Service Location Protocol. This problem is likely to
become significantly worse in the future with the advent of ubiquitous computing enabled by emerging technologies
to discover and interact with the services an embedded device offers.

Furthermore, the mobile computing environment is dynamic in nature, in terms of changes in levels of

network bandwidth, periods of connectivity and network type. Additionally, mobile applications operate on devices
that are restricted by limited resources, e.g. battery power, CPU size, system memory and screen size. It has been
identified therefore, that middleware should be aware of the current environmental context and adapt its behaviour
based on this information in order to provide the best level of service to the application [Blair et al, 01]. We extend
this argument to include awareness of middleware within the environment; thus we propose that a generalised
middleware for mobile computing should be able to adapt its behaviour so that any service available in the current
location can be found and communicated with irrespective of its service discovery protocol and underlying
middleware type.

 We advocate the use of reflection and component technology as a well-suited technique for the
development of a mobile middleware platform. Reflection is a principled method that supports introspection and
adaptation to produce configurable and reconfigurable middleware. Using this approach, a middleware platform
should be able to alter its behaviour dynamically to: i) find the required mobile services irrespective of the service
discovery protocol, ii) interoperate with services implemented by different middleware types and iii) provide the best
level of service to the application in the current environmental conditions. Given these properties, mobile
applications can then be developed independently of the underlying middleware technology. The design and
implementation of a reflective middleware platform, named ReMMoC (Reflective Middleware for Mobile
Computing), providing this functionality is described. The use of this platform is illustrated within a typical real
world mobile scenario and its memory resource use, i.e. static memory footprint is compared against similar
technologies.

 The paper is structured as follows. Section 2 presents a typical mobile scenario to illustrate the
heterogeneous properties of the mobile environment. The concepts of reflection and component technologies used by
ReMMoC, followed by the design of the reflective middleware platform itself is described in section 3 and then
evaluated in section 4. Future work in this area is identified in section 5. Section 6 examines related work in the field
of mobile middleware and finally, some overall conclusions are drawn in section 7.

2. MOBILE SCENARIO

In this section we present a typical mobile computing scenario to illustrate middleware heterogeneity that exists in
the mobile domain. In this example, three different application types are presented as services available to mobile
users at two locations. Instances of these services are implemented across different types of middleware in the two
separate locations and advertised using contrasting service discovery protocols. Application 1 is a mobile sport news
application, whereby sport news stories are presented to the user based on their current location. For example, users
in Manchester could obtain the latest information about the football clubs in that location (Bury, Manchester City
etc.). Application 2 is a tourist guide application that receives information about local points of interest and acts as a
guide through these to the mobile user. Finally, application 3 is a print application that allows a given document to be
printed to an available printer in the vicinity.

Characteristically, a mobile user will carry a device with computational capacity (e.g., Phone, PDA, Laptop)
that is able to connect to wireless networks (e.g. GSM, GPRS, IEEE 802.11b, HomeRF, Bluetooth); in this scenario
the user has a Personal Digital Assistant that can connect via an 802.11b network. Figure 1 illustrates two possible
locations in the session of a mobile user and the mobile services that can be interacted with via the given mobile
device. It can be seen that the same mobile application services are available to the user, but the platforms presenting
them differ. For example, the Sport News service is implemented as a publish-subscribe channel on the university
campus network and as a SOAP service in the town centre. If fixed middleware were to be used, then two separate
applications and middleware implementations would be needed on the device. Similarly, the print service and tourist
guide service are implemented across different middleware types.

 3

Figure 1. A typical mobile application scenario

However, this is not the only level of heterogeneity in the scenario, the services themselves must first be
discovered by the mobile application before interaction can occur. Nevertheless, in this setting the service discovery
technologies are different, i.e. the services available to campus users are discoverable using the SLP and the services
across the city centre can be found using both UPnP and SLP. If the middleware can only perform one type of
service discovery then it may miss some available resources and in the worst-case scenario find none of them, for
example if a client used Jini as its discovery protocol it would not find any of the services in this scenario.

Given scenarios of this type, the authors argue that a mobile middleware platform should be reconfigurable

to interact with different middleware types and utilise different service discovery protocols. In turn, this will allow
the development of mobile applications independently of fixed platform types whose properties are unknown to the
application programmer at design time.

3. ReMMoC (A REFLECTIVE MIDDLEWARE FOR MOBILE COMPUTING)

This section describes the design of a reflective middleware platform (ReMMoC) for supporting generic classes of
distributed mobile applications. The platform is influenced by the work on OpenORB and OpenCOM that has been
carried out at Lancaster University (the following section describes the features of these in more detail), i.e. we
utilise two key technologies: reflection and components in order to produce a configurable and reconfigurable
middleware that meets the requirements we have previously identified.

3.1 Background on OpenCOM

OpenCOM is a lightweight, efficient and reflective component model, built atop a subset of Microsoft’s COM.
Higher level features of COM, including distribution, persistence, transactions and security are not used, whilst core
aspects including the binary level interoperability standard, Microsoft’s IDL, COM’s globally unique identifiers and
the IUnknown interface are the basis of the implementation. However, the initial version of OpenCOM [Clarke et al,
01] was developed for Windows-based desktop machines and is unsuitable for resource-constrained devices such as
mobile phones, Pocket PCs and embedded devices. Therefore, OpenCOM has been updated to also execute on
devices running the Windows CE Operating System.

The fundamental concepts of OpenCOM are interfaces, receptacles and connections (bindings between
interface and receptacles). An interface expresses a unit of service provision and a receptacle describes a unit of
service requirement. OpenCOM deploys a standard runtime substrate that manages the creation and deletion of
components, and acts upon requests to connect/disconnect components. Furthermore, a system graph of the
components currently in use is maintained to support the introspection of a platform’s structure. Initially, each
OpenCOM component implemented five standard interfaces: two component management interfaces (ILifeCycle and
IReceptacle) and three meta-interfaces (IMetaInterception, IMetaArchitecture and IMetaInterface). However, the

SLP Services UPnP Services

PDA PDA
PDA

PDA PDA

SLP Services

Event Broker SOAP Server

Print Sport
News

Tourist
Guide

Lancaster University (802.11 b Network) Lancaster City Centre (802.11 b Network)

SOAP Server

Sport
News

CORBA Server

Print
 Tourist

Guide

 4

implementation of these interfaces increases the size of each component and in some cases may never be used.
Therefore, OpenCOM now requires only three interfaces to be implemented by each component:

• ILifeCycle provides operations called startup and shutdown that are called when a component is created or
destroyed.

• IReceptacle offers methods to modify the interfaces connected to a component’s receptacles. These are only
called by the OpenCOM runtime component.

• IMetaInterface supports inspection of the types of interfaces and receptacles declared by the component.

In addition, the OpenCOM runtime component provides meta-interception and meta-architecture interfaces.
Interception enables pre and post methods to be associated with a given interface on a component, which are then
invoked before or after every method invocation on that interface. The meta-architecture interface allows the
programmer to obtain information about the underlying component architecture i.e. information about connections
made to other components. The OpenCOM architecture is illustrated in figure 4. The final change to OpenCOM is
the removal of locking receptacles to reduce the implementation size and increase portability; instead we now
advocate the use of higher-level structures (i.e. component frameworks, see section 3.2) for maintaining system
integrity. The memory footprint size of the OpenCOM component platform for Pocket PC devices running the
Windows CE 3.0 operating system on StrongARM processors is 17Kbytes.

3.2 Background on OpenORB

OpenORB is a reflective middleware platform that was designed to overcome the problems of black-box middleware
implementations, which hide their structure and are unable to adapt their performance in the face of environmental
changes. OpenORB can be configured and reconfigured through a marriage of reflection, component technologies
and component frameworks. A component framework is defined as a collection of rules and contracts that govern the
interaction of a set of components [Szyperski, 98]. The motivation behind component frameworks is to constrain the
design space and the scope for evolution. Moreover, they simplify component development and assembly, enable
lightweight components and increase the understandability and maintainability of the system. A component
framework maintains an architecture consisting of a component graph and its constraints. Users interact with CFs for
services through well-defined APIs that encompass the operations of the CF’s constituent components. In OpenORB,
a component framework is explicitly represented by a single component (called a component framework
representative), which is responsible for implementing the meta-interfaces while enforcing the architectural
constraints.

The middleware architecture of OpenORB is decomposed into an extensible set of specialised and focused domains
of concern, such as buffer management and binding establishment, each based on a component framework as shown
in figure 2. That is, OpenORB is structured as a set of (configurable) component frameworks and reflection is then
used to discover the current structure and behaviour, and to enable selected changes at run-time. The end result is a
flexible middleware technology that can be specialised to domains including, multimedia and real-time systems.

BT implementations

Binding
Layer

Comms
Layer

Resource
Layer

Binding
CF

Protocol
CF

Buffer
Mgt. CF

Thread
Mgt. CF

Multimedia
Streaming
CF

Protocols

Filters

Buffer policies

Transport
Mgt. CF

SchedulersTransports

Figure 2. The component frameworks of Open ORB

 5

3.3 The Design and Implementation of ReMMoC

3.3.1 Overview

This section describes the ReMMoC platform, a configurable and reconfigurable reflective middleware that supports
mobile application development and overcomes the heterogeneous properties of the mobile environment. ReMMoC
uses OpenCOM as its underlying component technology and it is built as a set of component frameworks. Using
many component frameworks (e.g. as found in OpenORB) increases the size of the middleware implementation;
extra management functionality for managing reconfiguration exhausts the constrained resources of a mobile device.
Therefore, ReMMoC consists of two key component frameworks: (1) a binding framework for interoperation with
mobile services implemented upon different middleware types, and (2) a service discovery framework for
discovering services advertised by a range of service discovery protocols. These two component frameworks can be
seen in figure 3. The binding framework is configured by plugging in different binding type implementations e.g.
IIOP Client, Publisher, SOAP client etc. and the service discovery framework is similarly configured by plugging in
different service discovery protocols. A detailed description of the services provided by the two frameworks and
their properties for reconfiguration are discussed in the following sections. Adding more component frameworks for
other non-functional properties such as security and resource management can extend the platform at a later stage.
The top level CF of ReMMoC manages the reconfiguration of the underlying frameworks and provides an interface
for discovering and interoperating with services. However, the application can also interact directly with either of the
frameworks to avoid indirection and extra processing overhead; for example, if the application knows the binding
type it wants to use.

Figure 3. Overview of the ReMMoC platform

3.3.2 The Binding Framework

The primary function of the binding framework is to provide interoperation with heterogeneous mobile services that
exist in the mobile environment. Therefore, over time it may be configured as an IIOP client configuration and make
a number of IIOP requests, or change to a subscribe configuration and wait to receive events of interest.
Fundamentally, any type of middleware paradigm, synchronous or asynchronous, can be plugged into the binding
framework if it has been implemented using OpenCOM components. The component framework structure manages
the configuration and dynamic reconfiguration of these bindings and ensures that a correct binding type is in place
before operation occurs.

Figure 4 illustrates the binding framework and also presents the generic features of component frameworks

within ReMMoC (functionality that is common to every CF). Each component framework in the platform
implements three meta-interfaces that can be utilised by a higher-level CF or by an application component. These
interfaces allow the inspection of the current structure of the framework and the ability to dynamically alter its
behaviour. The three meta-interfaces are: (i) ICFMetaInterface, (ii) ICFMetaArchitecture and (iii)
ICFMetaInterception. These interfaces differ from their counterparts in OpenCOM (i.e. IMetaInterface,
IMetaArchitecture and IMetaInterception) by offering extra reflective capabilities and constraining their operation to
each framework structure. The ICFMetaInterface allows the programmer to discover the types of the interfaces and
receptacles that are implemented by the CF and also that exist on components currently within the component
framework. Furthermore, it allows the inspection of the methods available on any given interface within the
framework; these methods can then be dynamically invoked. The ICFMetaArchitecture interface allows access to the
current component framework graph to inspect the components in use and the connections between components; the

IReMMoC

ReMMoC Top Level CF

Service Discovery CFBinding CF

Binding type implementations

Service Discovery protocols

 6

structure of the graph can also be dynamically altered using this interface. Finally, the ICFMetaInterception interface
provides functions to insert pre and post method behaviour onto a specified interface within the framework. A
detailed list of the functions offered across the meta-space can be found in appendix A. The meta-space
implementation is encapsulated within a single component (ReMMoC Meta Implementation) that is included in each
component framework implementation. It is important to note that the implementation of this component relies on
the reflective properties of the OpenCOM platform; in turn this reduces the component’s size.

Each component framework constrains the configuration of components to a valid implementation within

the framework domain. Therefore, in the binding framework only valid binding type implementations are allowed
after reconfiguration. To enforce this policy, each component framework implements a receptacle called IAccept.
When configuration has been initiated or a change to the existing binding implementation has been made, a call to
the IAccept interface is performed. This carries out a check on the component architecture; if the Accept component
verifies the architecture then a true response is generated and the platform can continue its operation, otherwise, an
exception is generated and the framework rolls back to the previous configuration. The complexity of checking
depends upon the implementation of the Accept component, which may have no checking (no component
connected), simply check against a list of components or alternatively incorporate pattern-based strategies; by
changing the component implementation the strategy is changed. For the purpose of the ReMMoC implementation,
the CF graph is checked against known component configurations (e.g. a SOAP client’s graph structure) described in
XML.

Figure 4. The ReMMoC binding component framework

Moreover, every component framework maintains a graph of the components that comprise the current
implementation. This graph is a subset of the OpenCOM runtime system graph. To reduce resource use this
information is not replicated and the framework maintains a simple view of the underlying graph. Any actual
changes to the CF graph are reflected directly at the system graph level. Therefore, component frameworks cannot
rely on components within another separate framework, only on components and frameworks within that framework;
this technique is put forward by [Clarke et al, 01].

Binding CF

OpenCOM

IOpenCOM

IMetaArchitecture

IMetaInterception

IUnknown

System Graph

Type libraries

Binding CF
implementation CF Graph

ICFMetaInterception

ICFMetaInterface

ICFMetaArchitecture

IUnknown IAccept

IMetaInterface

GIOP

CORBA

Marshalling

Sockets

TCP

IIOP

IGIOP

IIIOP

ITPProtocol

IOSNet ICORBAMarshalling

IUnknown

Pointers to OpenCOM runtime

Receptacle

IIIOP

 7

Figure 4 also illustrates that no fixed interface for the binding framework service is implemented i.e. the

application programmer does not use the same interface to utilise the framework. Instead, the interface for the given
configuration (e.g. ISOAP, IIIOP, ISubscribe or multiples of these) is exported as the means to use the framework
and this is discoverable by the application or higher-level framework using the framework’s ICFMetaInterface.
Reflection is then used to discover the methods on this interface and dynamically invoke them. An example of this is
shown in the diagram, where the IIIOP interface of the current configuration is exported. In order to implement a
generic binding interface, two directions can be taken. The basic components can implement an agreed plug-in
interface (e.g. the IIOP client, SOAP client and publisher all implement an IBind interface) [Blair et al, 01]. This
allows unknown binding type implementations to be added dynamically. However, the components must be
developed directly for the middleware, which does not allow re-usability of components between middleware
implementations. Furthermore, the generic interface cannot express all of the functionality exposed by a component
configuration. The second direction is to implement a mapping from a higher-level framework interface to the
component interface. In our case this is done in the ReMMoC top-level framework. We can now re-use any
OpenCOM based binding implementation and all of its features. The disadvantage is that code to do this for each
type is needed. Therefore, this is dynamically plugged into the framework for the current implementation, allowing
any type to be utilised at run-time. Hence, if resources are scarce the application can include just a binding
framework and control this itself; otherwise a higher-level framework that simplifies the programming across
different binding types (ReMMoC) can be used.

 The binding framework allows changes to be made at two distinct levels. Firstly, the current binding type
implementation can be replaced. This is illustrated in the diagrams shown in figure 5. A configuration of components
that implement a SOAP client binding type, for performing SOAP RPC invocations, and a subscriber configuration
for use as part of a publish-subscribe service is illustrated; in this case the subscriber component subscribes for XML
events delivered over a multicast protocol. Each of these is a “single” personality, but it is also feasible for multiple
personalities to be created i.e. SOAP and IIOP clients together, or a publish-subscribe publisher and SOAP client
together; their implementation is simply a configuration of components, but more than one interface is exposed by
the framework. The creation of the component configuration for each binding type is designed so as to minimise the
number of components used (each component adds extra overhead) while maintaining a level of re-usable
components and scope for fine-grained reconfiguration (discussed later). The ICFMetaArchitecture of the binding
framework is used to dynamically change between middleware roles; specifically, the ReplaceConfiguration method
is invoked passing the new component configuration; for example, figure 5 shows the SOAP binding being replaced
by the subscribe binding.

Figure 5. A dynamic change from a SOAP client binding framework implementation to a publish-subscribe

subscriber implementation.

ISOAP

IMetaInterface

SOAPtoHTTP

HTTP

TCP

SOAP RPC

ISOAPTransport

Sockets

ISOAPMarshalling

ISocket

IHTTP

IUnknown

SOAP
Marshalling

ITPProtocol

Subscribe

SOAP

Messaging

Filter

SOAPtoMulticast

Multicast

IFilter

IMulticast

ISOAPMessaging

ISubscribe

ISOAPTransport

 8

Changes to the framework can also be made at the component level; that is, more fine-grained changes to

the configuration can be made in light of environmental context changes, such as those involving quality of service,
or changes in the application’s requirements. For example, if the device encountered an environment where frequent
disconnection occurred then the SOAP client’s transport binding could be changed from HTTP-based components to
SMTP components. Furthermore, an application may require IIOP server side functionality, in addition to the
existing client side; therefore components implementing server side functionality are added. Finally, the subscriber
configuration may choose to switch from a reliable multicast component to an unreliable one, if network congestion
is detected. To perform this functionality the methods of the ICFMetaArchitecture interface are called.

We have implemented the binding framework and a set of binding type implementations to illustrate its
functionality. It is feasible, for any binding type to be utilised by the framework e.g. tuple spaces and media stream
bindings, provided it is implemented as a configuration of OpenCOM components. However, we have implemented
IIOP client and server, SOAP client and Publish-Subscribe personalities for evaluation and demonstration purposes.

3.3.3 The Service Discovery Framework

The principal function of the Service Discovery framework is to allow services that have been advertised by different
service discovery protocols to be discovered. This is performed by changing the component configuration depending
on what type of discovery technology is currently used in the environment. For example, if only SLP is currently in
use, the framework’s configuration will be an SLP Lookup personality. However, if SLP and UPnP are both being
utilised at a location then the framework’s configuration will include component implementations to discover both.
An application may also require services to be advertised; therefore, the personality can be changed to include
service registration functionality using one or more protocols of choice. As in the Binding CF, the framework allows
individual components to be changed, added or deleted. This is beneficial due to the range of functionalities that
service discovery technologies offer. For example, in SLP you may wish to perform lookup using just the multicast
protocol if no directory agent is present, but at a later stage if a directory agent is discovered the configuration can be
changed to direct requests to it, rather than send multicast requests.

Figure 6. The Service Discovery Component Framework

The basic constituents of this component framework are identical to the binding CF; i.e. the same three meta

interfaces are implemented. Also, the IAccept receptacle connection is utilised to check the validity of the discovery
configuration and the framework maintains a graph of the components. The service discovery framework differs in
that it presents its own custom interface of the service it provides (IServiceLookup); the IDL for this interface is
listed in figure 7. The interface offers three key method calls. The first makes a generic service lookup call and will

SSDP

HTTP

Socket

ISocket

ISSSDP

IHTTP

Service Discovery CF

Service
Discovery CF

implementation CF Graph

ICFMetaInterception

ICFMetaArchitecture

IUnknown IAccept

Receptacle

IServiceLookup

ICFMetaInterface

UPnP

IUPnP
SLP Service

Find

ISLP

SLPMessage

 9

return the information from any service discovery technology lookup call in a generic format. For example, if a
generic lookup of a weather service is called and two discovery configurations are implemented by the framework
(UPnP and SLP) then the framework will return a list of matched services, from both types in a generic format. It is
this information that then drives the use of the binding framework. The interface also provides methods to determine
if a particular service discovery technology is available in the environment or not. Furthermore, the properties of the
framework ensure that direct interaction with the underlying component interface e.g. IUPnP can be carried out in
similar fashion to the binding CF, if the application needs to improve performance in light of constrained resources.

 Interface IServiceLookup{
 Service[] Lookup(ServiceType st, Attributes[] attrs);
 Boolean SDTinUse(SDTType sdt);
 SDTType FindSDTs();
 }

Figure 7. IDL definition of IServiceDiscovery Interface

However, the issue of which discovery protocol to use in the current environment must still be addressed.
We argue that this information will be made available by higher-level, context-based mechanisms that present
information about the environment. This may come from information about the device, e.g. if the device is currently
using a Bluetooth connection then an SDP personality should be used. Furthermore, the device may use prior
knowledge to select an appropriate protocol, i.e. the platform stores context information per location that details
which service discovery protocols were used at that point previously. The use of a context service within the
environment is discounted because it would need to be discovered. Therefore, the framework presents the minimum
functionality required to obtain the discovery protocol if none of the previous methods can be used. This involves
configuring the platform so that checks for each type of protocol can be made e.g. configure components to check for
Jini, SLP, UPnP and Salutation. Invoking the SDTinUse() and FindSDTs() methods on the IServiceLookup interface
will then use these configurations to return information to the application. The final requirement of the platform is to
provide knowledge of when to check for environmental changes; the obvious technique is to synchronously check for
new protocols when no results are returned from a lookup. Alternatively, the environment could be continuously
monitored for protocol types and then an asynchronous event is generated when the protocol is detected.

We have implemented the service discovery framework with two service discovery protocol implementations:
SLP and UPnP. Therefore, this allows us to demonstrate how to overcome the problems of the availability of
multiple service discovery protocols. However, as with the binding framework, it is feasible for any discovery
protocol to be integrated into the framework.

4. EVALUATION

This section provides an evaluation of the ReMMoC platform in terms of the memory footprint sizes that the
platform utilises and in providing the functionality required to interoperate with heterogeneous application services
in a typical mobile scenario.

4.1 The Cost of Reflection

At present mobile devices have a limited amount of system memory, which can quickly be consumed by user’s
applications; therefore it is important to minimise the amount of memory needed to store a middleware
implementation. In the future, storing components on the device is likely to be less of a problem as mobile devices
with much higher memory capacity become available. However, components will still need to be transmitted across
the network (for example, when the platform discovers it needs components not currently on the device). Therefore,
the implementation of middleware personalities still needs to be minimised. We have implemented the components
used to build the ReMMoC platform with the aim of reducing the storage space they occupy. Table 1 documents the
static memory footprint sizes of the separate parts of the platform i.e. configurations for the two frameworks (IIOP
client, SOAP client etc.). Four measurements were taken for each personality: the ARM and x86 implementations for
reflective and non-reflective personalities. The non-reflective personality is the basic component implementation,

 10

whereas a reflective personality maintains meta-information about the structure of each component and supports the
subsequent introspection of this data.

Table 1. Size of component configurations in ReMMoC

The results illustrate that the possible configurations are suited to mobile and embedded devices with limited
memory resources, as minimum configurations of the binding framework, service discovery framework and
individual implementations of these total less than 100Kbytes. For example, the reflective ARM measurements of
IIOP client, SOAP client, subscribe, UPnP lookup and SLP lookup are all individually less than 100Kbytes. These
are comparable to related systems. For example, the non-reflective ARM IIOP client implementation (55K)
compares with the 29K SH3 CORBA client personality of the Universal Interoperable Core (UIC) implementation
[Roman, 01] and the 48K non-pluggable GIOP client Zen implementation [Klefstad et al, 02], which have similar
capabilities. Similarly, the IIOP Client/Server personality compares with the full UIC CORBA implementation of
44.5K. The table also illustrates the actual cost in terms of extra memory requirements of the reflective personalities
utilised in the ReMMoC framework as opposed to their corresponding non-reflective counterparts. For the
implemented configurations (ARM) this ranges between an extra 23.5K and 56K. The storage of a type library and
an additional 20 lines of C++ code for each component in the configuration, accounts for the extra memory cost. The
size of each type library is dependent on the complexity of interface descriptions used on that component. Therefore,
the cost per component varies. Our results show that configurations can be created that fit on devices with limited
capacity and still retain the dynamic inspection and reconfiguration described in the previous sections.

4.2 Functionality in a Real World Mobile Scenario

To illustrate that the ReMMoC platform can perform its primary function of discovering and interoperating with
heterogeneous services, a scenario consisting of a set of differing mobile applications was developed. Figure 9
illustrates the test-bed scenario that was created to evaluate the functionality of the ReMMoC platform. In this
scenario, three applications exist. The first of these is a mobile sport news service that is accessed by local users who
wish to find out the latest sport news in their current location. This information comes from two sources: i) a publish-
subscribe service that publishes sport stories, and at a different time: ii) an IIOP service that lets you obtain the
current feature story for a given topic (football, cricket etc). The second application is a weather service that displays
the latest weather information to the user; in the test environment the UPnP weather device captures the current
weather conditions and publishes this through a SOAP service. The final application is a chat application between
multiple users (mobile devices) within the environment. Each device presents a chat publish-subscribe system; the

 Reflective Non-Reflective
Function ARM (Bytes) x86 (Bytes) ARM (Bytes) x86 (Bytes)

Platform Core
OpenCOM 28160 18432 n/a n/a
Binding CF 16896 11776 n/a n/a
Service Discovery CF 19968 16384 n/a n/a

Binding Configurations
IIOP Client 96768 79872 56320 38912
IIOP Server 99840 82432 58880 40960
IIOP Client & Server 140288 114688 82944 56832
SOAP client 97792 80896 64512 47104
Publish 92160 74752 65024 49152
Subscribe 85504 71168 58368 46080
Publish & Subscribe 105984 86016 74752 56320

Service Discovery Configurations
SLP Lookup 85504 68608 53248 36352
SLP Register 80896 65536 48128 33792
SLP Lookup & Register 103936 83456 65024 45056
UPnP Lookup 80384 64724 56320 39424

 11

user publishes their input and interested parties (members of the chat) subscribe to receive this input. The test
environment includes Compaq iPaq h3870 Pocket PCs running the Windows CE 3.0 operating system; each device is
fitted with a Wireless LAN PC Card so that it can connect to the local wireless network. With the exception of the
chat services the remainder operate on desktop machines running the Windows 2000 operating system; the SOAP
services were developed upon the Apache SOAP 2.0 implementation and the IIOP services were developed upon
ORBacus 4.05.

Figure 9. Test bed for ReMMoC Evaluation

To illustrate the functionality of the ReMMoC platform, we step through the operation of one of the
applications in the scenario. The sport news application was developed to discover sport news stories and display
them to the user. Firstly, the application invokes the lookup interface of the service discovery framework requesting
services of type “Sport_News”. UPnP and SLP are in use in this scenario, therefore the framework is configured to
discover services advertised by these. Initially, only the IIOP service is available and the binding type is configured
to an IIOP client type and an invocation requesting the latest football story is made. Later, only the publish-subscribe
service is available (to simulate heterogeneity), therefore a different middleware type is detected when the lookup is
next called. Following this the binding framework is reconfigured to a subscribe personality and the application
subscribes to the latest football stories. This shows that an application can continue operating with services in
different locations that are implemented on different middleware types. Similar tests were carried out with the other
applications to demonstrate the functionality of the ReMMoC platform. These examples illustrate the ability to
discover services across different discovery platforms and interoperate with them through the appropriate binding.

However, the code to make the service requests and reconfiguration of the two frameworks is implemented

within the application code. This is not the most suitable solution; knowledge of the frameworks is required and code
is replicated across each application implementation. Furthermore, knowledge of the type of middleware that may be
encountered is needed. A higher-level framework, to manage this complexity is needed in order to simplify the
development of applications of this type; this is discussed further in future work.

5. FUTURE WORK

The main goal of the ReMMoC project is to allow mobile applications to be developed independently of the
heterogeneous platform types of the mobile services that they intend to interact with. At present, developing mobile

Sport News
Service

CORBA Server

Sport News
Channel

P/S Publisher

Chat Channel

Publisher/Subscriber

Weather
Service

SOAP Server

Chat Channel

Publisher/Subscriber

Weather application

GATEWAY

Chat application

Sport News application

SLP

SLP

SLP
SLP UPnP

802.11b Wireless Network

 12

applications requires knowledge of the underlying framework structure and possible middleware bindings that may
be encountered; but these are not known until run-time. Therefore, work is required on the specification of an XML-
based language for describing the application’s requirements from mobile services. The ReMMoC top level
framework will then receive these XML requests and perform the appropriate reconfiguration to find and interact
with the services that meet these requests, while managing the configuration of the required middleware
functionality. We also aim to extend our test bed to include a greater array of embedded devices and services, in
order to better demonstrate the operation of this platform in a heterogeneous environment.

 The evaluation of memory use has illustrated that single middleware personalities can exist on mobile
devices. However, each device cannot store every possible middleware component that may be needed. Therefore, a
method for dynamically downloading components when needed is required. Furthermore, techniques to ensure the
component is available to start-up before it needs to be used, e.g. caching, are necessary

 Finally, the work does not address a number of key issues in distributed systems development that are
important within this application domain. Firstly, security needs to be added to the system in order to deal with
access control of services. Furthermore, resource management to control use of memory, CPU and battery power is
important. Also, the use of context information for driving underlying adaptation needs to be considered, i.e. how
best to integrate this information with the middleware and how to deal with conflicting requests. We envisage that
these orthogonal aspects will be integrated into the platform through use of separate component frameworks.

6. RELATED WORK

The mobile computing domain offers a number of new challenges for middleware to overcome. In this section we
examine existing mobile middleware platforms that have been developed to support these new requirements, which
include: methods for overcoming the poor characteristics of wireless networks, lightweight platforms for devices
with limited memory and techniques for adapting to changing environmental context.

6.1 Asynchronous Mobile Middleware

The properties of a wireless network means that the mobile device may become disconnected involuntarily, or
otherwise choose to become disconnected to save resources such as battery power. Furthermore, error rates are high
and packets are lost. These characteristics have proven a driving factor in the initial development of middleware
platforms for this domain. For example, the Rover platform [Joseph et al, 95] was one of the very first to address this
issue; the toolkit provides queued remote procedure calls that allows an application to continue making invocations
asynchronously while disconnected from the network. Other asynchronous styles include publish-subscribe systems
and tuple spaces. Within a publish-subscribe system, interaction takes the form of event notification; namely,
consumers register for the events they are interested in and are informed when they occur. Logically, the two parties
do not have to be connected simultaneously to interact. Examples of these are Elvin [Segall, 98], Siena [Carzaniga et
al, 01], the Cambridge Event Architecture [Bacon et al, 00] and Gryphon [IBM, 98]. However, these platforms were
designed for fixed networks and do not take into account the dynamic connection of mobile hosts. This has enforced
the emergence of some preliminary solutions. For example, Elvin has been extended to incorporate proxy servers to
support the persistency of events, so that clients who disconnect repeatedly do not lose events; but it requires that
clients connect to the same proxy, which cannot be guaranteed in mobile networks. An alternative is JEDI [Cugola,
01], which includes a dynamic tree of dispatchers (the client can reconnect to any) for ensuring publish-subscribe
information is retained as members connect and reconnect. Nevertheless, both of these rely on centralised entities
holding event information, which cannot be guaranteed within ad-hoc wireless networks. Consequently, STEAM
[Meier et al, 02] is a scalable, publish-subscribe system designed to operate in ad-hoc networks; the platform is based
upon the concepts of group communication with publishers and subscribers belonging to the same group. The
communication is scaled by the proximity of publisher to subscriber; any subscribers out of range do not receive the
events.

The tuple space is an alternative asynchronous communication model that is effectively a shared distributed

memory spread across all participating hosts that processes can concurrently access; hence communication is
decoupled in time and space. The L2imbo platform [Davies et al, 98] is based upon the classic tuple space
architecture but includes a number of extensions for operation within a mobile environment. Multiple tuple spaces
can be created and used, removing the need for all operations to go through a central global tuple; this is an important
factor in an environment where communication links are unreliable. Furthermore, QoS attributes can be added to a
tuple, including delivery deadline allowing the system to re-order to make the best use of network connectivity.

 13

Alternative technologies are JavaSpaces [Waldo, 98], T-spaces [Wyckoff et al, 98] and Lime [Murphy et al, 01],
however, none of these adapt their behaviour like L2imbo, to support context changes.

6.2 Adaptive Middleware

Established middleware technologies and those described in the previous section offer a fixed black-box
implementation whose underlying structure and behaviour is hidden from the programmer and cannot be altered at
run-time to cope with changes that occur in the mobile environment. Therefore, [Blair et al, 01] believe that future
middleware platforms, for domains such as multimedia and mobile computing, should be configurable to match the
requirements of a given application domain and dynamically reconfigurable to enable the platform to respond to
changes in its environment.

Recently, a group of reflective middleware technologies have emerged to meet these requirements:
OpenORB [Blair et al, 01], DynamicTAO [Kon et al, 00], Multe-ORB [Kristensen & Plagemann, 00] and
OpenCORBA [Ledoux, 99]. A reflective system is one that provides a representation of its own behaviour that is
amenable to inspection and adaptation, and is causally connected to the underlying behaviour it describes. The key to
the approach is to offer a meta-interface supporting the inspection and adaptation of the underlying structure.
However, these existing systems are built for application domains, such as multimedia and real-time; they do not
address the issue of middleware heterogeneity in mobile computing. Consequently, [Roman, 01] identifies that the
key property in supporting mobile computing is the ability to seamlessly interoperate with the range of ubiquitous
devices that are encountered by the mobile device as it changes location. Therefore, the Universal Interoperable Core
[Roman, 01] has been developed; this reflective middleware is loosely based on the reconfiguration techniques of
DynamicTAO. The platform can change between different middleware personalities e.g. a SOAP client, a CORBA
server and a SOAP server. The implementation of UIC concentrates on synchronous middleware styles and does not
implement all paradigm types that could be encountered in a ubiquitous environment, i.e. it is likely that
asynchronous platforms would be as prominent given their suitability to the environment, nor does it address the
issue of heterogeneous discovery protocols.

 Furthermore, middleware and applications need to be aware of context information to support adaptation.
Work at University College London [Capra et al, 01a] examines the use of reflection in managing a repository of
application meta-data that stores each application’s requirements for adaptation. They then use reflection to inspect
and adapt this so that behaviour can be altered dynamically. They also look at managing the conflicting requests for
adaptation based on the amount of differing context information available [Capra et al, 01b].

6.3 Others

Alternatively, other projects have extended traditional platforms to make them effective over wireless networks. For
example, ALICE [Haahr et al, 00] presents a layered architecture for managing the movement of mobile hosts and
ensures that CORBA connections remain established transparently. Alternatively, DOLMEN [Liljeberg et al, 97]
offers a special Light-Weight Inter-ORB Protocol for object communication over a wireless link. RAPP [Seitz et al,
98] allows proxies to be inserted between distributed CORBA objects to manage poor levels of network service and
disconnection. Finally, [Reinstorf et al, 01] implements a session layer that allows CORBA invocations to be made
over the Wireless Application Protocol.

The memory footprint size of a middleware implementation is often large, especially that of traditional
types like CORBA, RMI and DCOM. This becomes a critical problem in the domain of mobile computing where
mobile and embedded devices have a small, fixed amount of ROM and RAM available. Therefore, middleware
platforms designed for mobile devices must ensure they minimise the amount of memory they utilise. OrbacusE and
e*ORB are examples of commercially available CORBA ORBs optimised for memory size and performance.
Nevertheless, these remain static over time and cannot alter their behaviour and performance when the available
resources change. Consequently, Zen [Klefstad et al, 02] is a real-time CORBA ORB that reduces the memory
footprint by allowing the selection of a minimal subset of ORB capabilities used by an application, this can then be
altered dynamically when the applications requirements change. However, due to middleware heterogeneity in the
mobile environment, utilising multiple minimum footprint platforms is unsuitable. An improved solution is the
Universal Interoperable Core [Roman, 01], which is an example of a platform whose configuration can be
dynamically altered over time to offer different functionality, while minimising the memory resources used.

 14

7. CONCLUDING REMARKS

We have identified that a middleware for mobile computing must provide support to applications for discovering and
interoperating with heterogeneous services in the mobile environment. The middleware must dynamically adapt its
behaviour to perform this primary function. We have proposed the use of reflection and components as the key
underlying technologies. The middleware itself should offer dynamic reconfiguration to provide the best level of
service to the application based upon context changes such as network QoS, but fundamentally it should reconfigure
to overcome the level of heterogeneity in mobile environments. A mobile middleware platform for supporting
general classes of mobile application must be able to discover services advertised by a range of service discovery
protocols and reconfigure between all possible middleware paradigms in order to interact with these newly found
services.

 This paper presents ReMMoC, a configurable and dynamically reconfigurable middleware platform that
supports interoperation in heterogeneous mobile environments. The use of component frameworks within this design
offers a technique to ensure that only valid component implementations are utilised in the platform’s operation. As
shown by the discussion of the frameworks, reflection can be used to make changes to the component framework to
allow a new “personality” to be plugged-in, or fine-grained component changes to be made depending on
environmental context changes. The functionality of this platform has been illustrated in a real world mobile
scenario. Finally, a middleware platform for mobile and embedded devices must minimise its memory size, so
memory resources are not exhausted and its components can be passed easily across networks; the component
configuration sizes of the ReMMoC implementation compare with other minimum middleware implementations, but
are larger due to extra reflective functionality.

ACKNOWLEDGEMENTS

The research described in this paper is funded by UK Bell Labs, Lucent Technologies together with the EPSRC. The
authors would also like to acknowledge the work carried out by Thirunavukkarasu Sivaharan on the design and
implementation of the component configuration for a publish-subscribe service.

8. REFERENCES

[Bacon et al, 00] Bacon, J., Moody, K., Bates, J., Hayton, R., Ma, C., McNeil, A., Seidel, O. and Spiteri,
M. "Generic Support for Distributed Applications". IEEE Computer, pp 68-76, March 2000.
[Blair et al, 01] Blair, G., Coulson, G., Andersen, A., Blair, L., Clarke, M., Costa, F., Duran-Limon, H.,
Fitzpatrick, T., Johnston, L., Moreira, R., Parlavantzas, N., and Saikoski, K. “The design and implementation of
Open ORB 2”. IEEE Distrib. Syst. Online, 2(6) , Sept 2001.
[Capra et al, 01a] Capra, L., Emmerich, W. and Mascolo, C. “Reflective Middleware Solutions for Context-
Aware Applications”. In Proc. of REFLECTION 2001- The Third International Conference on Meta-level
Architectures and Separation of Crosscutting Concerns, September 2001.
[Capra et al, 01b] Capra, L., Emmerich, W., and Mascolo, C. “A Micro-Economic Approach to Conflict
Resolution in Mobile Computing”. Proceedings of the 10th International Symposium on the Foundations of Software
Engineering (FSE-10), Charleston, South Carolina, USA. November, 2002.
[Carzaniga et al, 01] Carzaniga, A., Rosenblum, D. and Wolf, A. “Design and Evaluation of a Wide-Area
Event Notification Service”. ACM Transactions on Computer Systems, 19(3), pp 332-383, 2001.
[Clarke et al, 01] Clarke, M., Blair, G., Coulson, G and Parlavantzas, N. “An Efficient Component Model
for the Construction of Adaptive Middleware”. In Proceedings of Middleware 2001, Heidelberg, Germany.
November, 2001.
[Cugola, 01] Cugola, G., Di Nitto, E., and Fuggetta, A. “The JEDI event-based infrastructure and its
application to the development of the OPSS WFMS”. IEEE Transactions on Software Engineering, 9(27), pp827-850,
September 2001.
[Davies et al, 98] Davies, N., Friday, A., Wade, S. and Blair, G. S. "L2imbo: A Distributed Systems Platform
for Mobile Computing". ACM Mobile Networks and Applications (MONET) - Special Issue on Protocols and
Software Paradigms of Mobile Networks, 3(2), pp 143-156, August 1998.
[Haahr et al, 00] Haahr, M., Cunningham, R. and Cahill, V. “Towards a Generic Architecture for Mobile
Object-Oriented Applications”. SerP 2000: Workshop on Service Portability, San Francisco, December 2000.
[IBM, 98] IBM research. “Gryphon: An Information Flow Based Approach to Message Brokering”.
http://researchweb.watson.ibm.com/gryphon/home.html, 1998.

 15

[Joseph et al, 95] Joseph, A., deLespinasse, A., Tauber, J., Gifford, D. and Kaashoek, M. "Rover: A Toolkit
for Mobile Information Access". Proceedings of the 15th Symposium on Operating Systems Principles (SOSP '95),
Colorado, U.S., pp 156-171, December 1995.
[Kagal et al, 01] Kagal, L., Korolev, V., Chen, H., Joshi, A., and Finin, T. “Centaurus: A framework for
intelligent services in a mobile environment”. In Proceedings of the International Workshop on Smart Appliances
and Wearable Computing (IWSAWC), April 2001.
[Klefstad et al, 02] Klefstad, R., Rao, S., and Schmidt, D. “Design and Performance of a Dynamically
Configurable, Messaging Protocols Framework for Real-time CORBA”, In Proceedings of Distributed Object and
Component-based Software Systems part of the Software Technology Track at the 36th Annual Hawaii International
Conference on System Sciences, Big Island of Hawaii, January, 2003.
[Kristensen & Plagemann, 00] Kristensen, T. and Plagemann, T. ''Enabling Flexible QoS Support in the Object
Request Broker COOL'', Proceedings of International Workshop on Distributed Real-Time Systems (IWDRS
2000), April 2000.
[Kon et al, 00] Kon, F., Roman, M., Liu, P., Mao, J., Yamane, T., Magalhaes, L., and Campbell, R. "Monitoring,
Security, and Dynamic Configuration with the dynamicTAO Reflective ORB". In Proceedings of Middleware 2000,
ACM/IFIP, April 2000.
[Ledoux, 99] Ledoux, T. "OpenCorba: a Reflective Open Broker". In 2nd International Conference on Reflection
and Meta-level Architectures, St. Malo, France, July 1999.
[Liljeberg et al, 97] Liljeberg, M., Raatikainen, K., Evans, M., Furnell, S., Maumon, K., Veldkamp, E., Wind,
B., Trigila, S. “Using CORBA to Support Terminal Mobility”. In Proceedings of TINA '97, 1997.
[Meier et al, 02] Meier, R. and Cahill, V. "STEAM: Event-Based Middleware for Wireless Ad Hoc
Networks". In Proceedings of the International Workshop on Distributed Event-Based Systems (ICDCS/DEBS'02),
Vienna, Austria, 2002.
[Murphy et al, 01] Murphy, A., Picco, G. and Roman, G. “LIME: A Middleware for logical and Physical
Mobility”. In Proceedings of the 21st International Conference on Distributed Computing Systems (ICDCS-21), May
2001.
[Preuss, 02] Preuss, S. “JESA Service Discovery Protocol”. In Proceedings of Networking 2002, pp 1196-1201,
Pisa, Italy, May 2002.
[Reinstorf et al, 01] Reinstorf, T., Ruggaber, R., Seitz, J. and Zitterbart, M. “A WAP-Based Session Layer
Supporting Distributed Application in Nomadic Environments”. In Proceedings of Middleware 2001, Heidelberg,
Germany, November 2001.
[Roman, 01] Roman, M., Kon, F. and Campbell, R. H. “Reflective Middleware: From Your Desk to Your
Hand”. IEEE DS Online, Special Issue on Reflective Middleware, 2001.
[Segall, 98] Segall, B and Arnold, D. “Elvin has left the building: a publish/subscribe notification service with
quenching”. In Proceedings of AUUG97, September 1997.
[Seitz et al, 98] Seitz, J., Davies, N., Ebner, M. and Friday, A. "A CORBA-based Proxy Architecture for Mobile
Multimedia Applications". In Proceedings of the 2nd IFIP/IEEE International Conference on Management of
Multimedia Networks and Services (MMNS '98), Versailles, France. November,1998.
[Szyperski, 98] Szyperski, C. “Component Software: Beyond Object-Oriented Programming”. Addison Wesley,
1998.
[Waldo, 98] Waldo, J. “Javaspaces specification 1.0”. Sun Microsystems Technical report, March 1998.
[Wyckoff et al, 98] Wyckoff, P., McLaughry, S., Lehman, T. and Ford, D. “Tspaces”. IBM Systems Journal,
37(3), pp 454-474, 1998.

APPENDIX A. ReMMoC Component Framework Meta-Interfaces

ICFMetaInterface:

HRESULT get_exposed_interfaces([out] IID* intfseq[], [out] int* count);
HRESULT get_comp_interfaces([out] IID* intfseq[], [in] IUnknown *Comp,

[out] int* count);
HRESULT get_interactions_list([in] IUnknown *pIUnkSink,REFIID riid,

[out] FunctionInfo* list[]);
HRESULT call_operation([in] IID intf, [in] IUnknown* pIUnkSink, [in] const

char *name, [in] ParameterInfo argseq[], [in] int cparams,
[out] VARIANT* result);

 16

ICFMetaInterception:

HRESULT Add_Interceptor([in] IID iid, [in] const char *DLLName, [in] IUnknown

*pComp, [in] const char *methodName, [in] char* type);
HRESULT Delete_Interceptor([in] IID iid, [in] const char *methodName,

[in] IUnknown *pComp, [in] char* type
HRESULT ViewIntMethods([in] IID iid, [out] char *methodNames[], [in] IUnknown

*pComp, [in] unsigned char *type);

ICFMetaArchitecture:

HRESULT get_Components([out] IUnknown **ppComps[], [out] int *pcElems);
HRESULT get_Bound_Components([in] IUnknown* comp, [out] IUnknown** ppComps[],

[out] int *pcElems);
HRESULT get_Bindings([in] IUnknown * comp, [out] unsigned long **ppConnInfo,

[out] int *pcElems);
HRESULT Bind([in] IUnknown *pIUnkSource, [in] IUnknown *pIUnkSink, [in] REFIID

iid, [out] unsigned long *pConnID);
HRESULT unBind([in] unsigned long connID);
HRESULT Insert_Comp([in] CLSID clsid, [out] IUnknown **ppIUnknown, [in] const

char *name);
HRESULT Remove_Comp([in] IUnknown *pIUnknown, [out] int *pcElems);
HRESULT Expose_Interface([in] IID rintf);
HRESULT ReplaceCFConfiguration([in] IUnknown *pIUnkSource[], [int] int cCmps ,

[in] IID intfseq[], [in] int cIntfs);

