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“When looking for positive guidance from philosophy we must rest content 

with some vague generalisations about the need to be specific”. 

Alan Chalmers, 1989, p23. 

 

 

 

Abstract 

 

The predominant philosophy underlying most environmental modelling is a form of pragmatic realism.  

The limitations of this approach in practical applications are discussed, in particular, in relation to 

questions of scale, nonlinearity, and uniqueness of place.   A new approach arising out of the concept 

of equifinality of models (structures and parameter sets) in application is outlined in the form of an 

uncertain “landscape space” to model space mapping.  The possibility of hypothesis testing within this 

framework is proposed as a means of refining the mapping, with a focus on the differentiation of 

function within the model space.  The approach combines elements of instrumentalism, relativism, 

Bayesianism and pragmatism while allowing the realist stance that underlies much of the practice of 

environmental modelling as a fundamental aim.  It may be an interim philosophy that is awaiting 

developments in measurement technique to allow further refinement, but allows some coherent 

guidance about how to be specific in presenting predictions to end-users. 

 

1.  Why a new philosophy? 

 

It is quite possible to develop and use environmental models without any explicit underlying 

philosophy (although see, for example, Peters, 1991; Abbott, 1992; Rhoads and Thorn, 1996; Anderson 

and Bates, 2001, for discussions in different areas of environmental science).  Many practitioners do, of 

course, although most might have the aim of developing and using models that are as “realistic as 

possible”, given the constraints of current knowledge, computing capabilities, observational 

technologies and available time.  This type of implicit or pragmatic realism seems quite natural and 

appears to be intrinsic to modelling efforts as diverse as the coupled General Circulation Models 

(GCMs) being used to predict future climate change and modelling of the biogeochemical processes 
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involved in the transport of radionuclides or persistent organic pollutants in the environment.  The 

philosophical subtleties are not really necessary to the practising environmental modeller who only 

needs to know that achieving realism is still difficult in the practical prediction of complex 

environmental systems.  Current implementations of such models are known to have their limitations 

(even if the true level of uncertainty in model predictions is not widely appreciated) but it is implicitly 

accepted that they will continue to evolve towards more realistic representations of the earth-ocean-

atmosphere-biosphere system. 

 

It will be argued in this paper that while this pragmatic realism has served environmental science well, 

it does have major flaws and should be replaced.  Experience suggests that philosophical arguments 

alone will have little impact on the way in which modelling is actually done but there is, perhaps, at 

least the start of a recognition of the need for a more scientifically robust assessment of model 

capabilities and predictions.   The view adopted here that a new philosophical approach to 

environmental modelling is needed stems not from any deep notions of environmentalism, nor from 

any higher level holistic principles of nature, nor directly from philosophical arguments about the 

concept(s) of realism itself, but from experience of practical applications of modelling in various areas 

of environmental science.  In what follows, a coherent philosophical framework for environmental 

modelling is outlined that might satisfy this need while allowing for model structural error and the 

incorporation of improved knowledge over time.   

 

In section 2 the theory and practice of environmental modelling are briefly summarised, together with 

some comments on the impact of complexity and unknowability on the process of formulating and 

evaluating environmental models.   Section 3 addresses the problems posed by uniqueness of place in 

the application of environmental models.  This is an issue that is becoming increasingly important as 

the rapid increases in computer power allow environmental models of whole regions or countries (or, 

albeit still crudely, the globe) to become feasible. Section 4 places such applications into a framework 

of landscape space to model space mapping.  Section 5 shows how this can be used to constrain 

predictive uncertainty, including by a process of hypothesis formulation and testing.  Section 6 

considers the question of explanatory depth of approximate models in predicting the unexpected, and 
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Section 7 returns to the issue of realism in the face of the apparent relativism of landscape to model 

space mapping. 

 

2.  Theory and practice in environmental modelling 

 

Computer simulation has become a common methodology in the environmental sciences. It can be used 

as a framework for formulating and testing theories.  It can be used to make predictions for practical 

applications in response to demands from policy and decision makers.  Particularly interesting 

examples are the predictions of the impacts of global climate change (e.g. van Dam, 1999, Cameron et 

al., 2000) , predictions of groundwater systems (Konikow and Bredehoeft, 1992; Anderson and 

Woessner, 1992; Oreskes et al., 1994), the long term predictions required in geomorphology (Richards 

et al., 1995; Beven, 1996a), and predictions of the impacts of underground repositories for nuclear 

waste (Sellafield in the UK; Yucca Mountain in the US).  Very large research programmes have been 

funded with a view to improving the accuracy of such predictions.  There is an implicit belief 

underlying these efforts that this is possible, despite the nonlinear and open nature of the systems being 

studied and the approximations necessary to implement our qualitative understanding of these systems 

in a working computing program. 

 

The foundation of this belief is the pragmatic realism noted above.  I am a hydrologist.  As a 

hydrologist I intend that the computer simulation models I develop should represent real water; in 

modelling contaminant transport in flowing water I intend that the model variables should represent the 

real contaminant.  This is in spite of the fact that, as a hydrologist, I would recognise the varied 

nomological status of many of the concepts that are used in my models (Beven, 1989; 1996b; Shrader-

Frechette, 1989; Davis et al., 1992; Hofmann and Hofmann, 1992).  In the same way, the atmospheric 

modeller will intend that the variables in her computer model should represent the real atmosphere and 

the aquatic geochemist will intend that the (approximate) computer solutions to systems of 

stoichimetric equations should represent real aqueous solutions.  In time, new understanding and 

knowledge gained from experiments will be incorporated into improved simulations.  In this way the 

research programme of environmental science should be progressive  (in the sense of Lakatos, 1978).   
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This common working version of realism is, of course, rather naïve.  It is naïve not only from a 

philosophical point of view but also from a scientific point of view, since it requires that the systems 

under study be knowable.  Clearly, for many environmental systems the perceived complexities are 

such that all the boundary conditions, auxiliary conditions and system characteristics cannot be 

knowable given current measurement technologies.  Thus, in applying this pragmatic realism to any 

particular open environmental system, it is clear that we can recognise much more complexity than it is 

possible to represent in a mathematical model that, implemented as a computer simulation, will make 

quantitative predictions.  We need to differentiate between this qualitative understanding (the 

perceptual model) gained from our training, qualitative observations, quantitative experiment or 

monitoring, and the practical application of that understanding in a conceptual or formal model 

representation of the system as a set of equations (Beven, 2001a).  This is not to deny that the 

perceptual model is not conditioned by fundamental theoretical understanding (even if some of the 

complexity may be difficult to relate to existing theoretical constructs), but rather to recognise that this 

understanding may be very difficult to apply at the scales of interest.  The perceptual model may only 

be as realistic as current understanding allows.  The conceptual model will, however, be wrong and will 

be known to be wrong (Morton, 1993), but will still have the possibility of being approximately 

realistic. 

 

Some of these issues have been explored recently from a philosophical perspective by Cartwright 

(1999) who suggests that open systems might best be represented in terms of the capacities of real 

entities to respond in a particular way to external influences.  She argues that the representation of 

those capacities is only possible within a nomological system with its own defined constraints and 

limitations.  Thus, the problem of defining a conceptual model of the system is, within this framework, 

a matter of defining a nomological system that may not in itself be realist in terms of being totally 

consistent with the perceptual model but which can be used to produce quantitative predictions within 

the limits of its own definition.  This approach is used very widely in environmental modelling.  We 

should also note here that even having designed a consistent nomological representation of an 

environmental system then there may be further approximations necessary in implementing that system 

on a digital computer, such as in the approximate discrete numerical solution of the continuum partial 

differential equations that are the basis of many environmental models. 
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In these cases the need for approximating the perceptual model into a set of mathematical concepts at a 

certain scale of calculation element is obvious.  A good example is the parameterisation of sub-grid 

scale processes in GCMs that are as much a result of computational constraints as lack of 

understanding of smaller scale processes.  In other cases the process is not so self-evident, such as 

when equilibrium geochemical codes for solutions are applied to mixtures of waters from different 

sources at field scales (while interacting with a variety of mineral surfaces, organic surfaces and 

suspended colloids).  Even though the principles of the perceptual model may be reasonably well 

understood, the implementation of those principles in practice may be difficult both for reasons of 

finding realistic approximations of complex open systems (within the limitations of computational 

constraints) and also because of lack of knowledge of the local characteristics of the system and its 

boundary conditions (Beven, 2000, 2001b).   

 

This may be in part because we still have some surprises to learn about the nature of the processes but 

it would seem that even if we had a perfect formal description at some practically useful scale, the 

dominant problem is that the characteristics of the system, that have an important control on how the 

system works, may be essentially unknowable in detail.  Keeping to the sphere of water, there is an 

analogy here with the study of turbulence.  Homogeneous turbulence has received much study and 

simplified representations of the energy dissipation down to viscosity dominated scales are used widely 

in computational fluid dynamics (CFD).  It is true that there are still debates about the best closure 

schemes to use at modelling scales larger than those that are computationally addressable with direct 

numerical simulation, but for systems that are largely self organising, CFD models often appear to 

produce acceptable (publishable) results. 

 

However, there are many fluid dynamic systems in both laminar and turbulent flow regimes in which 

the interactions with the boundaries dominate the energy dissipation.  This is true for shallow turbulent 

water flows in streams and rivers (where the aquatic and bankside vegetation may also play an 

important role in energy dissipation depending on the discharge in the channel); it is true for (mostly) 

laminar porous media flows in soils and groundwaters.  Again, it is not so much that the principles of 

the interactions are not understood in the perceptual model (though, again, we may still have much to 
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learn) but that it is necessary to characterise the energy dissipation at every point in the flow domain or, 

more correctly, at the scale of the elements of the approximate representation of that flow domain in 

the procedural implementation of the conceptual model to produce quantitative predictions. 

 

Scale here is a very significant issue.  Its effect is seen in extreme form in the case of GCMs.  

Computational constraints mean that global scale coupled ocean-atmosphere models can still only be 

run with grid elements that are large relative to the scale of many of the processes being represented, 

particularly in the sub-grid convection schemes and “land surface parameterisations” used.   Typical 

spatial grid scales, for example in the Hadley Centre CM3 model runs are 2.5 * 3.75 degrees for the 

atmosphere and land surface and  1.25 * 1.52 degrees for the oceans (see Gordon et al., 2000).   The 

same constraints only allow a limited number of layers in the vertical (19 layers for the atmosphere, 20 

layers for the oceans).   Thus, smaller scale processes (such as smaller scale turbulence in the 

atmosphere and oceans) must be represented by sub-grid scale parameterisations.  For the land surface 

this has typically meant the implementation of a one-dimensional (in the vertical) model of mass, 

energy and carbon fluxes in the soil/vegetation/lower atmosphere system (e.g. the SiB2 model of 

Sellers et al., 1996; or the UK Meteorological Office Unified Model MOSES land surface 

parameterisation, Cox et al., 1999).   A single such model is used to represent each grid square in the 

GCM (or more recently a small number of such models are used to represent different surface covers in 

each grid square as “tiles”).   

 

Since there is no other source of spatial variability within the land surface parameterisation in each grid 

square it is clear that the parameter values required in the model must be “effective” values that will 

ensure that the fluxes from the highly heterogeneous (and time variable) domain that is the real surface 

will be properly reflected in the model.  To reflect the differences between varied types of vegetation 

(and soil, topography, etc) , different effective parameter values should, in principle, be specified for 

each grid square (or tile).  A change in grid scale might also require different effective parameter 

values because the processes controlling the fluxes between land and atmosphere are nonlinear (which 

actually implies that different equations might also be required at different scales as well as different 

effective parameter values, though this is often ignored).  Ways of aggregating local information to 

suggest grid scale effective parameter values might also be different in different environments.  In 
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some, the surface may be generally wet and the surface cover does not exert the dominant control; in 

some the topographic controls on the availability of water may be dominant; in others the surface may 

be predominantly dry but there may be irrigated fields that are an important control on the fluxes (an 

excellent example may be found in Bastiaanssen et al., 1994).  Such variability is generally ignored in 

current GCMs: effective parameters are often taken to be equal to local scale parameters for the 

“dominant” cover and soil types.  This is clearly one choice of a land surface parameterisation.  It is 

process-based in the sense that the processes thought to be important at the local scale are represented 

in the model; it is very often a nonsense in that the model structures and parameters used take no 

account of the (nonlinear) sub-grid scale variability that controls the grid scale fluxes.    

 

This is, of course, only one of the sub-grid scale components required by GCMs.  Others are required 

for sub-grid scale convection; cloud and rain formation; ocean aerosol production; etc (although at least 

with the latest generation of coupled ocean-atmosphere models there is no longer a need for annual flux 

corrections, see Gordon et al., 2000).   Others still, such as the effect of topography on the availability 

of water to plants in valley bottoms during dry periods, or the effect of local sub-grid scale wetting by 

convective rainstorms on grid scale latent heat fluxes, are not taken into account at all in the current 

models.  All will require effective parameters, and boundary conditions, at the grid scale.   The more 

processes that are included then, in general, the more parameter values that will be required before 

predictions can be made.  Similar arguments will apply to all other distributed environmental models 

that depend on such sub-grid scale parameterisations.  This will be the case even down to quite small 

grid scales when current measurement techniques are limited to "point" scale measurements (Beven, 

2001b). 

 

It could be argued from a pragmatic realistic perspective that the problems outlined in this section are 

not sufficient, in themselves, to require a new philosophy of environmental modelling but merely 

reflect the technological constraints of today (computing limitations, measurement limitations, 

theoretical limitations etc.).  The expectation is that new technological developments in computing and 

measurement will reduce the significance of today’s problems.  There is always the hope of unforeseen 

technological innovation, but this argument does not survive a examination of the effects of trying to 

apply models to specific locations with their own unique characteristics. 
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3.  Uniqueness of place in environmental modelling 

 

In any application of a model, it is necessary to specify the boundary conditions and auxiliary 

conditions before we can implement a quantitative simulation and make predictions for a particular 

location with its own unique characteristics.  The problem arises even in the most trivial ways.  In 

hydrology, for example, the conservation of mass is a basic principle that is accepted by all models.  

No hydrologist or hydrological modeller would seriously question that principle.  However, to 

demonstrate that principle for a particular catchment area of any useful size is currently beyond our 

measurement capabilities.  Similarly no hydrologist or hydrological modeller would seriously question 

the conservation of energy or Newton’s second law of motion as principles controlling the movement 

of water within the landscape, but the application of those principles is even more fraught with 

difficulty since energy is dissipated in the system in a way that is controlled by the auxiliary and 

boundary conditions in (nonlinear and nonstationary) ways that are very difficult to either measure or 

predict in detail.  Formulating the balance equations is itself a significant task (e.g. Reggiani et al., 

1998, 1999, 2000); defining the coefficients that control the fluxes in those equations to reflect the 

particular characteristics of particular places with any precision is effectively still beyond us (Beven, 

2000, 2001b). 

 

Two problems follow from the problems of representing the detailed effects of boundary and auxiliary 

conditions and their reflection in effective parameter values in a simulation model.  The first is that 

there may be no way of uniquely defining model structures or parameter sets for a particular 

application, even when significant quantities of data are available for model “calibration”.  This is seen 

empirically as many different models giving simulation results that are consistent with the available 

data (e.g. Spear et al., 1995; Beven et al., 2000).   Secondly, it must be appreciated that it is the 

parameter set that gives a good simulation. 

 

Many environmental modellers treat the first problem as a problem of identifiability.  This is 

essentially consistent with the same pragmatic realist view that the model is “realistic” in its equations 

(as far as is possible), but we may not have adequate data to properly determine the values of the 

parameters needed.  This underlies all statistical inference about parameter values, as embodied for 
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example in the formulation of likelihood functions (though see Kennedy and O’Hagan, 2001, for a 

recent attempt to include simple model inadequacy effects within a Bayesian statistical framework).   

Statistical estimation, usually by maximising the likelihood function, depends on the possibility of 

defining an appropriate model of the simulation errors.  In many cases this is very difficult, particularly 

in systems with natural (random) boundary forcings, uncertain initial conditions, nonlinear responses 

and strange attractors, and time variable model structural error.  Thus it is common to simply maximise 

some convenient objective function to calibrate parameters and then proceed to use these “optimised” 

values in simulation.  In doing so, it is sometimes overlooked that the calibrated values might be 

dependent on both the chosen objective function and the type and period of calibration data, as well as 

the model structure itself.   

 

There may be many parameter values to calibrate.  Indeed the calibration problem is often 

underdetermined with respect to the data available and the type of forcings in the calibration data, 

leading to problems of non-identifiability (a poorly defined optimum) and/or non-uniqueness (multiple 

local optima).  These problems are endemic to environmental models.  Experience suggests that they 

do not go away with increased physical realism of the model structure, nor with longer calibration data 

sets or multiple objective functions using different types of data.  Longer calibration periods and 

multiple objectives can help, but increased physical realism can actually make the problem worse if 

more complex process representations are added with more parameters that cannot be estimated 

independently.  The perfect model, if it could be defined, would be likely to have a very large (semi-

infinite) number of parameters, and so would not be immune to such problems in applications to unique 

places with limited observations. 

 

One interesting issue here is revealed by studies involving replicate measurements at different, similar,  

sites.   This, in many areas of environmental science, is deemed to be good practice (see, for example, 

the exhortations in Peters, 1991), although it is not always economically or technically feasible to do 

so.  However, for these open heterogeneous systems, even in the best designed replicate experiments, 

the measured responses must inevitably reflect uniqueness of inputs, characteristics and measurement 

artefacts.  In some cases it has been shown that the differences between replicates may be large and 



 10 

inconsistent over time periods (such as shown by the measurements of runoff and erosion from large 

numbers of replicate plots in Hjelmfelt and Burwell, 1984 and Nearing et al., 1999).   

 

This implies that each replicate might require its own set(s) of local model parameters (see for example 

Lamb et al., 1998).  The aim of the model, however, is not usually to predict the replicate responses 

except for evaluation purposes.  The aim of the model is rather to predict the response of all the 

unmeasured locations in the landscape, with their own unique characteristics.  In this context we should 

not therefore expect a model to be more precise in its predictions than the expected or observed 

variability between replicates at the same scale, while the deterministic prediction will, with almost 

perfect certainty, be wrong in any particular location. 

 

This then has an important bearing on the second problem of finding a parameter set to represent a 

location, since it is quite common in applications of environmental models to take parameter values 

that have been determined elsewhere under very specific conditions as the basis for estimating the 

values at a new site or time period.  Such values are often reported in the literature without a clear 

indication of how they were calibrated or back-calculated from data, what other parameters were also 

involved in the calibration, and what range of conditions were covered by the calibration data.  If 

identifiability is a problem, then there is no guarantee that bringing together parameter values from 

different sources to create a set of parameters for a simulation will lead to acceptable simulations 

(where acceptability might be defined with respect to potential variability amongst replicates), even if 

those values of parameters have been shown to produce good results elsewhere.  The impact of the 

unique characteristics of that location on the effective parameters required by a model may be such as 

to require different sets of values. 

 

Indeed, Beven (1993, 2000) has suggested that a better approach to the identifiability problem is to 

recognise explicitly that there may be multiple model representations that provide acceptable 

simulations for any environmental systems.  This is the concept of equifinality (to distinguish it from 

non-identifiability or non-uniqueness).  The identification problem is then a matter of differentiating 

between behavioural models expected to give acceptable simulations and non-behavioural models that 

can be rejected.  It is a combination of model structure, the boundary conditions and the set of 



 11 

parameter values that gives rise to a behavioural simulation, although the decision about whether a 

model is acceptable must be dependent on the choice of a criterion or criteria of acceptablity in the 

same way that optimised parameter values depend on the choice of objective function and calibration 

data.  Some data about a site will therefore be necessary to determine whether a model is behavioural 

or not.  This approach has been formalised in the Generalised Likelihood Uncertainty Estimation 

(GLUE) methodology of Beven and Binley (1992; see also Beven et al., 2000; Beven and Freer, 2001).  

An approach based on the equifinality concept is intrinsically linked with predictive uncertainty since 

there is now no longer just one prediction but rather there are multiple predictions from all the 

behavioural models.  

 

GLUE may be considered directly in the line of a Bayesian approach to science (Howson and Urbach, 

1993).  Indeed in its simplest form it represents a form of Bayesian averaging over all behavioural 

models and includes formal Bayesian approaches to mechanistic modelling as special cases (e.g. 

Krzysztofovitz, 1999).   In prediction, all the behavioural simulations may be used to make predictions 

and the predictions of each model can be weighted in accordance with how well that model has done in 

predicting past data.  These likelihood weights can be updated as new evaluation data become available 

to form a new posterior distribution of behavioural parameter sets.   Thus, in this approach, behavioural 

simulations are only retained as long as they are consistent with the data available for evaluation.  Any 

local or global interactions between parameter values in producing an acceptable simulation should be 

implicitly reflected in the set of behavioural models retained in this way.  The focus in the approach is 

firmly on the data that will allow the conditioning process by which all feasible models are reduced to 

the set of behavioural models.   The GLUE methodology has now been applied to a wide variety of 

environmental models (see Beven et al., 2000 for a recent summary). 

 

Bayesian approaches have previously been interpreted in terms of anti-realist and instrumentalist 

philosophies. The consequences of model equifinality clearly do create problems for a realist stance.  It 

is also clear, however, that the recognition of equifinality will not result in environmental modellers 

giving up their pragmatic realism.  The fact that we cannot decide which is the model of the system 

with all the idiosyncracies that are reality can be considered as only a reflection of decidability.  New 

data sources should help make parameter values more identifiable (or constrain the set of behavioural 
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models).  One source of new data that has the potential to be particularly important in dealing with the 

problem of uniqueness of place is remote sensing data.  Remote sensing does, after all, yield time 

sequences of spatial images of unique places (albeit with either limited spatial resolution or limited 

time resolution).  Space, time and spectral resolutions will improve with the new generation of EOS 

satellites being launched.  Yet it does not appear that remote sensing has yet had much impact on the 

uniqueness problem.  It is interesting to consider why. 

 

One reason is that remote sensing rarely gives results of interest to the environmental modeller directly.  

The digital numbers of the images require interpretation.  In general, this will require a separate model 

with its own parameters (and indeed, before the modeller even sees the digital numbers they will 

generally have been subjected to a corrective model with its own parameter values).  These models are 

generally used as if the parameters were known a priori but such models will also not be exempt from 

time and space variability of parameter values and, indeed, the problem of equifinality.  An example is 

given by the identification of different bidirectional reflectance function (BDRF) coefficients by Lewis 

et al. (1999) on the basis of high resolution multilook multispectral sensor images.  The results showed 

that the optimal model structure, as well as the optimal model parameter values, could change from 

pixel to pixel in the images.  This gives a simple indication of the potential for equifinality in this type 

of interpretative process with consequent uncertainty.  Such uncertainties are frequently ignored on the 

basis that the values of parameters that have given acceptable results elsewhere must have some 

physical significance.  This account takes no account of either the uniqueness of place or the 

importance of parameter sets in inducing behavioural simulations. 

 

It is true, however, that significant information on spatial patterns can be seen in remote sensing images 

and direct measurement of spatial patterns of (point scale) observables (e.g. Grayson and Blöschl, 

2000).  Such spatial information should prove useful in many types of applications but, again,  may 

then require local parameter values within a model structure to represent those local observations 

creating further problems for model identifiability.  It is in a more explicit consideration of the 

inevitable uncertainties that arise from such considerations of uniqueness of place that the foundations 

of a new philosophy might lie. 
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4.  Environmental Modelling As Landscape Space to Model Space Mapping 

 

The nature of environmental systems is such that they are not easily closed for direct scientific 

experimentation.  Where direct experimentation is possible it is normally only at small scales and it has 

often proven difficult to take relationships and theories developed at these scales and apply them in the 

field where so much of the characteristic nature of the real system remains unknowable.  Thus, resort is 

normally made to experimentation in the form of monitoring (perhaps in response to experimental 

forcings) of the system in all its complexity and as open to external influences.  Yet, to develop and 

apply environmental models some form of closure must be enforced.  Thus, on the one hand we have 

the real “landscape space”, and on the other a closed “model space” that is constructed so as to have 

(hopefully) an adequate range of functional responses.  The landscape space cannot be known perfectly 

since even our perceptual model may be, as yet, inadequate and subject to change over time.  The 

model space, however, can be known perfectly for deterministic models with specified boundary 

conditions and its response to different types of forcing can be explored perfectly (within the 

limitations of computer resources).  This can be extended to models with stochastic inputs and outputs, 

at least in principle, but at the expense of more computer resources.   It is, again, analogous to the 

nomological system of Cartwright (1999) in that it is a formal definition of the capacities of the 

processes described in the model and within which the model constructs have validity (here, by 

definition).  It must be recognised that the model space may not cover all eventualities that might arise 

in reality, but that if information becomes available about such eventualities then it might lead to a 

revision of the feasible model space.   

 

Thus the modelling problem can be formulated in terms of a mapping of the “landscape”, the prototype 

system or part of nature of interest, into a high dimensional model space, where the dimensions might 

include various parameters, various boundary conditions and, in the general case, various competing 

model structures.  This mapping will be necessarily uncertain (or fuzzy).  Initially it can be done on the 

basis of prior estimates of the appropriate model structure(s), boundary conditions and parameter 

values.  The choice, for example of a single model structure, single set of boundary conditions and 

single set of parameter values for a “landscape unit” (such as a GCM grid scale land surface 

parameterisation) is then equivalent to mapping that landscape unit to a single point in the model space.  
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If the model is run deterministically then there is only one possible set of outcomes.  This is a very 

common modelling practice but the possibilities for uncertainty in such a restricted mapping have been 

revealed, for example, in the Project for the Intercomparison of Land surface Parameterisations 

(PILPS) for GCMs, which reveals considerable variation between groups of modellers and models in 

trying to represent the same landscape units (see for example, Lohmann et al., 1998).  The implication 

is that the particular choices made, for example, in running  GCM simulations might be, to some 

extent, unrealistic. 

 

It really does seem that this mapping is generally being carried out in an overly deterministic way in 

many such modelling studies.  This is understandable with the current generation of GCMs because 

computing constraints mean that there is no possibility of allowing for uncertainty in the mapping for 

every process and every location (even though this carries the risk of the simulations being in error).  

However, for many less computationally demanding models it would be possible to allow for an 

uncertain mapping.  Defining the likelihood function in a model parameter space in statistical 

modelling is one such mapping, within which the covariation of the parameters in fitting the data can 

be estimated.  The GLUE methodology can also be interpreted in this way.  It is normally applied using 

Monte Carlo simulation to sample the model space and some likelihood measure is calculated for each 

modelled sample by a comparison of observed and predicted responses.  The values of the likelihood 

measure for each behavioural model representation of a landscape unit can then be used as weights in 

the mapping process (Beven 2000, 2001b).  Those models that have done well in simulating that 

landscape unit (in so far as it is possible to test performance given the available observations) will have 

the greatest weight.   The set of weights represents the mapping of the landscape unit into the model 

space.  Other, density dependent, sampling methods such as Latin Hypercube methods or Monte Carlo 

Markov Chain methods can be used when there is strong prior evidence for the form of the mapping, 

though such strong prior assumptions are often difficult to justify in applications to unique places. 

 

An uncertain mapping will mean that a given (real) landscape unit might be represented by a cloud of 

sampled points in the model space rather than a single point.  It might even be represented by several 

non-contiguous clouds of points in the model space where local interactions between parameter values 

(and possibly model structures) give rise to locally behavioural models (e.g. Spear et al., 1994).  Some 
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features of the modelling process, such as the fact that quite different model structures might be equally 

consistent with the observations and that parameters with the same name might require different values 

in different model structures, are easily handled within this framework.   

 

This mapping also has the features of a Bayesian methodology (Howson and Urbach, 1993).  It can be 

formulated purely on the basis of prior information.  If some observations on the prototype become 

available they can be used to update the mapping and form a posterior distribution of the behavioural 

parameter sets (and possibly model structures).  Depending on the performance of the models in 

reproducing the functionality of the prototype, the posterior mapping may have less uncertainty than 

the prior or sometimes more.  In some circumstances where the data show that the model does not have 

the correct functionality, then the posterior set may be null.  However, in such cases the modeller 

should have learned from such a process of rejection, as in any hypothesis testing methodology. 

  

 

5.  Hypothesis testing and model validation in the face of equifinality 

 

The idea of a landscape space to model space mapping outlined in the previous section requires an 

ability to define those areas of the model space where behavioural models occur.  It also seems to be 

based on a relativist philosophy since there is an implication that any ranking of the models in terms of 

some likelihood measure (or true likelihood where this can be properly formulated) means that some 

models are rejected and, of the remainder, some are more likely than others and can therefore be given 

more weight in prediction.  The behavioural models could also be viewed as multiple working 

hypotheses, some of which we have (slightly) more confidence in than others on the basis of the 

empirical evidence.    

 

However, within this framework there is scope for refining the mapping with a view to imposing 

additional constraints on the predictive uncertainty that is the consequence of an uncertain mapping.  

There are two ways in which this might be done.  The first is in a purely Bayesian updating sense, 

waiting for additional observations or different types of observation to become available and then 

evaluating all the behavioural models in the model space to see if they remain consistent with the new 
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information (see for example the effect of adding a new type of information in Franks et al., 1998, in 

constraining the feasible parameter sets in a hydrological modelling example). 

 

The second might be more active.  Since the model space can actually be explored in terms of the 

responses of all the behavioural models, these can be evaluated deductively in terms of function (e.g. 

the predicted values of a particular output variable).  It might then be possible to formulate hypotheses 

that differentiate behavioural models in terms of how they function, quite independently of any 

experimentation on the prototype.  If testable hypotheses can be formulated, and the required 

observations are made, then it will be possible to reject or falsify a subset of the behavioural models 

and thereby refine the predictive uncertainty.   Of course, not all the potentially differentiating 

hypotheses will be testable with current measurement technologies.  

 

Models that survive such a test (i.e. continue to be considered behavioural) can be considered to have 

an increased level of confirmation as a result of this demonstration of empirical adequacy (van 

Fraassen, 1980).  This is not the same as verification, as is evident from the fact that in most 

applications of environmental models there will continue to be a set of behavioural models (or none if 

we look too closely).   The problem of verification in respect of environmental models has been 

discussed in detail by Oreskes et al. (1994) in a contribution from professional philosophers as a 

response to the evaluation of the predictions of groundwater models by practising environmental 

scientists (Konikow and Bredehoeft, 1992; Anderson and Woessner, 1992).  Oreskes et al. suggest that 

verification and validation of models of open natural systems is impossible, despite the widespread use 

of those words in the modelling literature.  Models of such systems may be non-unique and only a 

conditional confirmation is possible.   It is conditional because it may depend on errors in the model 

structure(s), the calibration of parameters or other auxiliary conditions and may also depend on the 

period of data used in evaluation.  The approach proposed here is fully consistent with this 

conditionality while retaining the possibility of a realist perspective. 
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6. Explanatory depth and expecting the unexpected. 

 

The unknowability inherent in uniqueness of place is a constraint on the explanatory depth of models 

as used in prediction about real places.  These models may aim to simulate the correct capacities of the 

underlying, more fundamental, processes but there will be a limit on how far those capacities can be 

reproduced when they must be represented in terms of effective parameter values at the scale of the 

model, even if the fundamental principles embodied in the model equations were correct.  Again, the 

conceptual or formal model will be wrong and will be known to be wrong.   

 

This then poses two interesting questions.  The first is how approximate can a model be, and still retain 

an element of realism in explaining and predicting the quantities and fluxes of interest?  The user of the 

model predictions (and the modeller as instrumentalist) is not necessarily so interested in the 

explanatory depth of the model as in its explanatory power for the phenomena being predicted; that is 

the power to predict states and fluxes of real quantities, especially under different scenarios for the 

future.  The view is often expressed that a realist philosophy implies a reductionist progression to ever 

more fundamental levels of epistemological and ontological levels of explanation.  This implies that 

realism then requires explanatory depth, even if the stopping rules may be problem dependent.  It is not 

clear that this is actually a simple progression in the case of environmental prediction since it is 

necessarily linked to the problems of formal model complexity and knowability of characteristics at 

different scales.   Explanatory depth, however complex, does not necessarily imply explanatory power 

if there is a conflict between the formal model and the processes or characteristics of a particular 

application.  In such a case, approximate models for which the parameters may be more easily 

identified may be advantageous. 

 

The second question is how far can models that are necessarily approximate be expected to predict the 

unexpected, i.e. modes of response of the system that have not yet been observed?  A fully realistic 

model should do this correctly.  An argument is therefore often used in model development that 

additional processes and complexity perceived as having an effect in the real system should be 

represented in the model, even if only as phenomenological relationships of no great explanatory depth, 

because those processes might be important in predicting future responses.   Such an argument has led 
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to the great vertical complexity of land surface parameterisations used in GCMs, noted in Section 2 

above, at the expense of neglecting sub-grid scale spatial heterogeneity.  The explanatory depth of the 

vertically complex description may be greater for predictions at a point but the explanatory power at 

the scale of the GCM grid (the scale at which predictions are required) has been significantly 

compromised.   

 

Similar issues arise in a variety of other fields.  There is a description of mixing in river channels based 

on turbulent shear in the vertical velocity profile that leads to a one-dimensional advection-dispersion 

equation (ADE).  The approach has been shown to give accurate predictions in laboratory flume 

experiments and has been applied very widely in natural channels (Rutherford, 1994).   In many natural 

channels, however, the ADE will give incorrect predictions.  While it has depth of interpretation in 

terms of fundamental mixing processes, it completely neglects the transverse mixing and internal shear 

zones that are important in controlling mixing in natural channels of irregular three-dimensional 

geometries and boundary conditions (Young and Wallis, 1994). 

 

The ADE has also been applied to the problem of predicting transport of solutes in porous media.  

Again it has been shown to give good predictions of solute breakthrough curves in laboratory columns 

of homogeneous media.  Adding terms to the ADE allows processes such as adsorption/desorption to 

be included so that a wider range of solute behaviours can be predicted.  It has been used very widely 

to predict transport of contaminants in real soil and groundwater systems, after some calibration of the 

parameters involved.   A interesting example of its application has been in the prediction of the 

movement of highly sorptive contaminants (pesticides, herbicides, phosphorus) applied at the surface 

of the soil.  The predictions are that such contaminants will be retained in the near surface soil.  

Sampled vertical concentration profiles at study sites confirm this impression, with a rapid decline in 

measured concentrations down from the soil surface.  However, gradually other types of measurements 

revealed that this was not the whole story.  Unexpectedly, pesticides, herbicides, phosphorus and other 

contaminants were being found widely in field drainage waters, stream waters and at depth in 

groundwaters.  The ADE, for which the advective term is based on a mean velocity, neglects the 

possibility of flow in preferential flow pathways in the natural soil structure that allow at least small 

amounts of contaminant, possibly sorbed to colloidal material, to move rapidly to depth during 
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rainfalls.  Without expensive high frequency sampling in the field during storm periods this process 

was not evident from the measurements. 

 

All these examples show that when taking formal models into the environment and applying them to 

unique places, depth of interpretation should not be confused with explanatory depth of the real 

phenomena, nor with explanatory power in prediction.  All that can be demanded is consistency of 

explanation at the scale of application, including consistency with perceptual understanding and 

observations at larger and smaller scales.   The importance of preferential flow in contaminant transport 

should not have been a surprise, for example.  It had already been recognised in experimental work by 

Lawes et al. (1882) at Rothamsted and the translocation of clay particles in large pores had been 

recorded from soil thin section work for over 100 years (see the review of preferential flow in Beven 

and Germann, 1982).   The unexpected may not always be so unexpected when we are forced to review 

a model because of a failure in prediction. 

 

In the context of the landscape to model space mapping approach proposed here, “unexpected” 

predictions in the model space can be evaluated, in so far as they are inherent in the model structure(s) 

considered.  This suggests that it might be dangerous to exclude models that are consistent with 

observational data but lead to “unexpected” conclusions in prediction. (Is it still possible, for example, 

that increasing greenhouse gas concentrations might accelerate the onset of a new ice age? Certain 

model parameterisations in the past predicted this.  They do not now form part of the consensus view of 

climate change (IPCC, 2001) but is it that they have they now been invalidated, rejected as non-

behavioural for good reasons, or merely quietly forgotten?).   Indeed, such unexpected predictions 

might prove to be a useful basis for the type of hypothesis testing described above, since they can 

suggest ideas for experimentation where that is possible.  Where it is not possible then it may be just a 

question of monitoring and waiting for the unexpected.  All the time that the range of behavioural 

models remains behavioural then the predictions will appear to be acceptable.  If some models can be 

rejected on the basis of new, perhaps unexpected, data then perhaps the set of behavioural models can 

be refined.  When the truly unexpected occurs and all the behavioural models must be rejected, then the 

science will truly progress (even if only by considering more realistic auxiliary conditions, as noted by 

Morton, 1993). 
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The unexpected may be the effects of human interference, either inadvertent or as a result of policy and 

management.  Anthropogenic effects may change either the characteristics of the system or its 

boundary conditions at the scale of closure.  Often these impacts are not well quantified even in 

hindcasting and history matching (the construction of records of inputs of greenhouse gases into the 

atmosphere since pre-industrial times is a good example of such uncertainties).  Thus, it may only be 

possible to treat such impacts as potential scenarios, giving potential outcomes but without any 

objective estimation of the associated uncertainty.  Most predictions of the impacts of climate change 

are of this type and can be handled within the framework suggested here which can allow explicit 

subjective evaluations of possible outcomes if necessary.     

 

However, it has often been argued in predictive studies of the impacts of change that, even if our 

models are not strictly realistic in modelling current conditions, they can still be used to predict the 

relative magnitude of change for different scenarios (for an example in the context of global 

environmental change see IPCC, 2001).  This would appear to be an extremely tenuous argument in the 

context of nonlinear systems.  It assumes, rather blithely, that although model structural error may 

mean that not all the nonlinear interactions in the modelled system are represented accurately under 

current conditions, the potential for nonlinear change in those interactions under changed conditions 

will be represented accurately.  In the words of the IPCC (2001, Box 3, p.49): 

 “The differencing technique removes most of the effects of any artificial adjustments in the model 

as well as systematic errors that are common to both runs.”  

 

They do, however, go on to recognise the problem of model structural error immediately: 

 

“However, a comparison of different model results makes it apparent that the nature of some errors 

still influences the outcome.”  

 

Thus, in the context of the philosophy espoused here there is uncertainty with respect to model 

structure that should lead to uncertainty in the predicted change under different scenarios.  It is, in fact, 

quite possible that the distribution functions for predicted variables under different scenarios may be 

overlapping.  This was shown by Cameron et al. (2000) for the case of changing flood frequencies 

under different future climate scenarios.  They could, however, still interpret their results in terms of a 

change in the risk of a given flood magnitude being exceeded.  

 



 21 

In the Cameron et al. study only the inputs to the model were being changed, not the model parameter 

sets.  Consideration of change, for example, in land management and land surface responses to change 

in climate, might also require the estimation of changes in parameter values.  This is now much more 

problematic since the point has already been made that the value of a parameter is strictly only 

significant in the context of the model structure and parameter set within which it was found to provide 

behavioural simulations.  Changing m different parameter values of a model within a set that is 

behavioural under past conditions to reflect a new set of conditions might not be so simple.  What is 

needed is a m-dimensional transposition of that behavioural model in the model space to a new position 

(or multiple potential positions) that will properly reflect the new set of conditions, including the 

potential for different types of parameter interaction in the model structure. 

 

7.  Realism, relativism and the limits of predictability 

 

The arguments presented above may be summarised in terms of the following principles:  

1. that a formal environmental model can only ever be an approximation to the perceptual model of 

the complex processes governing the response to some forcing; 

2. that places are unique in their characteristics and boundary conditions and their uniqueness is 

inevitably to some extent  unknowable; 

3. that there will then always be the possibility of equifinality in model representations of a system,  

in that many different structures or parameter sets may give simulations that are acceptable 

representations of the observations available; 

4. that the range of behavioural models is best represented in terms of an uncertain “landscape space” 

to model space mapping; 

5. that the range of predictive uncertainty associated with the set of behavioural models should 

therefore be explored; and 

6. that observations will be crucial in constraining the set of behavioural models and gradually 

refining understanding of the response of particular places. 

 

It has been suggested that these principles provide the basis for a coherent philosophy for 

environmental modelling that allows for both the difficulties of decidability between different 
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competing model descriptions and the possibility of a scientific hypothesis testing approach to refining 

the set of feasible models.  They imply that a realist approach to environmental modelling is 

problematic, although they do not preclude it.   

 

They also imply some important practical problems for the application of environmental models.  They 

imply an evaluation of all feasible models, making use of all valuable information available about the 

prototype, including prior experience.  They imply predictions carried out using multiple behavioural 

models.  They imply explorations of the model space with a view to finding potentially testable 

hypotheses.  They imply lots of computer resources (although taking large numbers of samples from 

the model space is feasible now for at least some models, see the applications in Beven et al., 2000).  

They imply that it may not always be possible to differentiate between competing models or, 

alternatively, that if we look in sufficient detail it might be possible to reject all the necessarily 

approximate models in the model space (see the example in Zak and Beven, 1999, in the context of 

modelling critical loads for acid deposition).  It has already been noted that even if we knew a priori 

the structure of the perfect model, it would not be immune to these problems because of difficulties in 

specifying parameter values and boundary conditions in any application.  

 

What then are the implications for modelling practice?  Clearly, many pragmatic realists and 

instrumentalists continue to use a “fit for purpose” argument and retain only one “optimal” model as 

being the “most realistic” available for the conditions under study.   It is relatively rare at present that 

applications take any account of modelling uncertainties.  They tend to be based rather on obtaining a 

“best estimate”, perhaps with a certain amount of sensitivity analysis.  Where uncertainties are taken 

into account (such as in the estimation of risk in the regulation of the nuclear industry) then the number 

of degrees of freedom involved means that usually only a priori estimates of uncertainty are included 

and that the possibility of covariation and interaction amongst parameters and other factors is 

necessarily treated only very approximately, if at all.  Where it is possible to make statistical inferences 

about model parameter values, applications often do not take account of model structural error or 

consider the possibility of quite different predictions arising from different behavioural model 

structures (but see, for example, Draper, 1995, for some interesting examples of doing so). 
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Such practices seem to have important limitations.  However, taking more realistic account of the 

inherent uncertainties in modelling the environment is not only a matter of devoting greater effort and 

computer resources but involves a variety of other issues in the sociology of science, policy and 

decision making.  These elements are often very closely linked (for discussions see, Gare, 1995 and 

Ravetz, 1996).  A very brief summary of the issues in this context could perhaps be presented in the 

form that there will be no requirement to take a more realistic account of uncertainty until the users 

(policy formulators and decision makers) demand it, and that such users are concerned that “too much 

uncertainty” in the science will not be helpful in either policy formulation or decision making 

(especially if the scientific models are considered to be only socially conditioned constructs anyway, 

see for example, Ravetz, 1996; Schrader-Frechette, 1985).   The science must evolve in this context.  

The evolving uncertainty estimates in measures of climate change as summarised by the IPCC are an 

interesting case in point here (see Shackley et al., 1997).   Such predictions are necessarily the result of 

only a few GCM scenarios, but in other application areas it is clear that the possibility of doing many 

different model runs is now technically feasible.  They are just not usually demanded. 

 

The philosophy for environmental modelling that is being suggested here aims to extend the pragmatic 

realism that underlies much of the current work in both research and practical prediction with a more 

realistic account of uncertainty, formulated here in terms of a concept of  landscape to model space 

mapping.  As such, it is a reflection not only of practical modelling experience but also of some of the 

current discussions of uncertainty that have arisen out of concepts of nonlinear dynamics and 

complexity in open systems (e.g. Ruelle, 1991; Prigogine, 1997; Rescher, 1998) in which chance 

effects and the self-organisation of (simple) nonlinear dynamic systems interact to produce the 

observed complexity of the real world emergent at the scales of interest.  Uncertainty then arises from 

the sensitivity of such systems to initial conditions (especially where there is a tendency to chaotic 

behaviour) and the problem of trying to mimic the real attractor of the system (Smith, 2001).  The types 

of parameter estimation problem described above, that are endemic to models of open environmental 

systems in particular places, will then only add to the uncertainties.  Such concepts, together with 

stochastic modelling approaches and “dominant mode” data-based modelling (e.g. Young, 2000; 2001), 

are easily encompassed within the philosophy outlined, albeit that there may be practical limitations in 

realising all the possibilities involved.   
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Thus, a formulation in terms of a landscape to model space mapping is not inconsistent with a realist 

stance (in the sense, for example, of Bhaskar,1980, 1989, and Chalmers, 1989), or of  a relaxed form of 

Popperian falsificationism (Popper, 1959, 1979), whilst recognising that the approach towards a single 

realist description of any environmental system will be fraught with difficulty since, in most practical 

applications,  it is all too easy to falsify all the available models if they are evaluated in detailed.  Less 

severe criteria for falsification then results in an equifinality of model representations which may be 

viewed as a variation on the underdetermination thesis (van Fraassen, 1980; Newton-Smith, 1981, 

2000), applied to a restricted range of potentially realistic models rather than theories.  It would seem 

that the attention given to particular places in the landscape to model space mapping makes such a 

realist interpretation more easily tenable, since the aim of the modeller is then to achieve a 

progressively realistic representation of those places within the limitations of currently available 

modelling and observational techniques.  However, the approach is also flexible enough to allow 

relativist or instrumentalist interpretations if it is believed that a realist description will prove ultimately 

impossible.  Consequently, it reflects the immaturity of the environmental sciences that should, we 

hope, evolve with the development of new techniques for observing and characterising the systems and 

places of interest.  Yet it does not seem that this would dramatically change the underlying 

philosophical approach suggested here which does, at least, give some guidance about the need to be 

specific and explicit in the form of mapping used.  In this respect, it provides a scientific basis for the 

discussion and comparison of environmental models in applications to unique places, without too much 

need for self-delusion in presenting the value of model representations of complex environmental 

systems. 
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