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Abstract

A finite-dimensional Lie algebra L over a field F is called elementary if
each of its subalgebras has trivial Frattini ideal; it is an A-algebra if every
nilpotent subalgebra is abelian. The present paper is primarily concerned
with the classification of elementary Lie algebras. In particular, we provide a
complete list in the case when F is algebraically closed and of characteristic
different from 2,3, reduce the classification over fields of characteristic 0 to
the description of elementary semisimple Lie algebras, and identify the latter
in the case when F is the real field. Additionally it is shown that over fields
of characteristic 0 every elementary Lie algebra is almost algebraic; in fact,
if L has no non-zero semisimple ideals, then it is elementary if and only if
it is an almost algebraic A-algebra.

Keywords: Lie algebra, elementary, E-algebra, A-algebra, almost alge-
braic, ad-semisimple

1 Introduction

Throughout this paper L will denote a finite-dimensional Lie algebra over a
field F . The Frattini ideal of L, φ(L), is the largest ideal of L contained in

1Supported by DGI Grant BFM2000-1049-C02-01
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all maximal subalgebras of L. The Lie algebra L is called φ-free if φ(L) = 0,
and elementary if φ(B) = 0 for every subalgebra B of L. Elementary Lie
algebras were introduced by Stitzinger [24] and Towers [27] by analogy to the
definition of an elementary group given earlier by Bechtell [3]. An interesting
property of an elementary Lie algebra is that it splits over each of its ideals,
see [27].

The class of elementary Lie algebras is closely related to the class of Lie
algebras all of whose nilpotent subalgebras are abelian (called A-algebras)
and to the class of Lie algebras L such that φ(B) ≤ φ(L) for all subalgebras
B of L (called E-algebras). A-algebras have been studied by Drensky [7],
Sheina [23], Premet and Semenov [21] and Dallmer [6]. Since the Frattini
ideal of a nilpotent Lie algebra L is just the derived subalgebra of L, every
elementary Lie algebra is an A-algebra. E-algebras were introduced by
Stitzinger in [24]. He proved that L is an E-algebra if and only if L/φ(L)
is elementary. A Lie algebra L is called strongly solvable if L2 is nilpotent.
Stitizinger also proved in [24] that if L is strongly solvable then L is an
E-algebra. In this paper it is shown that over a perfect field the converse
also holds

For algebraically closed fields of characteristic zero, elementary Lie al-
gebras were determined by Towers in [27]. This classification is shown to
remain true for any algebraically closed field of characteristic different from
two or three.

Following Jacobson [15], we say that a linear Lie algebra L ≤ gl(V ) is
almost algebraic if L contains the nilpotent and semisimple Jordan compo-
nents of its elements. Every algebraic Lie algebra is almost algebraic. An
abstract Lie algebra L is called almost algebraic if adL ≤ gl(L) is almost
algebraic. Recently, Zhao and Lu have proved in [28] that every almost-
algebraic A-algebra is elementary, whenever the ground field is algebraically
closed of characteristic zero. In this paper we prove that every elementary
Lie algebra is almost algebraic, provided that char(F ) = 0.

The final section of the paper is devoted to classifying the real elementary
simple Lie algebras.

We will denote algebra direct sums by ⊕, direct sums of the vector space
structure alone by +̇, and semidirect products by ⋊. The nilradical of L
will be denoted by N(L), whilst Asoc(L) will denote the sum (necessarily
direct) of the minimal abelian ideals of L.
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2 The solvable case

Over a field of characteristic zero every solvable Lie algebra is strongly solv-
able, by Lie’s Theorem. This fails in characteristic p for every p > 0 (see
[22], page 96). However, we have the following result.

Proposition 2.1 Let L be an elementary solvable Lie algebra over a perfect
field F . Then L is strongly solvable.

Proof. Let L be a minimal counter-example. As the hypotheses are sub-
algebra closed, every proper subalgebra of L is strongly solvable, and so L
has the structure described in Theorem 4 of [5]. Thus, L = A ⋊ B, where
A is the unique minimal ideal of L, dim A ≥ 2, A2 = 0, B = M+̇Fx with
M2 = 0, and either M is a minimal ideal of B, or B is the three-dimensional
Heisenberg algebra.

Pick any m ∈ M and put C = A + Fm. Then C is φ-free, so A ⊆
N(C) = Asoc(C) by Theorem 7.4 of [26], and A is completely reducible as
an Fm-module. Write A = ⊕r

i=1Ai, where Ai is an irreducible Fm-module
for 1 ≤ i ≤ r. Then the minimum polynomial of the restriction of ad
m to Ai is irreducible for each i, and so {(adm)|A : m ∈ M} is a set of
commuting semisimple operators. Let Ω be the algebraic closure of F and
put AΩ = A ⊗F Ω, and so on. As F is perfect, {(adm)|AΩ

: m ∈ M} is a
set of simultaneously diagonalizable linear maps. So, we can decompose AΩ

into
(AΩ)αi

= {a ∈ AΩ : [a, m] = αi(m)a ∀m ∈ M},

where 1 ≤ i ≤ s.
Suppose first that M is a minimal ideal of B. Then MΩ has a basis

m1, . . . , mt of eigenvectors of ad x with corresponding eigenvalues β1, . . . , βt.
Let 0 6= ai ∈ (AΩ)αi

. Then

[x, ai] =
s

∑

k=1

a′k where a′k ∈ (AΩ)αk
.

But now

0 = [[ai, mj ], x] + [[mj , x], ai] + [[x, ai], mj ]
= αi(mj)[ai, x] + βj [mj , ai] +

∑s
k=1[a

′

k, mj ]
= −

∑s
k=1 αi(mj)a

′

k − βjαi(mj)ai +
∑s

k=1 αk(mj)a
′

k
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Hence

βjαi(mj)ai =
s

∑

k=1

(αk(mj) − αi(mj))a
′

k

This yields that βjαi(mj)ai = 0 and therefore either [x, mj ] = 0 or [mj , ai] =
0 for all 1 ≤ i ≤ r. The former is impossible, since it implies that 0 is a
characteristic root of (adx)|M , whence B is two-dimensional abelian and
L2 is nilpotent. The latter is also impossible, since then [M, A] = 0 and
L2 ⊆ A ⊕ M , which is abelian.

Hence B is the three-dimensional Heisenberg algebra. But then B is a
non-abelian nilpotent subalgebra of L and hence not φ-free. This contradic-
tion establishes the result.

A Lie algebra L is called an E-algebra if φ(B) ≤ φ(L) for all subalgebras
B of L. Groups with the analogous property are called E-groups by Bechtell.
Stitzinger in [24] proved that a Lie algebra is an E-algebra if and only
if L/φ(L) is elementary. He also proved that every strongly solvable Lie
algebra over an arbitrary field is an E-algebra. Next, we prove the converse
of this result, provided that the ground field is perfect.

Corollary 2.2 Let F be perfect. Then every solvable E-algebra is strongly
solvable.

Proof. Let L be a solvable E-algebra. If L is φ-free, then L is elementary,
by [24], and L2 is nilpotent, by Proposition 2.1. So suppose that φ(L) 6=
0. Then L/φ(L) is a solvable elementary Lie algebra, and so L2/φ(L) =
(L/φ(L))2 is nilpotent. But then L2 is nilpotent, by Theorem 5 of [2].

Lemma 2.3 Let L be a Lie algebra over any field F and let A be a minimal
ideal of L with [L2, A] = 0. Then A ⊆ Asoc(C) for every subalgebra C of L
containing A.

Proof. We have A3 = [A2, A] = 0. Minimality of A implies that A is abelian.
Moreover, since [L2, A] = 0, we have that (adx)|A is C-linear for every x ∈ L.
This implies that the sum of the irreducible C-submodules of A is invariant
under L, and thus that it coincides with A. The result follows.

If A is a subset of L we denote by CL(A) the centraliser of A in L. Now
we give a construction of elementary solvable Lie algebras.
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Proposition 2.4 Let F be an arbitrary field. Let A be a vector space of
finite dimension and let B be an abelian completely reducible subalgebra of
gl(A). Then the semidirect product A⋊B is an elementary almost-algebraic
Lie algebra.

Proof. Put L = A⋊B. Then L is strongly solvable and hence an E-algebra.
But A ≤ Asoc(L) ≤ CL(A) = A, so L is φ-free by Theorem 7.3 of [26]. It
follows that L is elementary, and A = A1 ⊕ · · · ⊕ An where Ai is a minimal
ideal of L for 1 ≤ i ≤ n.

In order to prove that L is almost algebraic, let x ∈ L, x 6∈ A. By
Lemma 2.3 we have that A = Asoc(A + Fx) and so the action of x on A is
semisimple. Let A = E1 ⊕ · · · ⊕ Ek, where Ei is an irreducible Fx-module.
Then [Ei, x] = 0 or Ei for each 1 ≤ i ≤ k, so we can write A = C⊕D, where
[C, x] = 0, [D, x] = D. Put x = c + d + b, where c ∈ C, d ∈ D, b ∈ B. Then
[D, b] = [D, x] = D, so there is a y ∈ D such that [y, b] = d. Consider the
automorphism eady of L. We have eady(b) = (1+ady)(b) = b+[y, b] = b+d,
so b + d ∈ eady(B). Since eady(B) is abelian, it follows that ad(b + d) is
semisimple. Now (adc)2L = [[L, c], c] ⊆ A2 = 0, whence adc is nilpotent.
This yields that L is almost algebraic. The proof is complete.

An elementary Lie algebra which can be constructed as in Proposition
2.4 will be called of type I. Next, we show that every elementary solvable
Lie algebra over a perfect field can be constructed as an algebra direct sum
of an abelian Lie algebra and a Lie algebra of type I.

We say that L is metabelian if L2 is abelian. We denote the centre of L
by Z(L).

Theorem 2.5 Let F be perfect. For a solvable Lie algebra L, the following
statements are equivalent:

1. L is elementary,

2. L is φ-free and strongly solvable,

3. L is φ-free and metabelian,

4. L = Asoc(L) ⋊ B, where B is an abelian subalgebra of L,

5. L ∼= A⊕E, where A is an abelian Lie algebra and E is an elementary
Lie algebra of type I.
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Proof. (1)⇒(2): This follows from Proposition 2.1.
(2)⇒(3): Let L be φ-free and strongly solvable. By Theorems 7.3 and

7.4 of [26], we have that L = Asoc(L) ⋊ B, where B is a subalgebra of
L, and that Asoc(L) is precisely the largest nilpotent ideal of L. As L is
strongly solvable, we have L2 ≤ Asoc(L). This yields that both L2 and B
are abelian.

(3)⇒(4): This is clear from Theorems 7.3 and 7.4 of [26] as above.
(4)⇒(5): Decompose Asoc(L) = Z(L) ⊕ K, where K is an ideal of L.

Put E = K+̇B. We have

CE(K) ∩ B ≤ Z(E) ≤ Z(L) ∩ E = 0,

so that B . gl(K). Moreover, since K ≤ Asoc(L) and L = Asoc(L) ⋊ B, it
follows that K is completely reducible as a B-module. Hence E is of type I.

(5)⇒(1): In Towers [27], it is proved that a direct sum of elementary Lie
algebras is elementary. So this follows from Proposition 2.4. This completes
the proof.

Corollary 2.6 An elementary solvable Lie algebra over a perfect field is
almost algebraic.

In [13], Gein and Varea showed that solvability was a subalgebra lattice
property, provided that L was at least three dimensional and the underlying
field was perfect of characteristic different from 2, 3. We now have that the
same is true for strong solvability.

Corollary 2.7 Let L be a strongly solvable Lie algebra over a perfect field
of characteristic different from 2, 3, and let L∗ be a Lie algebra that is lattice
isomorphic to L. Then either

1. L∗ is three-dimensional non-split simple, or

2. L∗ is strongly solvable and dimL = dim L∗.

Proof. Simply combine Theorem 2.5 with Theorem 3.3 of [13].
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3 The non-solvable case

If C is a subalgebra of L we denote by R(C) the radical of C, and by N(C)
the nilradical of C.

Proposition 3.1 Let F be perfect. Let L be an elementary Lie algebra
which is neither solvable nor semisimple. Then, L = Asoc(L) ⋊ (B+̇S),
where B is abelian, S is a semisimple subalgebra of L and [B, S] ≤ B. If F
has characteristic zero, then [B, S] = 0.

Proof. As L is φ-free, L = Asoc(L) ⋊ C for some subalgebra C of L and
N(L) = Asoc(L), by Theorem 7.3 of [26]. Let B = R(C). Since C is
elementary, it splits over B, by [27, Theorem 2.4]. So, C = B+̇S, where S
is semisimple. It is clear that R(L) = Asoc(L) ⋊ B. By Proposition 2.1,
we have that R(L) is strongly solvable. So B2 ≤ R(L)2 ∩ B ⊆ N(L) ∩ B =
Asoc(L) ∩ B = 0. If F has characteristic zero, the final assertion follows
from [25, Theorem 4].

A Lie algebra all of whose proper subalgebras are abelian is called semi-
abelian.

Example Let S be a simple semiabelian Lie algebra over a field of char-
acteristic p > 0, let B be a faithful finite-dimensional completely reducible
L-module, and put L = B+̇S where B2 = 0 and L acts on B under the
given L-module action. Then L is elementary, but S is not an ideal of L.

Notes

• Since elementary Lie algebras are Lie A-algebras it follows from Propo-
sition 2 of [21] that over a field of cohomological dimension ≤ 1 every
semisimple elementary Lie algebra is representable as a direct sum of
simple ideals, each of which splits over some finite extension of the
ground field into a direct sum of ideals isomorphic to sl(2, F ).

• Over a perfect field with non-trivial Brauer group there exists a finite-
dimensional simple semiabelian Lie algebra (see Theorem 8.5 of [9]),
and this is elementary.
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• Let G be the algebra constructed by Gein in Example 2 of [12]. This
is a seven-dimensional Lie algebra over a certain perfect field F of
characteristic three. Every subalgebra of G of dimension greater than
one is simple. So, G is elementary.

We finish this section by proving that the classification of elementary Lie
algebras over an algebraically closed field of characteristic zero given by
Towers in [27] remains true for any algebraically closed field of characteristic
different from 2 or 3.

Theorem 3.2 Let L be a Lie algebra over an algebraically closed field F of
characteristic 6= 2 or 3. Then L is elementary if and only if

1. L is isomorphic to a direct sum of copies of sl(2, F ), or

2. there is a basis {a1, . . . , am, b1 . . . , bn} for L such that

[ai, bj ] = −[bj , ai] = λijai for all 1 ≤ i ≤ m, 1 ≤ j ≤ n

all other products being zero, or

3. L ∼= A ⊕ B, where A is as in (1) and B is as in (2).

Proof. If char(F ) = 0, then the result is Theorem 3.2 of [27]. Assume
char(F ) = p > 3. Let L (6= 0) be elementary. If L is solvable, then L =
Asoc(L)⋊B, by Theorem 2.5. Decompose Asoc(L) = A1 ⊕· · ·⊕Am, where
Ai is a minimal ideal of L. As F is algebraically closed, we have dimAi = 1.
Hence L is as in (2).

Now, let L be semisimple. Since L is an A-algebra, Proposition 2 of
Premet and Semenov [21] applies and L is as in (1).

Then suppose that L is neither solvable nor semisimple. By Proposition
3.1 we have that L = A ⋊ (B+̇S), where 0 6= A = Asoc(L), B is abelian,
0 6= S is a semisimple subalgebra of L and [B, S] ≤ B. From [21, Proposition
2] again it follows that S = S1 ⊕ · · · ⊕ Sr, where Si is an ideal of S and
Si

∼= sl(2, F ) for every 1 ≤ i ≤ r. Put Ci = A+̇Si. We have that Ci is a
φ-free Lie algebra and so N(Ci) = Asoc(Ci). This yields that A = Asoc(Ci)
and therefore A is a completely reducible Si-module. Let V be an irreducible
Si-submodule of A.

We claim that dimF V = 1. By general theory, there exists an element e ∈
Si such that V is a cyclic Fe-module on which e acts nilpotently. This can
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be seen by looking at the representatives of the coadjoint orbits of SL(2) on
sl(2, F )∗ (see [11, §2]). Consequently, M = V +̇Fe is a nilpotent subalgebra.
This yields that M is abelian, whence [V, e] = 0 and dimF V = 1.

Therefore, we have that [A, S] = 0. If B = 0, then we have that L is
as in (3). Suppose then B 6= 0. We have that B+̇S is an elementary Lie
algebra, whence Asoc(B+̇S) = N(B+̇S) = B. As above, we obtain that
[B, S] = 0, from which it follows that L = (A+̇B) ⊕ S. Since A+̇B is a
solvable elementary Lie algebra, it is as in (2), and therefore L is as in (3).
This completes the proof in one direction. The converse is easily checked.

The above result does not hold in characteristic 2: over such a field,
the three-dimensional simple Lie algebra with basis e1, e2, e3 and products
[e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2 is elementary. The exclusion of char-
acteristic 3 is used in order to invoke the result of Semenov and Premet,
which in turn relies on [20, Theorem 3]. This last result fails in character-
istic 3, as is shown by the algebra G ([12, Example 2]) referred to earlier.
However, we know of no counter-example to the above result in character-
istic 3: if we pass to the algebraic closure, then G becomes psl(3), which is
no longer elementary.

4 The characteristic zero case

A subalgebra T of L is said to be a toral subalgebra of L if T is abelian
and adLt is semisimple for every t ∈ T . A Lie algebra L is said to be
ad-semisimple if adx is semisimple for every x ∈ L.

Proposition 4.1 Let char(F ) = 0. For a solvable Lie algebra L the follow-
ing statements are equivalent:

1. L is elementary,

2. L is φ-free and almost algebraic.

Proof. Assume that L is φ-free and almost algebraic. Then L = N(L)+̇T ,
where T is a toral subalgebra of L (see [1] or [26, Theorem 7.5]). Moreover,
we have N(L) = Asoc(L) by Theorem 7.4 of [26]. So, L is elementary by
Theorem 2.5. The converse follows from Corollary 2.6.
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Proposition 4.2 Let L be an ad-semisimple Lie algebra over a field of char-
acteristic zero. Then L is elementary

Proof. Let L be a minimal counter-example. Then it suffices to show that
L is φ-free. But L = Z(L) ⊕ S, where S is semisimple, by Levi’s Theorem
and Theorem 1 of [10]. It follows that φ(L) = 0.

Corollary 4.3 Over the real field every compact semisimple Lie algebra is
elementary.

A Lie algebra L is said to be reductive if its adjoint representation is
completely reducible; equivalently, L = S ⊕ Z(L), where S is a semisimple
ideal of L and Z(L) is the centre of L (see [15]).

Proposition 4.4 Let char(F ) = 0. Let L be a Lie algebra such that its
radical R is elementary and L/R is ad-semisimple. Then, L is elementary
and almost algebraic.

Proof. Let S(L) be the largest semisimple ideal of L. Since S(L) is isomor-
phic to an ideal of L/R, by Proposition 4.2 it follows that S(L) is elementary.
Since S(L) is a direct summand of L and since S(L) is almost algebraic, we
may suppose without loss of generality that S(L) = 0. By Proposition 4.1
we have that R is almost algebraic. Then L is also almost algebraic by
Corollary 3.1 of [1] (see also [18]).

Therefore L = N(L) ⋊ (B+̇S) where B is a toral subalgebra of L, S is a
semisimple subalgebra of L and [B, S] = 0. We have N(R) = Asoc(R) since
R is φ-free. As char(F ) = 0, we have that N(R) is a characteristic ideal of
R and so N(R) ≤ N(L). It follows that N(L) = Asoc(R) and so N(L) is
abelian. Put A = N(L). Since every element of B acts semisimply on A,
we have that A is completely reducible as a (B ⊕ S)-module, see [15]. It
follows that A = Asoc(L). This yields that L is φ-free. To prove that L is
elementary it suffices to show that every maximal subalgebra M of L is also
φ-free.

Let us first consider the case when M does not contain R. Then L =
R + M , L/R ∼= M/M ∩ R and M ∩ R is the radical of M . We have that
M ∩ R is elementary and M/M ∩ R is ad-semisimple. By the above, we
obtain that M is φ-free.
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Now suppose that R ≤ M . Since M ∩ S is ad-semisimple, by [10, The-
orem 1] it follows that M ∩ S = Z(M ∩ S) ⊕ (M ∩ S)2 and (M ∩ S)2 is
semisimple. Put B∗ = B ⊕ Z(M ∩ S). We have that B∗ ⊕ (M ∩ S)2 is
reductive. Moreover, since every element of Z(M ∩ S) acts semisimply on
S, it acts also semisimply on A (see [15], page 101). It follows that every
element of B∗ acts semisimply on A. This yields that A is completely re-
ducible as a (B∗⊕ (M ∩S)2)-module (see [15]) and therefore A ≤ Asoc(M).
On the other hand, we have R(M) = A+̇B∗ and A ≤ N(M). We claim that
A = N(M). Let x ∈ B∗ ∩ N(M). We have that (adx)|A is nilpotent and
semisimple. So, x ∈ CL(A). Moreover, we have that [x, B] ⊆ [S, B] = 0.
This yields that x ∈ CL(R). Since CL(R) ∩ S is a semisimple ideal of L,
we have CL(R) ∩ S = 0, whence CL(R) = Z(R). Decompose x = b + z,
b ∈ B, z ∈ Z(M ∩ S). We have z ∈ R ∩ S = 0. This yields that
x ∈ B ∩ Z(R) ≤ Z(L) = 0 and therefore A = N(M), as claimed. Hence
A = Asoc(M). Since M splits over A, it follows that M is φ-free. This
completes the proof.

Corollary 4.5 Let char(F ) = 0. Let A be a vector space of finite dimen-
sion. Let K be a reductive subalgebra of gl(A) such that K2 is non-zero and
ad-semisimple and every non-zero element of Z(K) is a semisimple trans-
formation of A. Then, the semidirect product A⋊K is an elementary almost
algebraic Lie algebra.

Proof. Put L = A⋊K. We have that R(L) = A+̇Z(K). By Proposition 2.4,
it follows that R(L) is an elementary Lie algebra. Also, we have L/R(L) ∼=
K2. So that L/R(L) is ad-semisimple. The result follows from Proposition
4.4.

A Lie algebra which can be constructed as in the above corollary will be
called of type II.

Theorem 4.6 Let char(F ) = 0. A Lie algebra L is elementary if and only
if L ∼= A⊕B ⊕S, where A is abelian, B is a Lie algebra of type I or of type
II and S is an elementary semisimple Lie algebra.

Proof. Let L be elementary. Then L splits over Z(L), so L = Z(L) ⊕ L̂,
where L̂ is a centerless Lie algebra. Now let S(L̂) be the largest semsimple
ideal of L̂. Then we have that L̂ = K ⊕ S(L̂), where K is a centerless Lie
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algebra which has no non-zero semisimple ideals. If K is solvable, then we
find that K is an elementary Lie algebra of type I.

Then assume that K is not solvable. By Proposition 3.1 it follows that
K = Asoc(K) ⋊ (B ⊕ S), where B is abelian, S is semisimple and [B, S] =
0. Let 0 6= s ∈ S be such that adSs is nilpotent. Then we have that
Asoc(K) + Fs is a nilpotent subalgebra of L. Hence [s,Asoc(L)] = 0. This
yields that s ∈ CK(R(K))∩S = 0, which is a contradiction. Therefore S has
no non-zero ad-nilpotent elements. As S is semisimple and char(F ) = 0, it
follows that S is ad-semisimple. Put C = CK(Asoc(K))∩ (B⊕S). We have
that C is an ideal of the reductive Lie algebra B⊕S, so C = (C∩B)⊕(C∩S).
It follows that C∩B ≤ Z(K) = 0 and that C∩S = 0 since it is a semisimple
ideal of K. This yields that B⊕S . gl(Asoc(K)) and therefore K is of type
II. This completes the proof in one direction.

The converse follows from Proposition 2.4 and Corollary 4.5.

Corollary 4.7 An elementary Lie algebra over a field of characteristic zero
is almost algebraic.

Proof. This follows from Theorem 4.6, Proposition 2.4 and Corollary 4.5.

Corollary 4.8 Let char(F ) = 0. For a Lie algebra L without non-zero
semisimple ideals, the following statements are equivalent:

1. L is elementary,

2. L is almost algebraic and an A-algebra,

3. L is almost algebraic, N(L) is abelian and L/R(L) is ad-semisimple,

4. L is almost algebraic, φ-free and L/R(L) is ad-semisimple.

Proof. (1)⇒(2): This follows from Corollary 4.7.
From now on in this proof we assume that L is almost algebraic. Then

we have that L = N(L)+̇B+̇S, where B is a toral subalgebra of L, S is a
semisimple subalgebra of L and [B, S] = 0.

(2)⇒(3): Clearly, N(L) is abelian. It remains to prove that S is ad-
semisimple. Let s ∈ S such that adSs is nilpotent. Then (ads)|N(L) is
nilpotent too. This yields that N(L) + Fs is a nilpotent subalgebra of L
and therefore [N(L), s] = 0. Thus, s ∈ CL(R(L)) ∩ S = 0 because L has no
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non-zero semisimple ideals. Hence S has no non-zero ad-nilpotent elements.
As char(F ) = 0, we have that S is ad-semisimple.

(3)⇒(4): Since N(L) is a completely reducible (B⊕S)-module and since
N(L) is abelian, it follows that N(L) = Asoc(L). Since L splits on N(L),
we have that L is φ-free.

(4)⇒(1): By Theorem 7.4 of [26] we have N(L) = Asoc(L). It then fol-
lows from Theorem 2.5 that N(L)+̇B is elementary. Since R(L) = N(L)+̇B,
Proposition 4.4 now gives that L is elementary.

5 The real field case

A subalgebra P of L is called parabolic if P ⊗F Ω contains a Borel subalgebra
(that is, a maximal solvable subalgebra) of L⊗F Ω, where Ω is the algebraic
closure of F . Over a field of characteristic zero, all maximal subalgebras
of a reductive Lie algebra are reductive or parabolic (see [4], [16], [19]); it
follows that a reductive Lie algebra is elementary if and only if its parabolic
subalgebras are φ-free.

For results concerning Lie algebras over the real field we refer the reader
to the books by Helgason ([14]) and Knapp ([17]).

Theorem 5.1 Let F be the real field. For a simple Lie algebra L, the
following statements are equivalent:

1. L is elementary,

2. L is an A-algebra,

3. L is compact or isomorphic to one of the following Lie algebras: sl(2, R),
sl(2, C)R, so(n, 1) (n > 3).

Proof. (1)⇒(2): This is clear.
(2)⇒(3): Let L be a non-compact A-algebra. Suppose first that L = L̄R,

the realisation of the complex simple Lie algebra L̄. If N̄ is a nilpotent
subalgebra of L̄ then N̄R is a nilpotent subalgebra of L, and hence abelian.
It follows that N̄ is abelian and thus that L̄ is an A-algebra. The proof of
Theorem 3.2 of [27] then shows that L̄ ∼= sl(2, C).
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So assume now that L is a non-compact real form of a complex simple
Lie algebra. The only such algebras for which the nilpotent subalgebra N in
the Iwasawa decomposition of L is abelian are sl(2, R) and so(n, 1) (n > 3).

(3)⇒(1): Suppose now that L is one of the algebras described in (3).
If L is compact it is elementary by Corollary 4.3, and sl(2, R) is clearly
elementary.

Next suppose that L ∼= sl(2, C)R, and let S be a subalgebra of L. Then
S ⊗ C is a subalgebra of L ⊗ C, which is elementary. This yields 0 =
φ(S ⊗ C) = φ(S) ⊗ C, by [8], whence φ(S) = 0 and L is elementary.

Finally, let L = so(n, 1) (n > 3). We identify L with

{(

B u
uT 0

)

: u ∈ R
n, B ∈ Mn×n(R), BT = −B

}

From the remarks at the beginning of this section it suffices to show that the
parabolic subalgebras of L are φ-free. Now any such subalgebra is conjugate
to a standard parabolic subalgebra P with Langlands decomposition P =
(M ⊕A)+̇N , where M ⊕A is reductive and N is an ideal of P contained in











0 u u
−uT 0 0
uT 0 0



 : u ∈ R
n−1







.

Clearly N is abelian and every element of A acts semisimply on N , so P is
φ-free.
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