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Abstract. We give a simple and direct treatment of the convergence of quantum random walks

to quantum stochastic operator cocycles, using the semigroup method. The pointwise product

of two such quantum random walks is shown to converge to the quantum stochastic Trotter
product of the respective limit cocycles. Since such Trotter products themselves reduce to

pointwise products when the cocycles inhabit commuting subspaces of the system algebra, this

yields an elementary approach to the quantum random walk approximation of the ‘tensorisation’
of cocycles with common noise dimension space. The repeated quantum interactions model is

shown to fit nicely into the convergence scheme described.
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Introduction

Quantum random walks have been a feature of quantum probability for at least twenty-five
years; as emphasised by Bouten and van Handel [BvH], “the convergence of discrete quantum
Markov chains to continuous ones is a fundamental problem in quantum probability”. In Meyer’s
book [Me2], Journé is credited as the first to use discrete approximations to Fock space and to
quantum stochastic processes; around the same time, Accardi and Bach ([AcB], [Me1]) proved a
central-limit theorem which yields the quantum harmonic oscillator as a limit of quantum Bernoulli
processes. Further early work, by Parthasarathy ([Par]) and by Lindsay and Parthasarathy ([LiP]),
showed that certain quantum stochastic flows, which are generalisations of classical diffusions, may
be approximated by so-called spin random walks.

As well as their probabilistic interpretation as noncommutative Markov chains, quantum ran-
dom walks may also be seen as models for the dynamics of a quantum-mechanical system un-
dergoing repeated interactions with an environment composed of an infinite number of identical
particles. Attal and Pautrat adopted this point of view in [AtP], with a repeated-interactions model
of quantum random walks; in [Gou], Gough showed the links between the repeated-interactions
model and Holevo’s time-ordered exponentials ([Hol]). Work by Belton ([B1−3]) produced a theory
of quantum random walks generated by completely bounded maps on operator spaces, admitting
the treatment of particle algebras in an arbitrary normal state. Das and Lindsay extended the
theory to quantum random walks in Banach algebras ([DaL]). These convergence theorems may

Date: 25.iv.2014.
2010 Mathematics Subject Classification. 81S25 (primary); 46L53, 46N50, 81V80 (secondary).
Key words and phrases. Quantum random walk; repeated interactions; noncommutative Markov chain; toy Fock

space; quantum stochastic cocycle; series product; quantum stochastic Trotter product.

1



2 BELTON, GNACIK AND LINDSAY

be considered to be analogues of Donsker’s invariance theorem, with the limit process being a
quantum stochastic cocycle rather than a classical Wiener process.

There have been many applications of quantum random walks: to quantum filtering and quan-
tum feedback control ([BvHJ], [GoS]); to the approximation of quantum Lévy processes ([FrS],
[LiS]); to the construction of dilations of quantum dynamical semigroups ([B1], [Sah]). Repeated-
interactions models for the one-atom maser, an important system in quantum optics [GaZ], have
been investigated by Bruneau, Joye and Merkli ([BJM]) and by Bruneau and Pillet ([BrP]); in con-
trast to the results we prove below, the convergence theorems they obtained give only the reduced
dynamics of the limit system and disregard the limit behaviour of the environment. Gohm has
found ([Ghm]) interesting connections between noncommutative Markov chains and multivariate
operator theory.

Here we use the semigroup decomposition of quantum stochastic cocycles and the notion of
associated semigroups, introduced by Lindsay and Wills (see [L1]), to give a new short and direct
proof of the convergence of suitably scaled quantum random walks to quantum stochastic cocycles.

Our main convergence theorem, Theorem 3.3, allows us to provide short and transparent
demonstrations of results on repeated-interactions models previously proved by Attal and Pautrat
([AtP]), Attal and Joye ([AtJ]) and Attal, Deschamps and Pellegrini ([ADP]); see Examples 3.6
and 4.3.

In a sister paper ([BGL]), we consider embeddings of toy Fock space appropriate to faithful
states on the particle algebra, and obtain quasifree stochastic cocycles, in the sense of [LiM], as
limits of scaled random walks in that setting.

Notation. We make extensive use of the following extension to the Dirac bra-ket notation. For
a vector u in a Hilbert space h, the operators H → h ⊗ H and H → H ⊗ h given by ξ 7→ u ⊗ ξ
and ξ 7→ ξ ⊗ u, are denoted Eu; their adjoints are denoted Eu. Both the Hilbert space H and the
appropriate order is always clear from the context. The ultraweak tensor product is denoted ⊗ .
We use the following notation for the symmetric Fock space over a Hilbert space h and exponential
vectors: Γ(h) :=

⊕
n≥0 h

∨n, where h∨n denotes the n-fold symmetric tensor power of h for n ≥ 1

and h∨0 := C, and

ε(u) :=
(
(n!)−1/2u⊗n

)
n≥0

(u ∈ h).

Fix a Hilbert space h which we refer to as the ‘initial space’ or ‘system space’.

1. Quantum stochastic cocycles

In this short section we recall briefly the basic facts that are needed concerning quantum
stochastic (QS) analysis, and specifically operator cocycles and their generation via QS differential
equations. For further detail, see [L1].

Fix a second Hilbert space k, which we refer to as the ‘noise dimension space’, and set

ĉ :=

(
1

c

)
∈ k̂ (c ∈ k).

Identifying the Hilbert space h⊗ k̂ with h⊕(h⊗k), as we frequently do, each operator F ∈ B(h⊗ k̂)
has a block matrix form [K M

L N ]. In particular, the quantum Itô projection is given by

∆ := 0h ⊕ Ih⊗k =

[
0 0
0 Ik

]
For any subinterval I of R+, set

Fk
I := Γ(L2(I; k)) and Ωk

I := (1, 0, 0, · · · ) ∈ Fk
I ,

abbreviating to Fk and Ωk when I = R+. Letting ST and ST,loc denote the subspaces of L2(R+; k)
and L2

loc(R+; k) consisting of T-valued step functions, whose right-continuous versions we always
take, set ET := Lin{ε(f) : f ∈ ST}. (When T = k we abbreviate to S, Sloc and E .) The subspace
ET is dense in Fk if and only if the set T is total ([Ske]; see [L1]). A typical example of T is an
orthonormal basis augmented by the vector 0. The natural identification

Fk = Fk
[0,r[ ⊗F

k
[r,t[ ⊗F

k
[t,∞[ (r, t ∈ R+, r 6 t). (1.1)
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witnessed by exponential vectors: ε(f) = ε(f |[0,r[) ⊗ ε(f |[r,t[) ⊗ ε(f |[t,∞[), is frequently invoked.

We use the notation FIk[r,t[ for the corresponding identity operator. The CCR flow of index k is

the semigroup of endomorphisms Fσk = (Fσk
t )t∈R+ on B(Fk) defined by

Fσk
t (T ) := FIk[0,t[ ⊗ StTS

∗
t

where St here denotes the unitary shift operator Fk → Fk
[t,∞[, again witnessed by exponential

vectors: ε(f) 7→ ε(stf) where (stf)(s) = f(s− t) for s ∈ [t,∞[.

Definition. A left QS bounded-operator cocycle on h with noise dimension space k is a family of
operators X = (Xt)t>0 in B(h⊗Fk) satisfying the following adaptedness, continuity and cocycle
conditions:

Xt ∈ B(h⊗Fk
[0,t[)⊗

FIk[t,∞[ (t ∈ R+);

s 7→ Xs is strongly continuous;

X0 = Ih⊗Fk and Xr+t = Xr(idB(h)⊗Fσk
r)(Xt) (r, t ∈ R+).

It is called Markov regular if also

s 7→ Xf,g
s is continuous (f, g ∈ L2

loc(R+; k)).

The notation here is as follows:

Xf,g
s := Eε(f[0,s[)XsEε(g[0,s[) and f[0,s[ := 1[0,s[f. (1.2)

A QS cocycle X is called contractive, isometric or unitary if each operator Xt has that property;
it is called quasicontractive if, for some β ∈ R+, the QS cocycle (e−βtXt)t>0 is contractive.

If X is a QS cocycle then, for each c, d ∈ k,

P c,d := (X
c[0,t[,d[0,t[
t )t>0

defines a C0-semigroup on h, and X is Markov regular if and only if each of these associated semi-
groups is norm continuous. Moreover, QS cocycles enjoy the semigroup-decomposition property

Xf,g
t = P

f(t0),g(t0)
t1−t0 · · ·P f(tn),g(tn)

tn+1−tn (f, g ∈ S, t ∈ R+)

in which the set {0 = t0 < t1 < · · · < tn < tn+1 = t} contains the points of discontinuity of
f[0,t[ and g[0,t[. The semigroup-decomposition property characterises QS cocycles among adapted,
strongly continuous QS processes.

The series product on B(h⊗ k̂) is the composition defined by

F1 � F2 := F1 + F2 + F1∆F2. (1.3)

See [L2] for the ‘quantum Itô algebra’ associated with this product. For us here, the following two
properties are key: setting F = F1 � F2,

if F ∗i � Fi 6 βi∆
⊥ for i = 1, 2, then F ∗ � F 6 (β1 + β2)∆⊥;

if F ∗i � Fi = 0 for i = 1, 2, then F ∗ � F = 0.

The structure relation F ∗ � F = 0 is equivalent to F enjoying the block matrix form

F =

[
iH − 1

2L
∗L −L∗W

L W − Ih⊗k

]
, with H selfadjoint and W isometric ,

and in this case the further structure relation F � F ∗ = 0 is then equivalent to W being unitary.

Theorem 1.1. Let X be a Markov-regular QS quasicontractive cocycle on h with noise dimension

space k. Then there is a unique operator F ∈ B(h ⊗ k̂) such that X satisfies the QS differential
equation

X0 = Ih⊗Fk , dXt = Xt dΛF (t). (1.4)
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Moreover, for β ∈ R,

F ∗ � F 6 β∆⊥ if and only if (e−βtXt)t>0 is contractive;

F ∗ � F = 0 if and only if X is isometric;

F � F ∗ = 0 if and only if X is co-isometric.

Conversely, let F ∈ B(h⊗k̂). Then the (1.4) has a unique weakly regular, weak solution, denoted
XF . Moreover, if F satisfies F ∗ � F 6 β∆⊥ for some β ∈ R, then XF is a Markov-regular QS
quasicontractive cocycle.

Remark. Suppose that, for i = 1, 2, Fi ∈ B(h ⊗ k̂) satisfies F ∗i � Fi 6 βi∆
⊥ for some βi ∈ R.

Then the QS quasicontractive cocycle XF1�F2 is expressible in terms of QS Trotter products of
the cocycles XF1 and XF2 ([L2]).

2. Quantum random walk embedding

For this section and the next, fix a Hilbert space K which we refer to as the ‘particle space’. In
this section we describe the standard embedding of quantum random walks (QRW) as QS processes.
This requires fixing a unit vector e0 of K; let ω0 be the corresponding vector state on B(K). Set

k := K	 Ce0 and k̂ := C⊕ k, and let π0 denote the resulting unitarily implemented isomorphism

from B(K) to B(k̂). Thus

π0(T ) =

[
〈e0|
V ∗

]
T
[
|e0〉 V

]
(T ∈ B(K),

where V is the inclusion k → K. (In the next section we shall identify K with k̂ so that e0 is
identified with

(
1
0

)
.) Set

Υk
[M,N [ := k̂(M) ⊗ · · · ⊗ k̂(N−1) and

Υk
[N,∞[ := (k̂(N), e0)⊗ (k̂(N+1), e0)⊗ · · · (M,N ∈ Z+,M 6 N),

where k̂(N) = k̂ for each N ∈ Z+ and also set

Υk := Υk
[0,∞[.

(Whether intervals are discrete or continuous will always be clear from context.) The toy Fock
space identifications

Υk = Υk
[0,M [ ⊗Υk

[M,N [ ⊗Υk
[N,∞[ (M,N ∈ Z+,M 6 N)

are discrete analogues of the continuous tensor decompositions (1.1) of Fk.
We use the notation ΥIk[M,N [ for the corresponding identity operators. The following notation,

for truncated exponential vectors, proves to be very convenient:

ε̃(g) := (1, g, 0, · · · ) (g ∈ L2(I; k), I a subinterval of R+).

Definition. The QRW, with respect to the unit vector e0 ∈ K, generated by G ∈ B(h⊗ K) is the
discrete QS process (RN := R0,N )N∈Z+ where

RM,N :=
−−−−−→∏
M6n<N

Rn,n+1

and
Rn,n+1 :=

(
idB(h)⊗ (Υσk

n ◦ Υιk ◦ πe0)
)
(G) (n ∈ Z+)

through the right-shift endomorphism semigroup
(

Υσk
N

)
N∈Z+

on B(Υk)

Υσk
N : B(Υk)→ B(Υk), T 7→ ΥIk[0,N [ ⊗ SNTS

∗
N

where SN here denotes the unitary shift operator Υk → Υk
[N,∞[, and the embedding

Υιk : B(k̂)→ B(Υk), T 7→ T ⊗ ΥIk[1,∞[.
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Remark. The family (RM,N )06M6N forms a discrete evolution:

RN,N = Ih⊗Υk , RL,N = RL,MRM,N (0 6 L 6M 6 N),

which is bi-adapted :
RM,N ∈ B(h)⊗ ΥIk[0,M [⊗B(Υk

[M,N [)⊗
ΥIk[N,∞[,

and covariant :
RM,N =

(
idB(h) ⊗Υσk

M

)
(RN−M ).

Suitably scaled QRWs converge to QS cocycles in the sense made precise in Theorem 3.3 below.
This entails embedding walks into the territory of cocycles, for which the relevant definition follows.

Definition. Let h > 0. The h-scale e0-embedded QRW generated by G ∈ B(h ⊗ K), denoted
〈h〉Xe0,G, is the bounded-operator QS process X on h, with noise dimension space k := K 	 Ce0,
defined by Xt := X0,hbt/hc where

XhM,hN :=
−−−−−→∏
M6n<N

Xhn,h(n+1) (M,N ∈ Z+)

and
Xhn,h(n+1) :=

(
idB(h)⊗ (Fσk

hn ◦ jkh ◦ πe0)
)
(G) (n ∈ Z+),

through the embedding

jkh : B(k̂)→ B(Fk), T 7→ Jk
h T (Jk

h)∗ ⊗ FIk[h,∞[

in which Jk
h : k̂→ Fk

[0,h[ denotes the isometry determined by the prescription ĉ 7→ ε̃(h−1/2c). Here

the vector h−1/2c is considered as the corresponding constant function in L2([0, h[; k).

Remark. For future reference, we note the following elementary estimate on embedded quantum
random walks:

‖〈h〉Xe0,G
t ‖ 6 ‖G‖bt/hc (t ∈ R+). (2.1)

In particular, the process 〈h〉Xe0,G is contractive if the QRW generator G is.

3. Quantum random walk approximation

In this section we show that suitably scaled families of QRWs converge to QS cocycles, in
good analogy with the Donsker invariance principle. In the current form, this result is deducible
from [B1] and was proved in [DaL]. For an early version of the result, see [Par]. We now suppress

the map π0 and identify K with k̂, so that e0 =
(

1
0

)
. We speak of the h-scale embedded QRW

generated by G ∈ B(h⊗ k̂), and denote it simply by 〈h〉XG.
For n ∈ Z+ and g ∈ L2

loc(R+; k), or g ∈ L2([hn, h(n+ 1)[; k), define g[n, h] to be the average of
g over the interval [hn, h(n+ 1)[:

g[n, h] := h−1

∫ h(n+1)

hn

g. (3.1)

Thus, for g ∈ L2([0, h[; k), (Jk
h)∗ε(g) = ̂√h g[0, h].

Remark. Observe that, in the notation

Xf,g
mh,nh := Eε(f[hm,hn[)Xmh,nhEε(g[hm,hn[) (f, g ∈ Sloc,m, n ∈ Z+,m 6 n),

where X = 〈h〉XG, we have discrete evolutions for each f, g ∈ Sloc:

Xf,g
hn,hn = Ih, Xf,g

hm,hnX
f,g
hn,hp = Xf,g

hm,hp (m,n, p ∈ Z+,m 6 n 6 p).

For h > 0, define the standard ‘scaling matrix’ (cf. [LiP]):

Sh :=

[
h−1/2 0

0 Ik

]
∈ B(k̂), (3.2)

and let sh denote conjugation by Ih ⊗ Sh on B(h⊗ k̂).
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Lemma 3.1. Set X = 〈h〉XG where G ∈ B(h⊗ k̂) and h > 0. Let f , g ∈ Sloc and m, n ∈ Z+ with
m 6 n.

(a) Then

Xf,g
hn,h(n+1) = Ih + hEf̂ [n,h] sh(G−∆⊥)E

ĝ[n,h]
(3.3)

and ∥∥Xf,g
hn,h(n+1) − Ih

∥∥ 6 h max
c∈Ran f,d∈Ran g

∥∥E ĉ sh(G−∆⊥)Ed̂
∥∥. (3.4)

(b) Suppose that f and g are constant, say c and d respectively, on the interval [hm, hn[. Then

Xf,g
hm,hn =

(
Ih + hE ĉ sh(G−∆⊥)Ed̂

)n−m
. (3.5)

Proof. (a) Since
√̂
hc =

√
hShĉ for c ∈ k, the first identity follows from the definition:

Xf,g
hn,h(n+1) − Ih = E

̂√h f [n,h] (G−∆⊥)E ̂√h g[n,h]
,

= hEf̂ [n,h] sh(G−∆⊥)E
ĝ[n,h]

,

Since

f̂ [n, h] = h−1

∫ h(n+1)

hn

f̂ ∈ Conv Ran f̂ ,

and similarly for g, (3.4) follows from (3.3).

(b) Since f̂ [p, h] = ĉ and ĝ[p, h] = d̂ for p = m, . . . , n− 1, the factorisation

Xf,g
hm,hn := Xf,g

hm,h(m+1) · · ·X
f,g
h(n−1),hn

implies that (3.5) follows from (3.3). �

Remark. QRWs are the discrete-time analogues of QS cocycles.

For the full power of the approximation result below, we need a lemma.

Lemma 3.2. For a Hilbert space H and compact subinterval I of R+, let (ah)h>0 be a family of
contraction-valued maps I → B(H), let a : I → B(H) be isometry valued and strongly continuous,
and suppose that 〈ζ, ah(·)η〉 → 〈ζ, a(·)η〉 uniformly as h→ 0, for all ζ, η ∈ H. Then ah(·)η → a(·)η
uniformly as h→ 0, for all η ∈ H.

Proof. Let η ∈ H and ε > 0. Since a is strongly continuous and I is compact, there is an H-valued

step function ϕ =
∑N
j=1 ζj1Ij such that supt∈I ‖a(t)η − ϕ(t)‖ < ε. Therefore, for all t ∈ I,

‖(ah(t)−a(t))η‖2

6 2 Re〈a(t)η, (a(t)− ah(t))η〉

= 2 Re〈a(t)η − ϕ(t), (a(t)− ah(t))η〉+

N∑
j=1

1Ij (t)〈ζj , (a(t)− ah(t))η〉

= 4‖η‖ε+
N

max
j=1
|〈ζj , (a(t)− ah(t))η〉|.

Since the second term tends to zero uniformly, the result follows. �

In the proof of Theorem 3.3 below, we use Euler’s exponential formula in the following form.
Let a, a(h) ∈ B(h), for h > 0, and let I be a compact subinterval of R+; if a(h) → a as h → 0
then

sup
[r,t]⊂I

∥∥(Ih + ha(h))bt/hc−br/hc − e(t−r)a∥∥→ 0 as h→ 0.
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Theorem 3.3 (cf. [B1], [DaL]). Let T′ and T be total subsets of k containing 0, let F , G(h) ∈
B(h⊗ k̂) (h > 0) satisfy

E ĉ
(
sh(G(h)− Ih⊗k̂)− F )

)
Ed̂ → 0 as h→ 0 (c ∈ T′, d ∈ T), (3.6)

and let I be a compact subinterval of R+. Then

sup
t∈I

∥∥Eε′(〈h〉XG(h)
t −XF

t

)
Eε
∥∥→ 0 as h→ 0 (ε′ ∈ ET′ , ε ∈ ET). (3.7)

Moreover, the following refinements hold.

(a) If, for some β ∈ R,

lim sup
h→0

sup
t∈I
‖G(h)‖bt/hc <∞ and F ∗ � F 6 β∆⊥

then

sup
t∈I

∥∥(idB(h)⊗ϕ)
(〈h〉XG(h)

t −XF
t

)∥∥→ 0 as h→ 0 (ϕ ∈ B(Fk)∗).

(b) If each G(h) is a contraction and F satisfies F ∗ � F = 0 then

sup
t∈I

∥∥(〈h〉XG(h)
t −XF

t

)
ξ
∥∥→ 0 as h→ 0 (ξ ∈ h⊗Fk).

Proof. Set X(h) := 〈h〉XG(h) and X := XF . Let f ∈ ST′ and g ∈ ST, and write

{0} ∪D ∪ {T} = {t0 < · · · < tp+1}
where D is the set of points of discontinuity of f and g, and T ∈ R+ is both larger than all
of these and such that [0, T [⊃ I; let h > 0 be smaller than meshD. Exploiting the semigroup

decomposition of QS cocycles and grouping like terms together in the product which is X
(h)
t , we

may express ‖Eε(f)(X(h) −Xt)Eε(g)‖ as∣∣〈ε(f[t,∞[), ε(g[t,∞[)〉
∣∣

×
p∑
k=0

1[tk,tk+1[(t)
∥∥A1(h) · · ·Ak−1(h)b(h, t)Bk(h, t)− P (0)

t1−t0 · · ·P
(k−1)
tk−tk−1

P
(k)
t−tk

∥∥,
where b(h, t) := 〈ε(f[hbt/hc,t[), ε(g[hbt/hc,t[)〉Ih,

Aj(h) = X
(h)f,g
hbtj/hc,h(1+btj/hc)X

(h)f,g
h(1+btj/hc)h,hbtj+1/hc (j = 0, · · · , p− 1),

Bk(h, t) =

{
X

(h)f,g
hbtk/hc,h(1+btk/hc)X

(h)f,g
h(1+btk/hc),hbt/hc if btk/hc < bt/hc,

Ih otherwise,

and P (i) denotes the (f(ti), g(ti))-associated semigroup of the QS cocycle X for i = 0, . . . , p.

Now the generator of the semigroup P (i) is Ef̂(ti)(F + ∆)Eĝ(ti) so, by Lemma 3.1 and Euler’s
exponential formula,∥∥Aj(h)− P (j)

tj+1−tj

∥∥→ 0 and sup
t∈[tk,tk+1[

∥∥Bk(h, t)− P (k)
t−tk

∥∥→ 0 as h→ 0.

Thus (3.7) holds for ε′ = ε(f) and ε = ε(g); it therefore holds for all ε′ ∈ ET′ and ε ∈ ET, and so
the first part is proved.

(a) In this case, by the basic estimate (2.1), {X(h)
t : h ∈]0, H], t ∈ I} is uniformly bounded

and, by the characterisation of quasicontractivity of Markov-regular QS cocycles recalled in The-
orem 1.1, ‖Xt‖ 6 eβt (t ∈ R+) so {Xt : t ∈ I} is uniformly bounded too. The result therefore
follows from the first part, by the norm totality of the family {ωε′,ε : ε′ ∈ E ′T′ , ε ∈ ET} in B(Fk)∗
and the well-known fact (see e.g. [EfR]) that ‖idB(h)⊗ϕ‖ = ‖ϕ‖ for any ϕ ∈ B(F)∗.

(b) In this case it follows from Part (a) that, for all ζ, η ∈ h⊗Fk,

sup
t∈I

∣∣〈ζ, (X(h)
t −Xt)η〉

∣∣→ 0 as h→ 0.

Since X is strongly continuous, the result follows from Lemma 3.2. �
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Remarks. (i) The sets T′ and T typically each consist of vectors from an orthonormal basis for k
augmented by the vector 0.

(ii) In (a) the limit QS cocycle XF is quasicontractive, with ‖XF
t ‖ 6 eβt; in (b) the cocycle

XF is isometric, and is unitary if also F � F ∗ = 0. These follow from the characterisations of
(quasi)contractivity, isometry and unitarity of Markov-regular QS cocycles listed in Theorem 1.1.

(iii) The condition (3.6) is usefully expressed in the following equivalent form:

E ĉ
(
sh(G(h)−∆⊥)− (F + ∆)

)
Ed̂ → 0 as h→ 0 (c ∈ T′, d ∈ T).

Then, writing in block matrix form,

G(h) =

[
Ih + hK(h)

√
hM(h)√

hL(h) C(h)

]
and F =

[
K M
L C − I

]
, (3.8)

it follows that

sh(G(h)−∆⊥) =

[
K(h) M(h)
L(h) C(h)

]
and F + ∆ =

[
K M
L C

]
.

In these terms (3.6) amounts to the following, more transparent condition:

E ĉ
[
K(h)−K M(h)−M
L(h)− L C(h)− C

]
Ed̂ → 0 as h→ 0 (c ∈ T′, d ∈ T). (3.9)

When dim k <∞, this is equivalent to the simple norm-convergence conditions

K(h)→ K, L(h)→ L, M(h)→M and C(h)→ C as h→ 0.

However, when k is infinite dimensional, it is only the components of L(h), M(h) and C(h) with
respect to some orthonormal basis of k that need to converge to the corresponding components of
L, M and C.

We next consider families of QRWs which are of exponential form. To this end, let e1, e2 and e3

denote the entire functions whose values at z 6= 0 are given respectively by

ez − 1

z
,

ez − 1− z
z2

and
sinh z − z

z2
, (3.10)

and note the identities

e1(z) = e1(−z)ez, e3(z) = e2(z)− 1

2
e1(−z)e1(z) and e3(−z) = −e3(z). (3.11)

Proposition 3.4. Let the family (E(h))h>0 ⊆ B(h⊗ k̂) = B(h⊕ (h⊗ k)) be such that

sh(E(h))→
[
A −B∗
B D

]
as h→ 0,

in which D is skewadjoint. Then the family (G(h) := eE(h))h>0 satisfies

sh(G(h)− I)→ F as h→ 0, where F =

[
K −L∗W
L W − I

]
in which L = e1(D)B, W is the unitary operator eD and K = A− 1

2L
∗L−B∗e3(D)B.

Proof. It is straightforward to verify that, as h→ 0, sh(G(h)− I) converges to the operator

F =

[
A−B∗e2(D)B −B∗e1(D)

e1(D)B eD − I

]
.

In view of the skewadjointness of D, the identities (3.11) imply that

e1(D) = e1(D)∗eD, e2(D) = e3(D) +
1

2
e1(D)∗e1(D) and e3(D)∗ = −e3(D).

In turn, these imply that F is as claimed. �
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Remarks. (i) Since the operator e3(D) is skewadjoint, F �F ∗ = F ∗�F = [ 2 ReA 0
0 0 ] 6 2‖ReA‖∆⊥

so the QS cocycle XF is quasicontractive, and is unitary provided that the operator A is skew-
adjoint.

(ii) This result should be compared with (22) in [Gou] and Theorem 19 in [AtP].

Notation. The following two notations are germane to QRW approximation. For L ∈ B(h; h⊗k),
set

RL :=

[
0 −L∗
L 0

]
, (3.12)

and, provided that ‖L‖ < 1, set

UL :=

[
(1− L∗L)1/2 −L∗

L (1− LL∗)1/2

]
. (3.13)

Thus eRL and UL are unitary operators, and

(RL)2 = −
[
L∗L 0

0 LL∗

]
.

We use the following abbreviation for Hilbert space operators:

T+ := (ReT )+ for T ∈ B(h). (3.14)

Proposition 3.5. Let G(h) be of the form

e(
√
hRL+hZ)

(
Ih ⊕ C

)
or

ehZe
√
hRL
(
Ih ⊕ C

)
, or

U√hL
(
ehA ⊕ C

)
, for 0 < h < ‖L‖−2,

where L ∈ B(h; h ⊗ k), Z ∈ B(h ⊗ k̂), C ∈ B(h ⊗ k) is a contraction operator, and A :=
(idB(h)⊗ω0)(Z) ∈ B(h).

(a) Then

sup
t∈I

∥∥(idB(h)⊗ϕ)
(〈h〉XG(h)

t −XF
t

)∥∥→ 0 as h→ 0 (ϕ ∈ B(Fk)∗),

where F =
[
K −L∗C
L C−Ik

]
and K = A− 1

2L
∗L.

(b) Moreover if C is isometric, Z is dissipative and A is skewadjoint then

sup
t∈I

∥∥(〈h〉XG(h)
t −XF

t

)
ξ
∥∥→ 0 as h→ 0 (ξ ∈ h⊗Fk).

Proof. In each case, it is easily verified that

sh(G(h)−∆⊥) = F + ∆ +O(h1/2).

Since

‖G(h)‖bt/hc 6 eh‖Z+‖bt/hc 6 et‖Z+‖ and

F ∗ � F =

[
A∗ +A 0

0 C∗C − Ih⊗k

]
6 2‖A+‖∆⊥,

the first part follows from part (a) of Theorem 3.3.
If Z is dissipative then ‖G(h)‖ 6 1, and if C is isometric and A is skewadjoint then F ∗�F = 0

so the second part follows from part (b) of the Theorem. �

Remark. From the proof we see that, in (a) the embedded processes 〈h〉XG(h) and limit QS cocycle

XF satisfy ‖〈h〉XG(h)
t ‖ 6 et‖Z+‖ and ‖XF

t ‖ 6 et‖A+‖; in (b), each process 〈h〉XG(h) is contractive
and the limit QS cocycle XF is isometric.

Thus, given a Markov-regular QS cocycle which is isometric or unitary, then from its QS
generator, we may easily construct QRWs which are isometric or unitary, respectively, and converge
to the cocycle.
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Exercise. Let X be a Markov-regular QS cocycle. Then X is quasicontractive if and only if

its stochastic generator has the form F1 =
[
A− 1

2L
∗L −L∗C−D(I−C∗C)1/2

L C−I

]
for arbitrary operators

A ∈ B(h), L ∈ B(h; h⊗ k), D ∈ B(h⊗ k; h) and a contraction operator C ∈ B(h⊗ k).
On the other hand, X is contractive if and only if its stochastic generator has the form F2 =[
−iH− 1

2 (L∗L+B2) −L∗C−BV (I−C∗C)1/2

L C−I

]
for L and C as above, H ∈ B(h)sa, B ∈ B(h)+ and

V ∈ B(h⊗ k; h) a contraction operator.

(1) Find (G(h))0<h6H in B(h⊗ k̂) such that, in the abbreviated notation (3.14),

sup
h∈]0,H]

‖G(h)‖bt/hc < et‖A+‖ and sh(G(h)−∆⊥)→ F1 + ∆ as h→ 0.

(2) Find contractive (G(h))0<h6H in B(h⊗ k̂) such that sh(G(h)−∆⊥)→ F2 + ∆ as h→ 0.

The cases that remain to be proved are where D(I − C∗C)1/2 6= 0 and BV (I − C∗C)1/2 6= 0,
respectively.

Hint. For (2), dilate F2 to a generator o a QS unitary cocycle (see [L2]). For (1), use the
solution to (2) in conjunction with the results of Section 4.

Example 3.6. In the repeated quantum interactions model developed by Attal–Pautrat and
Attal–Joye ([AtP], [AtJ]),

G(h) = e−ihHT ,

where the total Hamiltonian decomposes as

HT = HS ⊗ Ik̂ + Ih ⊗HP +HI(h)

for a system Hamiltonian HS ∈ B(h)sa, a particle Hamiltonian HP ∈ B(k̂)sa and an interaction
Hamiltonian taking the form

HI(h) =
1√
h
iRB +

1

h
0h ⊕HSc

for operators B = VDi ∈ B(h; h⊗ k) and HSc ∈ B(h⊗ k)sa,
This fits perfectly into the general scheme described here. Indeed, setting E(h) = −ihHT(h),

we have

E(h) =

[
−ihHS −

√
hV ∗Di√

hVDi −iHSc

]
− ih(Ih ⊗HP + 0h ⊕ (HS ⊗ Ik))

so

sh(E(h))→
[
−i(HS + ω0(HP)Ih) −V ∗Di

VDi −iHSc

]
as h→ 0,

where ω0 is the vector state corresponding to the vector
(

1
0

)
∈ k̂. Therefore, by Proposition 3.4

and Theorem 3.3, we have the following strong convergence of scaled unitary quantum random
walks to a QS unitary cocycle:

sup
t∈I

∥∥(〈h〉XG(h)
t −XF

t

)
ξ
∥∥→ 0 as h→ 0 (ξ ∈ h⊗Fk)

for any compact subinterval of R+, where

F =

[
−iH − 1

2L
∗L −L∗W

L W − Ih⊗k

]
,

in which

L = e1(−iHSc)VDi, W = e−iHSc and H = HS + ω0(HP)Ih − V ∗Di e4(HSc)VDi

for the entire functions e1 and e4 whose values at z 6= 0 are respectively (ez−1)/z and (sin z−z)/z2.

Remarks. (i) The Hilbert–Schmidt type assumptions on the coefficients of F , employed in the
main theorem of [AtP] (namely Theorem 13), play no role in Theorem 3.3 and Proposition 3.4, as
was pointed out in [B1]. These results therefore extend the validity of that paper, licensing free
use of infinite-dimensional noise.
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(ii) For a discussion of the physical origins of the components of the interaction Hamiltonian

see [BrP]. In brief, the scaling order
√
h corresponds to a weak coupling limit, or van Hove limit

([vHo], [Dav]), whereas the scaling order h corresponds to a low density limit.

4. Products of quantum random walks

In this section we show how, under the convergence scheme of the previous section, pointwise
products of QRWs converge to QS Trotter products of QS cocycles ([L2]). This specialises nicely
to the case where the initial space h is a tensor product and the two cocycles live on separate
tensor components.

Recall the series-product notation (1.3).

Proposition 4.1. Let c, d ∈ k and, for i = 1, 2, let Fi, Gi(h) ∈ B(h ⊗ k̂) (h > 0). Set
G(h) := G1(h)G2(h) and F := F1 � F2, and suppose that

E ĉ
(
sh(G1(h)− I)− F1

)
→ 0 and

(
sh(G2(h)− I − F2

)
Ed̂ → 0 as h→ 0. (4.1)

Then

E ĉ
(
sh(G(h)− I)− F1 � F2

)
Ed̂ → 0 as h→ 0.

Proof. Let h > 0 and set

F1(h) := sh(G1(h)− I), F2(h) := sh(G2(h)− I) and F (h) := sh(G(h)− I).

Then, from the identity

G(h)− I = (G1(h)− I)(G2(h)− I) + (G1(h)− I) + (G2(h)− I),

we see that

F (h)− F1(h)− F2(h) =(h−1/2∆⊥ + ∆)(G1(h)− I)(G2(h)− I)(h−1/2∆⊥ + ∆)

=F1(h)∆F2(h) + hF1(h)∆⊥F2(h).

Thus, as h→ 0,

E ĉF (h)Ed̂

= E ĉF1(h)Ed̂ + E ĉF2(h)Ed̂ + E ĉF1(h)∆F2(h)Ed̂ + hE ĉF1(h)E0̂E
0̂F2(h)Ed̂

→ E ĉF1Ed̂ + E ĉF2Ed̂ + E ĉF1∆F2Ed̂ = E ĉFEd̂,

as claimed. �

As an immediate consequence we have the following result.

Theorem 4.2. Let F1, F2 ∈ B(h⊗ k̂), let T′ and T be total subsets of k containing 0, and suppose

that (G1(h))h>0 and (G2(h))h>0 are families in B(h⊗ k̂) such that, for all c ∈ T′ and d ∈ T, (4.1)
holds. Then, setting G(h) = G1(h)G2(h) and F = F1 � F2, the conclusion (3.7) and refinements
(a) and (b) of Theorem 3.3 hold.

Remarks. (i) If F ∗i � Fi 6 βi∆
⊥, where βi ∈ R (respectively F ∗i � Fi = 0), for i = 1, 2, then the

QS cocycle XF1�F2 may be realised as a QS Trotter product of the quasicontractive(respectively
isometric) QS cocycles XF1 and XF2 (see [L2]).

(ii) The following observation in [JuL] is relevant here. Let X1 and X2 be QS quasicontractive
cocycles on h, each with noise dimension space k. If X1 and X2 ‘commute on h’, in other words
each Fk-slice of X1

s commutes with each Fk-slice of X2
t , for all s, t ∈ R+, then the QS process

X1X2 := (X1
tX

2
t )t>0 is also a QS cocycle. Moreover, if X1 and X2 are both Markov regular then

X1X2 = XF1�F2 , where F1 and F2 are the stochastic generators of X1 and X2.

Example 4.3. Let X(i) be a QS quasicontractive cocycle on hi with noise dimension space k, for
i = 1, 2. These ampliate to QS cocycles on h := h1 ⊗ h2, by setting I1 := Ih1

, I2 := Ih2
,

X2
t := I1 ⊗X(2)

t and X1
t := I2 ⊗̃X(1)

t ,



12 BELTON, GNACIK AND LINDSAY

where B(h1)⊗B(h2 ⊗Fk) is identified with B(h⊗Fk) and the notation ⊗̃ incorporates the tensor
flip from B(h2)⊗B(h1⊗Fk) to B(h⊗Fk). Since the Fk-slices of X1

s and X2
t belong to B(h1)⊗ I2

and I1⊗B(h2) respectively, the cocycles manifestly commute on h. Therefore X1X2 is a QS cocycle
and, if X(i) is Markov regular with stochastic generator F(i) (i = 1, 2), then X1X2 = XF1�F2 ,
where

F2 := I1 ⊗ F(2) and F1 := I2 ⊗̃ F(1),

in which the tilde now denotes the tensor flip from B(h2)⊗B(h1 ⊗ k̂) to B(h⊗ k̂).

In terms of the block matrix decompositions F(i) =
[
Ki Mi

Li Ci−I
]
,

F1 � F2 =
[
K1⊗I2+I1⊗K2+(I2⊗̃M1)(I1⊗L2) (I2⊗̃M1)(I1⊗C2)+I1⊗M2

I2⊗̃L1+(I1⊗̃C1)(I1⊗L2) (I2⊗̃C1)(I1⊗C2)−I

]
In the case of one-dimensional noise this simplifies to[

K1 ⊗ I2 + I1 ⊗K2 +M1 ⊗ L2 M1 ⊗ C2 + I1 ⊗M2

L1 ⊗ I2 + C1 ⊗ L2 C1 ⊗ C2 − I

]
,

whereas the scaled quantum random walk generator takes the form[
I + hK(h)

√
hM(h)√

hL(h) C(h)

]
+ hO(h)

where
[
K(h) M(h)
L(h) C(h)

]
equals[

K1(h)⊗ I2 + I1 ⊗K2(h) +M1(h)⊗ L2(h) M1(h)⊗ C2(h) + I1 ⊗M2(h)
L1(h)⊗ I2 + C1(h)⊗ L2(h) C1(h)⊗ C2(h)

]
and

O(h) =

[
h
(
K1(h)⊗K2(h)

) √
h
(
K1(h)⊗M2(h)

)
√
h
(
L1(h)⊗K2(h)

)
L1(h)⊗M2(h)

]
Remark. This example specialises to the entanglement of bipartite systems under repeated inter-
actions as considered in [ADP], by taking the setup of Example 3.6.
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