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We show that the n-type conductivity of the narrow band gap In(AsN) alloy can be increased

within a thin (�100 nm) channel below the surface by the controlled incorporation of H-atoms.

This channel has a large electron sheet density of �1018 m�2 and a high electron mobility (l> 0.1

m2V�1s�1 at low and room temperature). For a fixed dose of impinging H-atoms, its width

decreases with the increase in concentration of N-atoms that act as H-traps thus forming N-H donor

complexes near the surface. VC 2015 Author(s). All article content, except where otherwise noted, is
licensed under a Creative Commons Attribution 3.0 Unported License.

[http://dx.doi.org/10.1063/1.4906111]

The incorporation of low concentrations (�1%) of

nitrogen-atoms in III-V semiconductor compounds acts to

modify the electronic band structure of the host crystal, thus

enabling band structure engineering and a fine tuning of fun-

damental electronic properties, such as the band gap

energy.1,2 An additional attractiveness of this class of com-

pounds is the possibility of using post-growth hydrogenation,

combined with electron beam lithography and masking3 or

laser writing,4 to create distinct, tailor-made light emitting

regions,3,4 all integrated onto a single substrate. These effects

rely on the ability of hydrogen to modulate the material opti-

cal properties by passivating the electronic activity of nitro-

gen through the formation of di-hydrogen N-H2 complexes.5

Although the physics of hydrogen in wide-band gap

dilute nitrides, such as Ga(AsN), has been researched both

experimentally and theoretically, the effects of hydrogen on

the electronic properties of narrow band gap III-N-Vs, such

as In(AsN), are still largely unknown.6–8 The mechanisms of

hydrogen diffusion, H-N interaction, and, in particular, the

passivation of the electronic activity of nitrogen by hydrogen,

which is well established for wide bandgap III-N-Vs,3 can be

qualitatively different in narrow band gap compounds and

may open perspectives in the exploitation of these materials

in mid-infrared optoelectronics.9 In particular, the narrow

band gap InAs semiconductor has an electron accumulation

layer in the surface region with a Fermi level, EF, located

well above the conduction band minimum.10–12 Hydrogen,

being either an unintentional or intentional dopant, can alter

surface properties;11 furthermore, the electronic behaviour of

monoatomic-H can be modified by nitrogen through the for-

mation of N-H donor complexes.8

In this Letter, we exploit the combined effects of nitro-

gen and hydrogen in InAs and show that the n-type

conductivity of the In(AsN) alloy can be significantly

increased within a thin (�100 nm) channel below the surface

by the controlled incorporation of H-atoms. For a fixed dose

of impinging H-atoms, the width of the surface conducting

channel decreases with the increase in concentration of N-

atoms, which act as H-traps, thus forming N-H donor com-

plexes near the surface. The channel retains a high electron

mobility (l> 0.1 m2V�1s�1 at low and room temperature)

with an electron sheet density of 1018 m�2, significantly

larger than in N-free InAs. This controlled modification of

the surface conductivity and large increase in the electron

sheet density by hydrogen could provide a platform for sev-

eral applications, such as gas and molecular sensing12 and

“all semiconductor” plasmonic waveguides.13

The nominally undoped In(AsN) epilayers (thickness

d¼ 1.0 lm and N-content, [N], of 0, 0.15, 1.1, and 1.9%) were

grown by Molecular Beam Epitaxy (MBE) on a semi-

insulating (SI) (100)-oriented GaAs substrate, which provides

effective isolation for electrical measurements. The wafers

were spun with photoresist and patterned by standard photoli-

thography into Hall bars. Metal contacts consisting of 40 nm of

Ti followed by 400 nm of Au were deposited onto the samples

to provide Ti-Au ohmic contacts. Hydrogen was implanted in

the epilayers using a Kaufman source with ion current den-

sities of a few tens of mA/m2 and an ion-beam energy of

100 eV for a time tH ranging from 9 min to 2 h, impinging H-

doses DH¼ 1020 ions/m2 ([N]> 0) and DH¼ 3� 1021 ions/m2

([N]¼ 0), at temperatures TH¼ 250–300 �C. As shown later,

these relatively low H-doses enable us to incorporate hydrogen

near the surface of the In(AsN) epilayers.

To investigate the H-diffusion profile, the epilayer with

[N]¼ 1.1% was irradiated with deuterium, 2H, for which

Secondary Ion Mass Spectrometry (SIMS) has a higher sen-

sitivity. A Csþbeam with energy of 1 keV incident at 55� on

the sample surface was used in a CAMECA Sc-Ultra mass

spectrometer and negative secondary ions (2H�, 75As�,
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115In–, and 75As14N�) were collected. For the magneto-

transport studies, the magnetic field B was generated either

by a superconducting magnet (up to 14 T) or a room temper-

ature electromagnet (up to 1 T). The magnetic field was

applied parallel to the growth axis z, i.e., B¼ [0, 0, B], or at

an angle h relative to z.

Figure 1 shows the second derivative of the transverse

magnetoresistance, d2Rxx/d
2B, as a function of the inverse

magnetic field, 1/B, for both virgin (V) and hydrogenated (H)

In(AsN) epilayers with [N]¼ 0.15% at T¼ 2 K. For the V-

sample, we observe Shubnikov-de Haas (SdH) oscillations at

B> 1 T with period DL(1/B)¼ (0.26 6 0.02)T�1. Following

the hydrogenation, an additional series of SdH oscillations

emerge at B> 3 T with a shorter period DS(1/B)¼ (0.012

6 0.001)T�1. These short-period oscillations are not observed

in N-free InAs (see inset of Fig. 1) and persist for B tilted at

various angles from h¼ 0� to 90�. The positions in 1/B of the

maxima/minima in d2Rxx/d
2B do not scale as 1/Bcosh,

thus indicating that they are caused by the SdH effect in a

3D electron gas. The periods DS and DL give 3D electron den-

sities of n ¼ ð2e=�hDÞ3=2=ð3p2Þ¼ (4.2 6 0.5)� 1024 m�3 and

(4.3 6 0.5)� 1022 m�3, respectively.

All N-containing epilayers hydrogenated under the
same conditions (DH¼ 1020 ions/m2, tH� 9 min, and TH

¼ 250–300 �C) exhibit a similar behavior, i.e., hydrogen indu-

ces an additional series of short-period SdH oscillations (see

Figure 2(a)). With [N] increasing from 0.15 to 1.9%, these

oscillations emerge at larger B, which corresponds to a

decrease of the electron mobility, and the period DS decreases

from 0.012 to 0.0055 T�1, which implies an increase in the

electron density ns from 4.2� 1024 m�3 to 1.4� 1025 m�3.

These electron densities are almost two orders of magnitude

higher than those found in the virgin samples and those

derived from the long-period SdH oscillations, which vary

from nb¼ 4.3� 1022 m�3 to 5.9� 1023m�3, see Figure 2(b).

The H-induced increase in the electron density tends to satu-

rate to about 10% of the total N-concentration with H-doses

increasing from DH¼ 1020 to 1023m�2, see Figure 2(b).

Correspondingly, the Fermi energy EF remains pinned to a

value in the range 0.2 to 0.4 eV above the conduction band

minimum of In(AsN).14

Given the observation of SdH oscillations with two dis-

tinct electrons densities, we use a conduction model with

two parallel channels15 to determine the width of each chan-

nel and its contribution to the overall Hall resistance, Rxy,

given by

Rxy Bð Þ ¼ lbrbdb þ lsrsds þ lbls lsrbdb þ lbrsdsð ÞB2
� �

B

rbdb þ rsdsð Þ2 þ lsrbdb þ lbrsdsð Þ2B2
;

(1)

FIG. 1. Second derivative of the magnetoresistance, d2Rxx/d
2B, as a function

of the inverse magnetic field, 1/B, at T¼ 2 K for a virgin (dashed line) and

hydrogenated (solid line) In(AsN) epilayer with [N]¼ 0.15%. The hydro-

genation conditions are DH¼ 1020 ions/m2, tH¼ 9 min, and TH¼ 300 �C.

Inset: d2Rxx/d
2B versus 1/B for a virgin (dashed line) and hydrogenated

(solid line) InAs epilayer.

FIG. 2. (a) d2Rxx/d
2B versus 1/B for hydrogenated In(AsN) epilayers with

[N]¼ 0.15, 1.1, and 1.9% (B> 5 T and T¼ 4.2 K). The period DS of the

short-period SdH oscillations is indicated for each sample. (b) Dependence

of the electron density on [N] in hydrogenated In(AsN) as derived from

the period of the SdH oscillations (T¼ 4.2 K). Circles and dots are for

In(AsN) epilayers hydrogenated under the same conditions (DH¼ 1020

ions/m2, tH¼ 9 min, TH¼ 300 �C). The star corresponds to an In(AsN) epi-

layer hydrogenated with higher doses (DH¼ 4�1021 and 1023 ions/m2 for

tH¼ 1 and 6 h, respectively), as reported in Ref. 7. The continuous line

shows the density of N-atoms. Dotted lines are guides to the eye. The inset

is a sketch of an H-bond-center site next to nitrogen, H(BCN), as described

in Ref. 8.
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where ds is the thickness of the surface channel, db ¼ d � ds,

d is the thickness of the epilayer, and rsðbÞ and lsðbÞ are the

electron conductivity and mobility of the surface (s) and

bulk (b) layers, respectively. Figure 3(a) shows least-square

fitting of Eq. (1) to the Hall resistance curves, Rxy(B), for

[N]¼ 0.15, 1.1, and 1.9%, each reproducing accurately the

non-linear B-dependence of Rxy. Each fit uses only one fitting

parameter, ds, with all other parameters fixed to the values

measured experimentally: The carrier densities, ns and nb, of

the two channels are derived from the measured period of

the SdH oscillations; the mobilities, ls and lb, are obtained

from the condition lB> 1 required to observe each set of

oscillations; and the epilayer thickness d is set to the nominal

value of 1 lm (see Table I). The same set of parameters was

used to fit the values of the transverse resistance at B¼ 0 T,

i.e., Rxxð0Þ ¼ LW�1ðrsds þ rbdbÞ�1
, where L¼ 750 lm and

W¼ 250 lm.

Our data analyses indicate that ds decreases from 187 to

77 nm with increasing [N] from 0.15 to 1.9%, from which

we infer a smaller penetration depth of H at higher [N] and

an almost constant electron sheet density (nsds � 1018 m�2).

As shown in Figure 3(b), the SIMS profile for 2H has a box-

shaped form from which we estimate a 2H penetration depth

of �100 nm for [N]¼ 1.1%. This is close to the value of

ds¼ 128 nm inferred from the magneto-transport data. Thus,

we propose that under the small H-doses and relatively low

hydrogenation temperatures used in this work, H-atoms tend

to be effectively trapped by the N-atoms in a thin (�100 nm)

subsurface layer. In this region, the H-atoms can strongly

bind to nitrogen and form H-N donor complexes H(BCN), in

which H occupies the bond-center site between a N- and an

In-atom (see inset of Figure 2(b)).8

We estimate the resistance, RS, of the surface channel to be

RS¼ðenslsÞ�1L=ðdsWÞ¼ 46, 97, and 158 X for [N]¼ 0.15,

1.1, and 1.9%, respectively. These values are comparable to

the total measured resistance (R¼ 42, 82, 58 X) and can be

significantly smaller than the resistance of the bulk layer,

i.e., Rb¼ðenblbÞ�1L=ðdbWÞ¼ 440, 546, and 90 X. The

smaller value of Rb for [N]¼ 1.9% is due the larger bulk

electron density, nb (see Figure 2(b)). Thus, the contribution

of the H-containing subsurface layer to the conductivity is

significant and can be dominant even in thick (�1 lm) epi-

layers. This is in stark contrast to the behavior of N-free

InAs. From the analysis of the Hall resistance using the two

channels model, we find that the H-induced increase of the

electron density is negligible and that the surface accumula-

tion layer has an electron sheet density of �1016 m�2, signifi-

cantly smaller than for In(AsN). Furthermore, whereas in

InAs the charge is located on the surface thus leading to a

bending of the bands and the formation of two-dimensional

(2D) accumulation layer,16 in In(AsN), the spatially uniform

density of donors across the thin (�100 nm) subsurface

region of the epilayer and large electron sheet density lead to

a 3D electron gas near the surface (Figure 3(c)).

We note that despite the incorporation of H and the rel-

atively large electron sheet density (�1018 m�2), the

In(AsN) surface channel has a relatively high mobility

(>0.1m2V�1s�1) at both low and room temperature; also,

the H-containing In(AsN) layer retains a high electron sheet

density after many thermal cycles from T¼ 4 K to 300 K,

and thermal annealing in argon at temperatures up to 473 K,

thus indicating a stable modification of the In(AsN) alloy

by hydrogen, an essential requirement for future applica-

tions of this compound.

FIG. 3. (a) Measured (dots) and calculated (black lines) Hall resistance, Rxy,

versus B for In(AsN) epilayers hydrogenated under the same conditions

(DH¼ 1020 ions/m2, tH¼ 9 min, TH¼ 300 �C). (b) 2H SIMS profile for

[N]¼ 1.1% (DH¼ 1020 ions/m2, tH¼ 9 min, TH¼ 300 �C). (c) Bending of

the conduction band for InAs (dashed line) and In(AsN) (continuous lines)

as derived from the Poisson’s equation. Here, we have used: (i) the measured

electron densities; (ii) the thickness ds of the H-containing layer; and (iii) a

surface Fermi level pinned at a value of 0.4 eV above the conduction band

minimum.16

TABLE I. Parameters of the surface (s) and bulk (b) conductivity channels for hydrogenated In(AsN) epilayers (DH¼ 1020 ions/m2, tH¼ 9 min, TH¼ 300 �C).

These were derived from the period of the Shubnikov de Haas oscillations (ns, nb, ls, lb) and from the analysis of the Hall resistance (Rxy) and transverse

magneto-resistance (Rxx) by a model with two parallel conducting channels, the shallower of which has width ds.

N (%) ns (m�3) nb (m�3) ls (m2V�1s�1) lb (m2V�1s�1) ds (nm)

0.15 (4.2 6 0.5)� 1024 (4.3 6 0.5)� 1022 0.52 6 0.07 1.22 6 0.26 187 6 5

1.1 (8.1 6 1.4)� 1024 (6.9 6 0.7)� 1022 0.19 6 0.03 0.57 6 0.02 126 6 4

1.9 (1.4 6 0.1)� 1025 (5.9 6 0.4)� 1023 0.11 6 0.01 0.38 6 0.07 77 6 3
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In summary, we have shown that the n-type surface

conductivity of In(AsN) is modified by the controlled incor-

poration of H-atoms through the formation of donors within

a well-defined subsurface region of the In(AsN) epilayer.

For a fixed H-dose, the width of this channel decreases with

the increase in concentration of N-atoms, which act as

effective barriers to the H-diffusion thus producing box-

shaped 2H-diffusion profiles and a high electron sheet den-

sity (� 1018 m�2). Our findings will stimulate theoretical

studies of H-diffusion and energy levels in mid-infrared

III-N-Vs, where hydrogen, being either an unintentional or

intentional dopant, affects surface electronic properties.11

Furthermore, our results open up perspectives for employ-

ing mid-infrared In(AsN) in applications that exploit its

n-type surface conductivity, ranging from gas sensing12 to

“all semiconductors” plasmonic waveguides13 for mid-

infrared photonics. In particular, the controlled photodisso-

ciation of H-N donor complexes by a focused laser beam4

or the selective H-incorporation by masking may provide a

route for writing conducting paths and printed circuits on a

single substrate.

This work was supported by EPSRC.
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