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It is shown that a digital simulation of a noise induced phase transition using

an algorithm consistent with the Ito stochastic calculus is in agreement with

the predictions of that theory, whereas experiments with an analogue simulator

yield measured results in agreement with the predictions of the Stratonovich

theory.
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In this letter we report the results of an essentially experimental investigation of a

model noise induced phase transition (NIPT) from the detailed points of view provided by

two theoretical interpretations (due to Ito and Stratonovich) of the white noise process.

Much has been written regarding these interpretations, and in the words of Van Kampen

“ ... the discussion [sic] continues and threatens to grow to grotesque proportions”. The

interested reader will find a clear and succinct review in his papers [1]. Others [2, 3]

have also contributed, but our citations here are by no means complete. A fundamental

work is the paper by Mortensen [4]. Unfortunately “the discussion” has been carried

on exclusively by theoreticians. At the risk of further inflating the already grotesque

proportions, we wish to contribute the first (to our knowledge) experimental measurements

able to distinguish between predictions based on the two interpretations. Our results are

in substantial agreement with the views propounded by Van Kampen [1] and by West et

al. [3], for the case of a dynamical system subject to external, multiplicative noise.

NIPTs were first studied by Horsthemke and Lefever [5-7] in certain model, nonlinear

systems subject to environmental noise. They found that in such systems new, statistically

favored, stationary states, which were unknown to the deterministic system, appear when

the noise intensity exceeds some critical value. Here we shall exploit the fact that the Ito

and Stratonovich interpretations lead to different predictions for the value of this critical

noise intensity.

We are interested in the NIPT which appears in a genetic model [6] represented by

dX/dt =
1

2
−X + λtX(1−X), (1)

where the external noise appears as the parameter λt → λ + σξt. We take 〈λt〉 = λ and

ξtξt+τ = δ(τ) so that σξt is a gaussian, white noise of variance σ2, zero mean, and is

the derivative of the Wiener process Wt. Eq. (1) thus becomes a stochastic differential

equation

dX = f(X,λ)dt+ σg(X)dWt (2)

where f(X,λ) = 1
2
− X + λX(1 − X), and g(X) = X(1 − X) for our model. Van

Kampen has pointed out that eq. (2) is meaningless (he calls it a “pre-equation”) until

a prescription on how to integrate the second term on the right is adopted. If G(Wi)

is a function of the Wiener process, then the Ito convention is represented by a limit of

the sum of finite differences, ΣG(Wi−1)(Wi −Wi−1), where the function G is evaluated

at the left hand point Wi−1. The Stratonovich convention instead adopts a symmetric

evaluation point, ΣG[(Wi + Wi−1)/2][Wi −Wi−1]. These sums have different limits and
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lead to different versions of the Fokker-Planck equation. The Ito version reads

∂tρ(X, t) = −∂Xf(X)ρ(X, t) +
1

2
σ2∂2Xg

2(X)ρ(X, t), (3)

and the Stratonovich is

∂tρ(X, t) = −∂X
(
f +

1

2
σ2g′g

)
ρ+

1

2
σ2∂2Xg

2ρ (4)

where ρ(X, t) is the time dependent probability density, and g′ = ∂Xg(X). These have

the wellknown stationary (∂tρ = 0) solutions

ρs = cg−ν exp

(
(2/σ2)

∫ X

[f(z)/g2(z)]dz

)
, (5)

where ν = 2 (1) in the Ito (Stratonovich) versions, and c is a normalization constant.

For our model, eq. (5) results in

ρs = [X(1−X)]−ν × exp{−[2X(1−X)]−1 − λ ln[(1−X)/X]} × (2/σ2) (6)

which exhibits a single peak for σ < σc and a double peak for σ > σc. For λ = 0 the graph

of ρs is symmetric about X = 1/2, and σ
(0)
c =

√
2 (2), in the Ito (Stratonovich) versions.

For |λ| > 0, one peak is enhanced and σc > σ
(0)
c . The phase diagram is the locus of σc(λ).

We have digitally integrated eq. (1) using a finite difference approximation resembling

the Ito prescription,

Xn+1 −Xn = ∆Xn =

(
1

2
−Xn

)
∆t+ βtnXn(1−Xn), (7)

where a new βtn is chosen for each n from a gaussian distribution with mean value λ

and variance σ2∆t. A set of N values Xt are generated from each term in the time

series Xt = X0 +
∑N

n=1 ∆Xn and the frequency that Xt visited the interval between X

and X + ∆X was computed on the range 0 ≤ X < 1 and stored. For N sufficiently

large, this average frequency distribution → ρs. Typically, N = 2 × 105, ∆X = 0.012,

and ∆t = 0.05. X0 was invariably chosen as the steady state solution of eq. (1) for the

deterministic (σ = 0) case,

X0 = (1/2λ)[λ− 1 + (1 + λ2)1/2], (8)

to minimize initial transient effects. Some example densities from this simulation are

shown in fig. 1(a) where for λ = 0 it is clear that σ
(0)
c is consistent with the Ito prediction.

Fig. 1(b) shows examples for |λ| > 0. By computing many such densities for various
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choices of X we were able to generate the simulated data shown in the phase diagram,

fig. 2, by the solid circles. The error bars were estimated from the difficulty of identifying

that density with a range of ' zero slope. The calculated result, shown by the solid curve

marked “Ito”, was obtained from eq. (6) (with ν = 2). The agreement is quite good

considering the approximate nature of the simulation. No adjustable parameters were

used either in generating the simulated data or the theoretical curve. We believe this

demonstrates that the Ito formulation is correct from a mathematical point of view. It

does not, however, tell us how nature actually behaves.

The authors of refs. [1,3] reach identical conclusions: Since the Stratonovich represen-

tation can be shown to result from the white noise limit of a real noise (i.e. band limited

or nonzero time correlated) problem [8,9], then it should accurately describe the results of

experiments on real dynamical systems. We have found this conclusion to be absolutely

correct by actually measuring density functions on a real analogue simulator of eq. (I),

driven by real noise. The noise correlation time was, however, much smaller than the

dynamical response times of the system within the range over which the simulator was

operated, so that a white noise description is expected to be a good approximation.

The simulator is shown in fig. 3. It is constructed entirely of analogue components

except for the computer, which functions simply as an instrument for measuring and

averaging the density of the noisy voltage X(t). All sum and difference operations, as well

as the two integrations are accomplished with quite standard operational amplifier circuits.

The two multiplications were done with commercially available analogue multipliers∗.

The simulator is accurate to ' 3.8% in the sense that its steady state response with

σ = 0 is in agreement with eq. (7). The slow integrator has a time constant of 3 s, and

serves to stabilize the circuit on 〈X(t)〉 ' X0. We found that if the time constant was

reduced much below about 1 s, the accuracy was seriously impaired. The bandwidth of

the slow integrator is therefore so narrow that the noise at its output is reduced by a

factor ' 2× 10−4. The noise f(X, t)† was independently integrated by the fast integrator

and subsequently added to 〈X(t)〉 at the output, so that X(t) = 〈X(t)〉 +
∫
f(X, t)dt.

The circuit was designed with a scale factor of unity, so that X(t) in volts is numerically

comparable to the results of eqs. (l) and (7).

The densities were measured by digitizing 4096 points in a time series of the voltage

X(t). The frequency that X(t) visited the region between X and X + ∆X was then

∗Analog Devices, type AD534, Norwood MA 02062, USA.
†Electrical engineers will recognize this closed loop circuit as a servo mechanism with error signal

f(X, t). Therefore when 〈X(t)〉 ≡ X0 then 〈X(t)〉 ≡ 0, and this self regulation process operates on a

time scale determined by the slow integrator time constant.
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computed for 0 ≤ X < 1. The first time series was erased and a second obtained with the

second frequency being added to the first. This process was repeated, typically 2048 times,

whence the average frequency → ρs(X). Examples are shown in fig. 4 by the continuous

curves compared to the calculated results (solid circles) from eq. (6). Fig. 4(a) shows a

measurement for σ ' σc = 2 compared to the Stratonovich result (flat curve) and the

Ito result (double peaks) calculated for the same σ. Fig. 4(b) shows examples for σ < σc

and σ > σc where the calculated results are always Stratonovich. For each value of λ, we

were able to find σ ' σc by searching for a density with a single region of approximately

zero slope which separated the single peak set from the double peak set. The results are

shown in fig. 2 by the open circles, and are in excellent agreement with the Stratonovich

phase diagram.

We found that these results were independent of the correlation time of the noise, so

long as this was kept smaller than about 3 ms. (Most of the data were obtained with the

noise generator band limited to an upper cutoff frequency of 300 Hz, though we tested

the results for cutoffs as low as 60 Hz and as high as 1500 Hz.) This result indicates that

the dynamical system sees the noise as approximately white. In addition, changing the

time constant of the fast integrator only caused a change in the noise amplitude at the

integrator output, with no effect on the measured quantities, e.g. σc. The single error

bar shown in fig. 2 for these data, represents a systematic error related to the accuracy

of the simulator. “Detuning” the simulator to reduce the accuracy to ' ±6% compared

to eq. (7) resulted in an upward or downward shift of the entire data set of magnitude

comparable to the error bar shown. Thus the Stratonovich phase line is nicely bracketed

by our data.

We conclude that the Ito prescription for integrating the stochastic differential equa-

tion is mathematically correct in the sense that an algorithm which imitates it produces

results in approximate agreement with the Ito calculations. The Stratonovich results,

however, accurately describe what actually happens in nature.

We are grateful to Werner Horsthemke of the University of Texas at Austin for several

stimulating discussions.
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second tenn on the right is adopted. If C(Wi) is a

function of the Wiener process, then the Ito conven-

tion is represented by a limit of the sum of finite dif·

ferences, ~C(Wi_l)(Wi - Wi-I)' where the func-

tion C is evaluated at the left hand point Wi-I' The

Stratonovich convention instead adopts a symmetric

evaluation point, ~ C[(Wi + Wi-l )/2] [W;--- Wi_ d .
These sums have different limits and lead to different

versions of the Fokker-Planck equation. The Ito ver-

sion reads

arP(X, t) = ~ax f(X) P (X, t) + 4a2a}g2(X) p(X, t),
(3)

and the Stratonovich is

arP = -axU+4a2g'g)p +4a2a}g2p, (4)

where p(X, t) is the time dependent probability den-

sity, and g' = ax g(X). These have the well·known

stationary (arP= 0) solutions

X

Ps(X) = cg-IJexp ((2/02) J [f(z)/g2(z)] dZ), (5)

where II= 2 (1) in the Ito (Stratonovich) versions,

and c is a normalization constant.
For our model, eq. (5) results in

Ps = [X(l - X)]-IJ

X exp{-[2X(1 - X)]-l - X In [(1 - X)/X]}

X (2/02), (6)

which exhibits a single peak for 0 < 0c' and a double

peak for 0> 0c' For X = 0 the graph of Ps is symmet-

ric about X = 1/2, and o~O) = V2 (2), in the Ito (Stra-

tonovich) versions. For IAI > 0, one peak is enhanced

and 0c > o~O). The phase diagram is the locus of

°c(X).
We have digitally integrated eq. (1) using a finite

difference approximation resembling the Ita prescrip-

tion,

where a new (3rn is chosen for each 11 from a gaussian

distribution with mean value X and variance 02j,t. A

set of N values Xt are generated from each term in

the time series X t = X 0 + ~~= I .:lXn' and the fre-

Fig. 1. Digital simulation of Ito densities. (a) for A= 0 and

(b) for" = 1 showing u < uc, u •••Uc and u > uc'

quency that Xt visited the interval between X and X
+ .:lX was computed on the range 0 ~ X < 1 and

stored. For N sufficiently large, this average frequen-

cy distribution ..• Ps' Typically, N = 2 X 105, .:lX

= 0.0 I 2 and .:l t = 0.05. X 0 was invariably chosen as

the steady state solution of eq. (1) for the determi-

nistic (0 = 0) case,

to minimize initial transient effects. Some example

densities from this simulation are shown in fig. Ia

where for X = 0 it is clear that o~O) ::::::../i is consis-

ten t wi th the Ito prediction. Fig. 1b shows exam-

ples for I XI > O. By computing many such densities

for various choices of X we were able to generate

the simulated data shown in the phase diagram,

fig. 2, by the solid circles. The error bars were esti-

mated from the difficulty of identifying that density

with a range of ::::::zeroslope. The calculated result,

shown by the solid curve marked "Ita", was obtained

Figure 1: Digital simulation of Ito densities. (a) for λ = 0 and (b) for λ = 1 showing

σ < σc, σ ' σc, and σ > σc.
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Fig. 2. The phase diagram. The curves show results calculatcd

from eq. (6). The solid circles show the results of the Ito digi-

tal simulation and the open circles are the experimcntal re-

sults obtained with the analogue simulator.

from eq. (6) (with II = 2). The agreement is quite

good considering the approximate nature of the simu-

lation. No adjustable parameters were used either in

generating the simulated data or the theoretical curve.

We believe this demonstrates that the Ito formulation

is correct from a mathematical point of view. It does

not, however, tell us how nature actually behaves.

The authors of refs. [1, 3 J reach identical conclu-

sions: Since the Stratonovich representation can be

shown to result from the white noise limit of a real

noise (i.e. band limited or nonzero time correlated)

problem [8,9J, then it should accurately describe

the results of experiments on real dynamical systems.

We have found this conclusion to be absolutely cor-

rect by actually measuring density functions on a

real analogue simulator of eq. (I), driven by real
noise. The noise correlation time was, however, much

smaller than the dynamical response times of the sys-

tem within the range over which the simulator was

operated, so that a white noise description is ex-

I

~IIHI
~x

pected to be a good approximation.
The simulator is shown in fig. 3. It is constructed

entirely of analogue components except for the com-

puter, which functions simply as an instrument for

mcasuring and averaging the density of the noisy volt-

age X (I). All sum and difference operations, as well as

the two integrations are accomplished with quite

standard operational amplifier circuits. The two mul-

tiplications were done with commercially available

analogue multipliers * 1 .

The simulator is accurate to"'" 3.8% in the sense

that its steady state response with a = 0 is in agree-

ment with eq. (7). The slow integrator has a time con-

stant of 3 s, and serves to stabilize the circuit on

(X(I» "'" Xo' We found that if the time constant was

reduced much below about 1 s, the accuracy was

seriously impaired. The bandwidth of the slow inte·

grator is therefore so narrow that the noise at its out-

put is reduced by a factor ""'2X 10-4• The noise f(X,

t) -t2 was independently integrated by the fast inte·

grator and subsequently added to (X(t» at the out-

put, so that X(t) = (X (1» + fl(X, t)dt. The circuit

was designed with a scale factor of unity, so that

X(t) in volts is numerically comparable to the re-

sults of eqs. (l) and (7).
The densities were measured by digitizing 4096

U Analog Devices. type AD534, Norwood MA 02062, USA.

*2 Electrical engincers will recognize this closed loop circuit

as a servo mechanism with error signal [(X, 0. Therefore

when <X (1» =0 X 0 then <[(X, t» =0 0, and this self regula-

tion process operates on a time seale determined by the

slow integrator time constant.

Figure 2: The phase diagram. The curves show results calculated from eq. (6). The

solid circles show the results of the Ito digital simulation and the open circles are the

experimental results obtained with the analogue simulator.
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from eq. (6) (with II = 2). The agreement is quite

good considering the approximate nature of the simu-

lation. No adjustable parameters were used either in

generating the simulated data or the theoretical curve.

We believe this demonstrates that the Ito formulation

is correct from a mathematical point of view. It does

not, however, tell us how nature actually behaves.

The authors of refs. [1, 3 J reach identical conclu-

sions: Since the Stratonovich representation can be

shown to result from the white noise limit of a real

noise (i.e. band limited or nonzero time correlated)

problem [8,9J, then it should accurately describe

the results of experiments on real dynamical systems.

We have found this conclusion to be absolutely cor-

rect by actually measuring density functions on a

real analogue simulator of eq. (I), driven by real

noise. The noise correlation time was, however, much

smaller than the dynamical response times of the sys-

tem within the range over which the simulator was

operated, so that a white noise description is ex-
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~IIHI
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pected to be a good approximation.

The simulator is shown in fig. 3. It is constructed

entirely of analogue components except for the com-

puter, which functions simply as an instrument for

mcasuring and averaging the density of the noisy volt-

age X (I). All sum and difference operations, as well as

the two integrations are accomplished with quite

standard operational amplifier circuits. The two mul-

tiplications were done with commercially available

analogue multipliers * 1 .

The simulator is accurate to"'" 3.8% in the sense

that its steady state response with a = 0 is in agree-

ment with eq. (7). The slow integrator has a time con-

stant of 3 s, and serves to stabilize the circuit on

(X(I» "'" Xo' We found that if the time constant was

reduced much below about 1 s, the accuracy was

seriously impaired. The bandwidth of the slow inte·

grator is therefore so narrow that the noise at its out-

put is reduced by a factor ""'2X 10-4• The noise f(X,

t) -t2 was independently integrated by the fast inte·

grator and subsequently added to (X(t» at the out-

put, so that X(t) = (X (1» + fl(X, t)dt. The circuit

was designed with a scale factor of unity, so that

X(t) in volts is numerically comparable to the re-

sults of eqs. (l) and (7).
The densities were measured by digitizing 4096

U Analog Devices. type AD534, Norwood MA 02062, USA.

*2 Electrical engincers will recognize this closed loop circuit

as a servo mechanism with error signal [(X, 0. Therefore

when <X (1» =0 X 0 then <[(X, t» =0 0, and this self regula-

tion process operates on a time seale determined by the

slow integrator time constant.

Figure 3: The analogue simulator.

9



l
I

Fig. 4. Densities measured at A = 0 on the analogue simulator

(continuous curves) compared to those calculated from eq.

(6) (solid circles). (a) ror 0= 2.n. The Stratoflllvil'h rcsult for

o~O) = 2 is in good agreement with the measured density.

The !to prediction, also calculated for a = 2 is the double

peaked curve. (b) ~Ieasured densities compared to the Stra-

tonovkh calculations for a = 1.5 (single peak) and for a

= 2.5 (double peak).

points in a time series of the voltage X(t). The fre-

quency that X(t) visited the region between X and

X + ~X was then computed for 0";;; X < I. The first

time series was erased and a second obtained with the

second frequency being added to the first. This pro-

cess was repeated, typically 2048 times, whence the

average frequency -+Ps(X). Examples are shown in

fig. 4 by the continuous curves compared to the cal-

culated results (solid circles) from eq. (6). Fig. 4a

shows a measurement for a ~ 0c = 2 compared to the

Stratonovich result (flat curve) and the Ito result

(double peaks) calculated for the same o. Fig. 4b

shows examples for 0< 0c' and 0> 0c' where the

calculated results are always Stratonovich. For each

value of A, we were able to find a "'" 0c by searching

for a density with a single region of approximately

zero slope which separated the single peak set from

the double peak set. The results are shown in fig. 2

by the open circles, and are in excellent agreement

with the Stratonovich phase diagram.

We found that these results were independent of

the correlation time of the noise, so long as this was

kept smaller than about 3 ms. (Most of the data were

obtained with the noise generator band limited to an

upper cutoff frequency of 300 Hz, though we tested

the results for cutoffs as low as 60 Hz and as high as

1500 Hz.) This 'result indicates that the dynamical

system sees the noise as approximately white. In ad-

dition, changing the time constant of the fast inte-

grator only caused a change in the noise amplitude

at the integrator output, with no effect on the mea-

sured quantities, e.g. 0c' The single error bar shown

in fig. 2 for these data, represents a systematic error

related to the accuracy of the simulator. "Detuning"

the simulator to reduce the accuracy to ~±6% com-

pared to eq. (7) resulted in an upward or downward

shift of the entire data set of magnitude comparable

to the error bar shown. Thus the Stratonovich phase

line is nicely bracketed by our data.

We conclude that the Ito prescription for integrat-

ing the stochastic differential equation is mathemati-

cally correct in the sense that an algorithm which imi-

tates it produces results in approximate agreement

with the Ito calculations. The Stratonovich results,

however, accurately describe what actually happens

in nature.

We are grateful to Werner Horsthemke of the Uni·

versity of Texas at Austin for several stimulating dis-

cussions.
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Figure 4: Densities measured at λ = 0 on the analogue simulator (continuous curves) com-

pared to those calculated from eq. (6) (solid circles). (a) For σ = 2.0. The Stratonovich

result for σ
(0)
c = 2 is in good agreement with the measured density. The Ito prediction,

also calculated for σ = 2 is the double peaked curve. (b) Measured densities compared to

the Stratonovich calculations for σ = 1.5 (single peak) and for σ = 2.5 (double peak).
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