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Abstract

Let PΩ,tA denoted the Pauli operator on a bounded open region Ω ⊂ R2

with Dirichlet boundary conditions and magnetic potential A scaled by some
t > 0. Assume that the corresponding magnetic field B = curlA satisfies
B ∈ L logL(Ω) ∩ Cα(Ω0) where α > 0 and Ω0 is an open subset of Ω of
full measure (note that, the Orlicz space L logL(Ω) contains Lp(Ω) for any
p > 1). Let NΩ,tA(λ) denote the corresponding eigenvalue counting function.
We establish the strong field asymptotic formula

NΩ,tA(λ(t)) =
t

2π

∫
Ω

|B(x)| dx + o(t)

as t → +∞, whenever λ(t) = Ce−ct
σ

for some σ ∈ (0, 1) and c, C > 0.
The corresponding eigenfunctions can be viewed as a localised version of the
Aharonov-Casher zero modes for the Pauli operator on R2.

2010 Mathematics Subject Classification: 35P20, 35Q40, 35J47.
Keywords: Pauli operator, eigenvalue asymptotics, approximate zero modes.

1 Introduction

Let Ω ⊂ R2 be a bounded open region and A = (A1, A2) ∈ L2
loc(Ω,R2) a magnetic

potential. The corresponding magnetic momentum operator is then PA = −i∇−A,
where ∇ = (∇1,∇2) denotes the gradient operator on R2. We wish to consider
the Pauli operator PΩ,A on Ω with magnetic potential A. For Dirichlet boundary
conditions this can be defined as the non-negative operator PΩ,A associated to the
closure of the form

pΩ,A(u) = ‖PA,+u+‖2 + ‖PA,−u−‖2, u =

(
u+

u−

)
∈ C∞0 (Ω,C2), (1)
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where PA,± = PA,1 ± iPA,2. Set B = curlA = ∇1A2 − ∇2A1, the magnetic field
associated with the potential A (initially defined as a distribution). A straightfor-
ward formal calculation leads to the Lichnerowicz formula

PΩ,A =

(
HΩ,A 0

0 HΩ,A

)
−
(
B 0
0 −B

)
, (2)

where HΩ,A = P 2
A,1+P 2

A,2 is the magnetic Schrödinger operator. If we assume that
B belongs to the Orlicz space L logL(Ω) then (2) can be rigorously justified and
used to help show that PΩ,A has a compact resolvent and hence discrete spectrum
(see Proposition 2.4). Enumerate the eigenvalues of PΩ,A (including multiplicities)
as 0 ≤ λ1(PΩ,A) ≤ λ2(PΩ,A) ≤ . . . , and introduce the corresponding counting
function

NΩ,A(λ) = #
{
n ∈ N : λn(PΩ,A) ≤ λ

}
, λ ∈ R.

We are interested in the behaviour of NΩ,A in the strong field regime. Fixing A
we consider NΩ,tA(λ(t)) for the scaled potential tA and λ(t) ≤ O(t) in the limit
t → +∞. A simple rescaling shows that this is equivalent to the semi-classical
regime.

When λ(t) = O(t) the quantity NΩ,tA(λ(t)) obeys a natural Weyl type asymp-
totics. To state this precisely introduce auxiliary functions ν− and ν+ which are,
respectively, the maximal lower and minimal upper semi-continuous extensions of

ν(b, λ) =
|b|
2π

#
{
m ∈ Z : 2|mb| ≤ λ

}
, λ, b ∈ R, b 6= 0, λ /∈ 2|b|N0. (3)

Theorem 1.1. Suppose B ∈ L logL(Ω)∩C (Ω0) where Ω0 ⊆ Ω is open and Ω\Ω0

has zero (Lebesgue) measure. If λ(t) = Λt+ o(t) for some Λ ∈ R then

lim inf
t→∞

1

t
NΩ,tA(λ(t)) ≥

∫
Ω

ν−(B(x),Λ) dx

and

lim sup
t→∞

1

t
NΩ,tA(λ(t)) ≤

∫
Ω

ν+(B(x),Λ) dx.

Numerous results similar or related to Theorem 1.1 have been obtained. Some
of the earliest work ([3], [27]) looked at spectral asymptotics for magnetic (Schrö-
dinger) bottles. While these works focused on a different class of operators the
ideas of [3] in particular form the basis of our approach to Theorem 1.1 (see also
[28]). For magnetic Schrödinger operators on a region various two term spectral
asymptotic questions have been considered in both the Dirichlet and Neumann
cases (see [14], [11], [4], [12] and references therein); whilst giving more precise
details, these results also require greater regularity (and other conditions) on Ω
and B.

In another direction, various authors have considered bound states of the Pauli
operator with an additional electric potential. The presence of the latter dis-
tinguishes the strong field and semi-classical regimes, leading to multi-parameter
problems. The semi-classical behaviour of sums of negative eigenvalues of the form
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∑
n|λn|γ , γ > 0 was considered in [20], [8], [25] and [9] for example. These works

all rely on a priori bounds on the eigenvalue sums which have the correct order
in the parameters; typically Lieb-Thirring type inequalities have been developed
for this purpose. However eigenvalue counting corresponds to the case γ = 0 (also
known as the CLR inequality) and is always excluded in dimension 2.

The asymptotic bounds in Theorem 1.1 remain finite provided B ∈ L1(Ω). We
use the slightly stronger condition B ∈ L logL(Ω) to obtain a priori bounds on
NΩ,tA(λ(t)) (covering the lack of a suitable Lieb-Thirring/CLR inequality); in turn
these bounds are derived from estimates in [26] which don’t extend to cover the L1

case. The continuity condition B ∈ C (Ω0) relates to our method for approximating
B locally by a constant field. While it is likely that at least the latter condition
can be relaxed the optimal regularity condition for B remains unclear.

The asymptotic lower and upper bounds given by Theorem 1.1 differ if the set{
x ∈ Ω : 2m|B(x)| = Λ for some m ∈ N0

}
(4)

has non-zero measure. When Λ 6= 0 this is a non-generic situation for variable
fields. On the other hand, when λ(t) = o(t) (4) is the whole of Ω for any B; the
lower bound in Theorem 1.1 then reduces to 0 while the upper bound becomes

lim sup
t→∞

1

t
NΩ,tA(λ(t)) ≤ ΦΩ(|B|), (5)

where

ΦΩ(b) =
1

2π

∫
Ω

b(x) dx

is the flux of a magnetic field b on Ω (see the end of Section 2 for some further
details). It transpires that the upper bound gives the correct asymptotics for even
sub-exponentially decaying λ(t). Our main result is the following (in which Cα is
used to denote the space of Hölder continuous functions).

Theorem 1.2. Suppose B ∈ L logL(Ω) ∩ Cα(Ω0) where α > 0, Ω0 ⊆ Ω is open
and Ω \ Ω0 has zero (Lebesgue) measure. If λ(t) ≥ Ce−ct

σ

for some constants
σ ∈ (0, 1) and c, C > 0 then

lim inf
t→∞

1

t
NΩ,tA(λ(t)) ≥ ΦΩ(|B|).

For strong fields this result guarantees the existence of approximately ΦΩ(|tB|)
sub-exponentially small eigenvalues of the Pauli operator. The corresponding
eigenfunctions, which we informally term approximate zero modes, can be viewed
as a local version of the Aharonov-Casher zero modes. The latter are a dimension
b|ΦR2(tB)|c set of spin-definite zero energy bound states of the Pauli operator on
R2; the spin is aligned with the dominate sign of B (see [2] and [10]). In the strong
field limit strong localisation should confine such states to regions where B has
its dominate sign; indeed such localisation of the Aharonov-Casher construction
lies at the heart of our argument (see below and Section 4 for further details). A
different manifestation of this localisation, relating to the ground state density of
the Pauli operator on R2, was obtained in [7].
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Remark 1.1. The magnetic potential A (and hence the Pauli operator PΩ,A) is
not uniquely defined by B. If Ω is simply connected different choices of A lead to
unitarily equivalent Pauli operators (see Proposition 2.7) so the counting function
NΩ,A will not depend on the particular choice of A. For more general regions this
is no longer true; in this case our results hold independently of the choice of A.

Remark 1.2. It is possible to consider operators corresponding to non-Dirichlet
boundary conditions. While there is a natural choice for a Neumann version of
the magnetic Schrödinger operator (which has received particular attention in con-
nection with the Ginzburg-Landau theory of superconductivity), it is less clear how
one should define a Neumann version of the Pauli operator. One possibility would
be to use the maximal closed extensions of PA,± in (1); however such an operator
does not have a compact resolvent (even when A ≡ 0), leading to a very different
class of spectral problems. Alternatively one could use (2) to define a “Neumann”
Pauli operator in terms of the Neumann magnetic Schrödinger operator. With
some additional restrictions on the regularity of Ω (such as having a Lipschitzian
boundary) Theorems 1.1 and 1.2 can be extended to cover such operators (see Re-
mark 2.6 for some further details). However the operator defined in this manner
is not always non-negative (so cannot be the square of a Dirac operator). Only
relatively crude estimates for the asymptotics of the size and number of negative
eigenvalues follow from the immediate extensions to our results; in particular, for
any ε > 0 the number of eigenvalues below −εt is o(t) as t→ +∞. Further work
would be needed to determine whether (the majority of) those eigenvalues guar-
anteed by Theorem 1.2 have small absolute value (so can be regarded as belonging
to approximate zero modes).

Remark 1.3. When B is constant the spectra of the Pauli and magnetic Schrödin-
ger operators on R2 reduces to a set Landau levels. For non-constant fields this
level structure is destroyed, with the typical exception of the zero energy level of
the Pauli operator (the Aharonov-Casher zero modes). On the other hand the
lower and upper bounds given by Theorem 1.1 will differ for any Λ corresponding
to a Landau level generated by a value at which B is locally constant on some
region (these are precisely the Λ for which the set in (4) has non-zero measure). It
is likely that a version of Theorem 1.2 could be extended to such cases. A related
problem of eigenvalue accumulation near Landau levels after perturbation by a
decaying electric potential has been considered; see [6] and references therein.

Precise definitions and various preliminary results are collected in Section 2;
in particular, the Lichnerowicz formula (2) is justified (Proposition 2.4), a priori
bounds on NΩ,A(λ) are obtained (Proposition 2.5) and gauge transformations are
discussed (Proposition 2.7).

The proof of Theorem 1.1 is given in Section 3. This follows a standard local-
isation type argument (c.f., [3], [25]) using a sequence of piecewise constant ap-
proximations to B based on increasingly fine tilings of Ω0 by squares (Section 3.2).
The corresponding approximation results for quadratic forms are obtained in Sec-
tion 3.3 while the necessary eigenvalue counting function results for constant fields
on a square are given in Section 3.1 (these are taken almost directly from [3]). The
bounds in Theorem 1.1 are finally pieced together in Section 3.4.
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Theorem 1.2 is justified in Section 4 by initially reducing the problem to the
case of fields of constant sign on a disc (Section 4.1). Suitable test functions on
the disc can be constructed from holomorphic functions with the help of the “real
gauge” transformation introduced in [2]; these functions need to be cut-off at the
boundary, a process which ultimately leads to a spectral problem on the circle
(Section 4.2, with further technical details in Sections 4.3 and 4.4).

Notation

For a bounded open region Ω ⊂ R2 we use C (Ω), Cα(Ω) and O(Ω) to denote
the space of continuous, Hölder continuous and holomorphic functions on Ω, with-
out restriction on behaviour near the boundary; we replace Ω with Ω to indicate
uniform versions of the same spaces. For k ∈ N0 we use Ck,α(Ω) and W k,2(Ω)
to denote the Hölder-Zygmund and Sobolev space consisting of functions with k
derivatives in Cα(Ω) and L2(Ω) respectively. The completion of C∞0 (Ω) inW k,2(Ω)

is denoted by W k,2
0 (Ω), while Ck0 (Ω) denotes the space of k-times continuously

differentiable functions with compact support contained in Ω. Unless otherwise
indicated norms and inner-products are defined in the relevant L2 sense.

The open disc with radius R > 0 and centre a ∈ R2 is denoted DR(a). When
a = 0 or R = 1 these values are omitted; in particular, D is the open unit disc.
We also set (x)+ = max{x, 0}, the positive part of x ∈ R.

General positive constants are denoted by C, with numerical subscripts used
to keep track of particular constants in subsequent discussions.

2 Preliminaries

Let A ∈ L2
loc(Ω,R2). Consider the Dirac operator, initially defined by

DAu = σ.PAu =

(
0 PA,−

PA,+ 0

)(
u+

u−

)
(6)

for u ∈ C∞0 (Ω,C2). The operator DA is densely defined and symmetric, hence
closable; by a slight abuse of notation we will also denote the closure by DA.

Remark 2.1. Alternatively we can proceed by considering the operators PA,± sep-
arately. Initially densely defined on C∞0 (Ω) these operators satisfy PA,± ⊆ P ∗A,∓
and are hence closable. Using the same notation for the closures (6) then holds
for all u ∈ Dom(DA) = Dom(PA,+)×Dom(PA,−).

Define a quadratic form by

pΩ,A(u) = ‖DAu‖2 = ‖PA,+u+‖2 + ‖PA,−u−‖2, u ∈ Dom(DA).

Since DA is a closed operator pΩ,A is a closed non-negative quadratic form. The
Pauli operator on Ω with magnetic potential A and Dirichlet boundary conditions
is defined to be the corresponding self-adjoint operator given by the representation
theorem; we’ll use the notation PΩ,A.
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Remark 2.2 (Case A ≡ 0). Since Ω is bounded (‖∇1u‖2 + ‖∇2u‖2)1/2 gives an
equivalent norm on the Sobolev space W 1,2

0 (Ω) (see [1]). Also, for u ∈ C∞0 (Ω),

‖P0,±u‖2 = ‖∇1u‖2 + ‖∇2u‖2 ∓ i
∫

Ω

(
∇1u∇2u−∇2u∇1u

)
= ‖∇1u‖2 + ‖∇2u‖2.

Completion then gives Dom(D0) = W 1,2
0 (Ω,C2) with pΩ,0(u) � ‖u‖2

W 1,2
0 (Ω,C2)

.

Remark 2.3. Since PA,±u = −P−A,∓u when u ∈ C∞0 (Ω) we get pΩ,A(J u) =
pΩ,−A(u) for all u ∈ Dom(pΩ,A) = Dom(pΩ,−A), where J is the anti-linear iso-
metric involution on L2(Ω,C2) defined by

J u =

(
u−
u+

)
, u =

(
u+

u−

)
∈ L2(Ω,C2).

It follows that JPΩ,AJ = PΩ,−A, and so PΩ,A and PΩ,−A have the same spectrum.

In order to make use of results for Schrödinger operators we will need a rigorous
form of the Lichnerowicz formula (2). We begin by introducing the magnetic
Schrödinger operator in a way that parallels our introduction of the Pauli operator.

For l = 1, 2 we initially define the operator PA,l = −i∇l −Al on C∞0 (Ω). This
operator is densely defined and symmetric, hence closable; by a slight abuse of
notation we will also denote the closure by PA,l. Setting

HA(Ω) = Dom(PA,1) ∩Dom(PA,2),

the quadratic form defined by

hΩ,A(u) = ‖PA,1u‖2 + ‖PA,2u‖2, u ∈ HA(Ω)

is closed and non-negative. The magnetic Schrödinger operator on Ω with mag-
netic potential A and Dirichlet boundary conditions is defined to be the corre-
sponding self-adjoint operator given by the representation theorem; we’ll use the
notation HΩ,A.

Remark 2.4 (Case A ≡ 0). It is straightforward to see that H0(Ω) = W 1,2
0 (Ω) with

hΩ,0(u) � ‖u‖2
W 1,2

0 (Ω)
(c.f., Remark 2.2). Furthermore HΩ,0 = −∆Ω, the laplacian

on Ω with Dirichlet boundary conditions.

We need to add a scalar potential to the operator HΩ,A. Since HΩ,A is a
semi-bounded self-adjoint operator this can be done conveniently via the standard
KLMN construction if the scalar potential is relatively form bounded with respect
to HΩ,A with relative bound less than 1 (see [22], for example). If V ∈ L1

loc(Ω) is
a real-valued function then the form given by

v(u) = 〈u, V u〉 (7)

is certainly defined for u ∈ C∞0 (Ω). To extend v to H0(Ω) = W 1,2
0 (Ω) we need to

restrict V to the Orlicz space L logL(Ω). More precisely, introduce the N -function

A (t) = (t+ 1) log(t+ 1)− t, t ≥ 0;
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we then define L logL(Ω) to be the Orlicz space LA (Ω) (see [1]). It is straight-
forward to check that Lp(Ω) ⊂ LA (Ω) ⊂ L1(Ω) for any p > 1. Now sup-
pose V ∈ LA (Ω). By [26, Lemma 2.1] (see also Remark 2.5 below) v given
by (7) then defines a bounded form on W 1,2

0 (Ω), while the corresponding oper-
ator TV is compact. Viewing TV as multiplication by V acting as a mapping
W 1,2

0 (Ω) → (W 1,2
0 (Ω))∗, it follows that V is relatively form compact and hence

infinitesimally form bounded with respect to HΩ,0. The KLMN construction can
then be used to define HΩ,0 − V . Since the Dirichlet laplacian −∆Ω = HΩ,0 has a
compact resolvent (see [23], for example) the infinitesimal form boundedness of V
implies HΩ,0 − V also has a compact resolvent (see [17]).

Remark 2.5. The results we need from [26] are mostly stated from the case of
Neumann boundary conditions under the assumption that Ω has a Lipschitzian
boundary. However it is easy to see that they also hold in the Dirichlet case for
arbitrary bounded Ω.

The results of the above discussion can be generalised to include a magnetic
potential A with the help of the diamagnetic inequality; a convenient form of the
latter can be found in [15].

Proposition 2.1. Let A ∈ L2
loc(Ω) and V ∈ LA (Ω). Then (multiplication by) V

is an infinitesimally form bounded perturbation of HΩ,A. Furthermore the semi-
bounded self-adjoint operator HΩ,A − V (resulting from the KLMN construction)
has a compact resolvent.

Proof. The discussion proceeding the result covers the case A ≡ 0. Using [15,
Theorem 3.3; see also Remark 3.4(i)] it follows that V is infinitesimally form
bounded with respect to HΩ,A, while, for t > 0,

e−t(HΩ,A−V ) 4 e−t(HΩ,0−V ) (8)

(where S 4 T means that S is dominated by T ). However if S 4 T and T is
compact then S must also be compact (see [5], [21]), while for a semi-bounded
self-adjoint operator Q, e−Q is compact iff Q has a compact resolvent. It follows
that HΩ,A − V has a compact resolvent.

Our a priori bounds for the counting function of the Pauli operator can be
obtained from suitable bounds on the number of negative eigenvalues of HΩ,A−V .
The latter will be obtained through a two step process; results from [26] allow us to
estimate the counting function for HΩ,0−V under the condition that V ∈ LA (Ω),
while the techniques of [24] allow us to use the diamagnetic inequality (see (8)) to
generalise to HΩ,A − V .

Proposition 2.2. Let A ∈ L2
loc(Ω) and V ∈ LA (Ω). Then

#
{
λn(HΩ,A − V ) ≤ 0

}
≤ C1‖V ‖LA (Ω).

Proof. Since the positive and negative parts of any V ∈ LA (Ω) also belong to
LA (Ω), while the addition of a positive scalar potential can only raise eigenvalues,
it suffices to prove the result assuming V ≥ 0.
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Now (HΩ,0)1/2 : H0(Ω) → L2(Ω) is an isomorphism (this is equivalent to the

fact that hΩ,0(u) � ‖u‖2
W 1,2

0 (Ω)
on H0(Ω) = W 1,2

0 (Ω); see Remark 2.4). Thus the

expression SV = ((HΩ,0)−1/2)∗ TV (HΩ,0)−1/2 defines a non-negative self-adjoint
operator on L2(Ω). By [26, Corollary 2.3] TV and hence SV belong to the weak
first Schatten class with ‖SV ‖1,w ≤ C1,1‖V ‖LA (Ω)

for some constant C1,1; in other
words

0 ≤ λn(SV ) ≤ C1,1‖V ‖LA (Ω)
n−1, n ∈ N.

A standard Birman-Schwinger type argument then gives

#
{
λn(HΩ,0 − γV ) ≤ 0

}
≤ C1,1γ‖V ‖LA (Ω), γ ≥ 0.

Denote the right hand side as µ(γ) and let µ̂ be the Laplace transform of µ; in
particular γ−1µ̂(γ−1) = µ(γ). Now (8) (with V ≡ 0) gives e−tHΩ,A 4 e−tHΩ,0 .
Using [24, Theorem 3] we then obtain

#
{
λn(HΩ,A − γV ) ≤ 0

}
≤ eγ−1µ̂(γ−1) = C1γ‖V ‖LA (Ω), γ ≥ 0,

where C1 = eC1,1.

We can now compare the Pauli operator with the magnetic Schrödinger oper-
ator. We begin by looking at the corresponding forms. For any A ∈ L2

loc(Ω) and
u ∈ C∞0 (Ω) we can define b(u) to be the distribution B = ∇1A2 − ∇2A1 acting
on the test function |u|2 ∈ C∞0 (Ω). If B ∈ L1

loc(Ω) then

b(u) =

∫
Ω

B|u|2 = 〈u,Bu〉;

that is, b is just the form associated with the operator of multiplication by B.

Lemma 2.3. Let A ∈ L2
loc(Ω). If u ∈ C∞0 (Ω,C2) then

pΩ,A(u) = hΩ,A(u+)− b(u+) + hΩ,A(u−) + b(u−). (9)

Proof. If v ∈ C∞0 (Ω) then ‖PA,±v‖2 = ‖PA,1v‖2 + ‖PA,2v‖2 ∓ 2 Im〈PA,1v, PA,2v〉
while

2 Im〈PA,1v, PA,2v〉 =

∫
Ω

[
−i∇1v∇2v −∇1v A2v +A1v∇2v − iA1A2|v|2

+ i∇2v∇1v −A2v∇1v +∇2v A1v + iA2A1|v|2
]

=

∫
Ω

[
−A2∇1|v|2 +A1∇2|v|2

]
.

The final expression is just the distribution ∇1A2−∇2A1 = B acting on |v|2. The
result now follows from the definitions of pΩ,A, hΩ,A and b.

If B ∈ LA (Ω) the operators HΩ,A∓B can be defined as discussed above. The
corresponding forms hΩ,A∓b have core C∞0 (Ω), while C∞0 (Ω,C2) is a core for pΩ,A.
The previous result then gives Dom(pΩ,A) = HA(Ω,C2), with (9) extending to all
u ∈ HA(Ω,C2). The operator identity (2) now follows, allowing Proposition 2.1
to be applied to PΩ,A; we summarise what we need as follows.
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Proposition 2.4. Suppose A ∈ L2
loc(Ω) with B ∈ LA (Ω). Then the Lichnerowicz

formula (2) holds as an operator identity for the Pauli and magnetic Schrödinger
operators with Dirichlet boundary conditions. Furthermore PΩ,A has a compact
resolvent and hence discrete spectrum.

Proposition 2.2 can now be used to obtain a priori bounds on NΩ,A(λ). However
we will need uniform versions of these bounds for sub-regions of Ω. If Ω′ ⊆
Ω is open we can restrict A to Ω′ and consider the Pauli operator PΩ′,A with
corresponding counting function NΩ′,A(λ). Using χΩ′ to denote the characteristic
function for Ω′ Proposition 2.4 and a simple variational argument then give

NΩ′,A(λ) ≤ #
{
λn(HΩ,A − (λ+B)χΩ′) ≤ 0

}
+ #

{
λn(HΩ,A − (λ−B)χΩ′) ≤ 0

}
,

for any λ ∈ R. However ‖(λ±B)χΩ′‖LA (Ω) ≤ ‖B‖LA (Ω′) + |λ| ‖1‖LA (Ω′), so
Proposition 2.2 now completes the following.

Proposition 2.5. Suppose A ∈ L2
loc(Ω) with B ∈ LA (Ω). Then

NΩ′,A(λ) ≤ 2C1

(
‖B‖LA (Ω′) + |λ|‖1‖LA (Ω′)

)
for any open Ω′ ⊆ Ω; the constant C1 may depend on Ω but not on Ω′.

The magnetic potentials A,A′ ∈ L2
loc(Ω) are gauge equivalent if A′ = A+∇ψ

for some ψ ∈ W 1,2
loc (Ω). It follows that curlA′ = curlA (as distributions), so A′

and A generate the same magnetic field. The converse is not generally true; a
topological condition on Ω is also required. The following is a particular case of
[19, Lemma 1.1].

Lemma 2.6. Suppose Ω is simply connected. If A,A′ ∈ L2
loc(Ω) satisfy curlA′ =

curlA (as distributions) then there exists ψ ∈W 1,2
loc (Ω) with A′ = A+∇ψ.

Now suppose A,A′ ∈ L2
loc(Ω) are gauge equivalent and V ∈ LA (Ω) (so that

the operators HΩ,A − V and HΩ,A′ − V correspond to the closures of the semi-

bounded forms hΩ,A − v and hΩ,A′ − v on C∞0 (Ω)). Choosing ψ ∈ W 1,2
loc (Ω)

with A′ = A + ∇ψ, the argument given for the proof of [19, Theorem 1.2] then
shows the unitary operator Uψ of multiplication by eiψ gives a unitary equivalence
HΩ,A′−V = Uψ(HΩ,A−V )U∗ψ (note that [19, Theorem 1.2] is stated for Ω = R2 and
only assumes curlA = curlA′; however the former is only used to guarantee the
existence of ψ, after which the proof easily adapts to cover arbitrary Ω). Coupled
with Proposition 2.4 and Lemma 2.6 we arrive at the following.

Proposition 2.7. Suppose A,A′ ∈ L2
loc(Ω) satisfy A′ = A + ∇ψ for some ψ ∈

W 1,2
loc (Ω) (which follows from the condition curlA′ = curlA when Ω is simply

connected). Also suppose B ∈ LA (Ω). Then Uψ gives the unitary equivalence
PΩ,A′ = UψPΩ,AU

∗
ψ; in particular, PΩ,A and PΩ,A′ have the same spectrum.
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Remark 2.6 (Maximal operators). For l = 1, 2 the operator PA,l is the minimal
closed extension of the magnetic momentum operator initially defined on C∞0 (Ω).
The corresponding maximal closed extension thus satisfies Pmax

A,l = P ∗A,l. The

closed non-negative quadratic form hmax
Ω,A(u) = ‖Pmax

A,1 u‖2 + ‖Pmax
A,2 u‖2 can be used

to define the magnetic Schrödinger operator on Ω with magnetic potential A and
Neumann boundary conditions (see [15] for further discussion of this operator).

Neumann versions of Propositions 2.1 and 2.2 are possible if we assume Ω has
some additional regularity. In all cases it is sufficient to assume the existence of a
linear extension operator which is continuous as a map W k,2(Ω) → W k,2(R2) for
k = 0, 1 (such operators exist if Ω has a Lipschitzian boundary). Assuming Ω sat-
isfies such a condition and B ∈ LA (Ω) we can use (2) to define a “Neumann” Pauli
operator from the Neumann magnetic Schrödinger operator; denote this operator
by P ′Ω,A, with corresponding form p′Ω,A. It is then possible to extend Theorems
1.1 and 1.2 to cover P ′Ω,A, for the most part simply by using a combination of
variational arguments (note that p′Ω,A is an extension of pΩ,A) and straightfor-
ward modifications to the given proofs; the most notable exception is Proposition
2.5 and its application where, to retain uniformity in Ω′, one is forced to consider
operators with mixed boundary conditions (Neumann on ∂Ω′ ∩ ∂Ω and Dirichlet
on ∂Ω′ \ ∂Ω).

We complete this section by considering some basic properties of the auxiliary
functions ν±. If b 6= 0 then (3) gives ν(b, λ) = 0 when λ < 0, while

ν(b, λ) = (2m+ 1)
|b|
2π
≤ 1

2π
(λ+ |b|)

when 2m|b| < λ < 2(m + 1)|b| for some m ∈ N0. It follows that ν is locally
bounded, so ν± are well defined locally bounded functions on R2. Furthermore

0 ≤ ν±(b, λ) ≤ 1

2π
(|b|+ |λ|), b, λ ∈ R. (10)

In particular (10) ensures the integrals appearing in Theorem 1.1 are finite when-
ever B ∈ L1(Ω). We further note that ν± are homogeneous of degree 1 while,
for any b, λ ∈ R, we have ν±(b, λ) = 0 if λ < 0, ν±(0, λ) = λ/(2π) if λ ≥ 0 (ν±

are actually continuous at b = 0), ν−(b, 0) = 0 and ν+(b, 0) = |b|/(2π). The final
identity reduces the upper bound in Theorem 1.1 to (5) when Λ = 0.

3 General Asymptotics

3.1 Constant field on a square

For R > 0 and b ∈ R let PR,b denote a Pauli operator on the square (0, R)2 with
Dirichlet boundary conditions and corresponding to a constant magnetic field b.
One choice for the magnetic potential is A(x) = b(−x2, x1)/2, while (0, R)2 is
simply connected so Proposition 2.7 shows that any other choice leads to a unitarily
equivalent operator. Thus the eigenvalue counting function

NR,b(λ) = #
{
λn(PR,b) ≤ λ

}
10



(counting with multiplicity) depends only on R, b and λ. We can estimate NR,b(λ)
using the auxiliary function introduced in (3).

Proposition 3.1. For any λ, b ∈ R and ρ ∈ (0, 1) we have

R2(1− ρ)2 ν+
(
b, λ− C2R

−2ρ−2
)
≤ NR,b(λ) ≤ R2 ν+(b, λ),

where C2 can be chosen as an absolute constant.

Proof. Let HR,|b| denote a Dirichlet magnetic Schrödinger operator on (0, R)2

corresponding to the constant field |b|, and let nR,|b|(λ) = #{λn(HR,|b|) ≤ λ}
denote the associated eigenvalue counting function (including multiplicity). Using
Remark 2.3 and Proposition 2.4 we then get

NR,b(λ) = NR,|b|(λ) = nR,|b|(λ+ |b|) + nR,|b|(λ− |b|).

On the other hand, [3, Theorem 3.1] gives an absolute constant C2 such that

R2(1− ρ)2 µ
(
|b|, λ− C2R

−2ρ−2
)
≤ nR,|b|(λ) ≤ R2 µ(|b|, λ),

where µ(|b|, λ) = 0 for λ < 0, µ(0, λ) = λ/(4π) for λ ≥ 0, and

µ(|b|, λ) =
|b|
2π

#
{
m ∈ N0 : (2m+ 1)|b| ≤ λ

}
when b 6= 0. Since µ(|b|, λ+ |b|) + µ(|b|, λ− |b|) = ν+(b, λ) the result follows.

3.2 Localisation

We want to approximate the field B ∈ LA (Ω) ∩ C (Ω0) by a sequence of fields
which take constant values on squares within Ω0. This approximation can only
be made sufficiently good where B is continuous (continuity is used when making
the corresponding approximation to the potential; see Lemma 3.3). In turn this
necessitates a degree of delicacy in the choice of the squares and the rate at which
they approach the boundary of Ω0 (see Lemma 3.2).

For each δ > 0 set
Ωδ =

{
x ∈ Ω0 : Dδ(x) ⊂ Ω0}.

Clearly Ωδ is open, Ωδ ⊂⊂ Ωδ′ whenever 0 ≤ δ′ < δ (recall that Ω0 is bounded)
and

Ω0 =
⋃
δ>0

Ωδ. (11)

Since B ∈ C (Ω0) it follows that B ∈ C (Ωδ) for any δ > 0.

Lemma 3.2. We can find a strictly increasing sequence (kl)l∈N0
in N and, for

each k ≥ k0, a finite indexing set Jk and collection of disjoint open squares Sk,j,
j ∈ Jk, of side length 2−k with the following properties: setting

Ωk = int
⋃
j∈Jk

Sk,j (12)

then, for each l ∈ N0 and kl ≤ k < kl+1,

11



(i) Ω2−l+1 ⊆ Ωk ⊂⊂ Ω2−l .

(ii) For any x, y ∈ Ωk with |x− y| ≤ 2−k−1/2 we have |B(x)−B(y)| ≤ 2−l.

Each of the squares Sk,j will be a translate of (0, 2−k)2. We will use Ŝk,j and

S
k,j

to denote the corresponding translates of [0, 2−k)2 and [0, 2−k]2; thus S
k,j

is just the closure of Sk,j while Sk,j ⊂ Ŝk,j ⊂ S
k,j

. The set Ωk is essentially
the union of the squares Sk,j , j ∈ Jk, together with any edges lying between two
squares. More precisely

Ωk = int
⋃
j∈Jk

S
k,j

= int
⋃
j∈Jk

Ŝk,j ;

in particular, each x ∈ Ωk belongs to Ŝk,j for a unique j ∈ Jk.

Proof of Lemma 3.2. For each k ∈ N0 and δ > 0 set

dk(δ) = sup
{
|B(x)−B(y)| : x, y ∈ Ωδ, |x− y| ≤ 2−k−1/2

}
.

Since B ∈ C (Ωδ) we have dk(δ)→ 0 as k →∞ (for fixed δ). Hence we can find a
strictly increasing sequence (kl)l∈N0

in N with dkl(2
−l) ≤ 2−l and kl > l for each

l ∈ N0.
Let k ≥ k0 and choose l ∈ N0 so that kl ≤ k < kl+1. Consider the tiling of R2

by copies of the square [0, 2−k)2 which have been translated so that the corners

lie on points of the lattice (2−kZ)2. Let Ŝk,j for j ∈ Jk denote the collection of

squares from this tiling whose closure lies entirely within Ω2−l . Set Sk,j = int(Ŝk,j)
for j ∈ Jk and define Ωk by (12). Clearly Ωk ⊂⊂ Ω2−l . Now suppose x ∈ Ω2−l+1 ,
so D2−l+1(x) ⊂ Ω0. Let S be the closure of any square from the tiling with x ∈ S
and let y ∈ S. Then |x− y| ≤ 2−k+1/2 < 2−l (since k ≥ kl > l) so D2−l(y) ⊂
D2−l+1(x) ⊂ Ω0 and hence y ∈ Ω2−l . Thus S ⊂ Ω2−l and so S ∈ {Sk,j : j ∈ Jk}. It
follows that x ∈ Ωk. Finally, if x, y ∈ Ωk with |x− y| ≤ 2−k−1/2 then x, y ∈ Ω2−l

with |x− y| ≤ 2−kl−1/2 (since k ≥ kl), so

|B(x)−B(y)| ≤ dkl(2−l) ≤ 2−l

(recall the defining properties of kl).

By Lemma 3.2(i) and (11) we get
⋂
k≥k0

(Ω \ Ωk) =
⋂
δ>0(Ω \ Ωδ) = Ω \ Ω0.

Since |Ω| <∞ and |Ω \ Ω0| = 0 it follows that∣∣Ω \ Ωk
∣∣→ 0 as k →∞. (13)

For k ≥ k0 set βk = 2−l where l ∈ N0 is maximal such that kl ≤ k. Lemma
3.2 implies (βk)k≥k0

is a non-increasing positive sequence with βk → 0 as k →∞
while, for each k ≥ k0,

|B(x)−B(y)| ≤ βk whenever x, y ∈ Ωk with |x− y| ≤ 2−k−1/2. (14)

For k ≥ k0 and j ∈ Jk set bk,j = B(x) where x is the centre of the square Sk,j .

12



Lemma 3.3. For any k ≥ k0 and j ∈ Jk we can find a potential Ak,j ∈ L2
loc(Sk,j)

with curlAk,j = bk,j and ‖A−Ak,j‖L∞(Sk,j) ≤ αk where αk = 2−k−3/2βk.

In particular, the potential Ak,j generates the constant field bk,j on Sk,j .

Proof. Let k ≥ k0 and j ∈ Jk. For convenience centre Sk,j at the origin and set

Ãk,j1 (x) = −1

2

∫ x2

0

B(x1, t) dt and Ãk,j2 (x) =
1

2

∫ x1

0

B(t, x2) dt.

Then Ãk,j , ∇2Ã
k,j
1 and ∇1Ã

k,j
2 are all continuous on Sk,j (since B is continuous)

while curl Ãk,j = B = curlA. By Lemma 2.6 we can then find ψk,j ∈ W 1,2
loc (Sk,j)

with A− Ãk,j = ∇ψk,j on Sk,j . Now set

Ak,j1 (x) = ∇1ψ
k,j − 1

2
bk,jx2 and Ak,j2 (x) = ∇2ψ

k,j +
1

2
bk,jx1.

Then Ak,j ∈ L2
loc(Sk,j) with curlAk,j = bk,j = B(0). For x ∈ Sk,j (14) leads to∣∣A1(x)−Ak,j1 (x)

∣∣ =

∣∣∣∣12
∫ x2

0

(B(x1, t)−B(0)) dt

∣∣∣∣ ≤ 2−k−2βk

(note that |x2| ≤ 2−k−1). Clearly a similar estimate holds for A2 −Ak,j2 .

Also let χj denote the characteristic function of the set Ŝk,j ∩Ωk, restricted to
Ω. Define a piecewise constant field Bk : Ω→ R by

Bk =
∑
j∈Jk

bk,jχj . (15)

The approximation Bk converges to B pointwise on Ω0 as k →∞; it will be helpful
to combine this convergence with the Fatou-Lebesgue theorem as follows.

Lemma 3.4. Suppose k(t) ∈ N and Γ(t) ∈ R for each t > 0 with k(t) → ∞ and
Γ(t)→ Γ as t→∞. Then

lim inf
t→∞

∫
Ω

ν+
(
Bk(t),Γ(t)

)
≥
∫

Ω

ν−(B,Γ)

and

lim sup
t→∞

∫
Ω

ν+
(
Bk(t),Γ(t)

)
≤
∫

Ω

ν+(B,Γ).

Proof. Let k ≥ k0. If x ∈ Ωk then x ∈ Ŝk,j for some j ∈ Jk and so Bk(x) = bk,j =
B(x0) where x0 denotes the centre of Sk,j . However |x− x0| ≤ 2−k−1/2 so

|Bk(x)−B(x)| = |B(x0)−B(x)| ≤ βk (16)

by (14). Since βk ≤ 1 it follows that |Bk(x)| ≤ |B(x)| + 1. This estimate is also
valid when x /∈ Ωk since Bk(x) = 0 in this case. For any λ ∈ R (10) now gives

0 ≤ ν+(Bk, λ) ≤ 1

2π

(
|B|+ 1 + |λ|

)
.
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If x ∈ Ω0 then (11) and Lemma 3.2(i) imply x ∈ Ωk for all sufficiently large
k, so Bk(x) → B(x) as k → ∞ by (16). Since |Ω \ Ω0| = 0 it follows that Bk

converges to B pointwise almost everywhere on Ω as k → ∞. The result now
follows from the Fatou-Lebesgue theorem (recall that ν− ≤ ν+ while ν− and ν+

are lower and upper semi-continuous respectively).

3.3 Quadratic form estimates

Recall the notation introduced in Lemma 3.2. For each k ≥ k0 and δ > 0 set

R̃kδ =
⋂
j∈Jk

⋃
x∈R2\Sk,j

D2−kδ(x) and Rkδ = R̃kδ ∩ Ω.

Thus Rkδ is an open subset of Ω which contains all of Ω \ Ωk, together with a
2−kδ-neighbourhood of the boundary of each square Sk,j , j ∈ Jk. In particular,

any point of Rkδ ∩ Ωk must lie in S
k,j

for some j ∈ Jk, at a distance of less than
2−kδ from the boundary (of Sk,j). Since Sk,j has side length 2−k it follows that∣∣Rkδ ∩ Ωk

∣∣ ≤ |Jk|2−2k+2δ. However |Jk| ≤ 22k|Ω| (since the disjoint squares Sk,j ,
j ∈ Jk are all contained in Ω) so

|Rkδ | ≤
∣∣Ω \ Ωk

∣∣+
∣∣Rkδ ∩ Ωk

∣∣ ≤ ∣∣Ω \ Ωk
∣∣+ 4|Ω|δ. (17)

We will need a partition of unity which is subordinate to the cover of R2 given
by R̃kδ and Sk,j for j ∈ Jk. Using a standard construction we can find φ ∈ C∞(R2)
and ψj ∈ C∞0 (Sk,j) for j ∈ Jk so that

φ2 +
∑
j∈Jk

ψ2
j = 1 and |∇φ|2 +

∑
j∈Jk

|∇ψj |2 ≤ C322kδ−2, (18)

where the constant C3 can be chosen independently of k and δ (note that, ∇ψj is
non-zero only in a 2−kδ-neighbourhood of the boundary of Sk,j). Also recall the
approximating magnetic potential Ak,j introduced in Lemma 3.3.

Proposition 3.5. Let t > 0 and ε ∈ (0, 1). Then

pΩ,tA(u) ≤ (1− ε)−1
∑
j∈Jk

pSk,j ,tAk,j (uj) + ε−1t2α2
k‖u‖2 (19)

whenever u =
∑
j∈Jk uj with uj ∈ C∞0 (Sk,j ,C2), j ∈ Jk. On the other hand,

pΩ,tA(u) ≥ pRkδ ,tA(φu)+(1+ε)−1
∑
j∈Jk

pSk,j ,tAk,j (ψju)−
(
ε−1t2α2

k+C322kδ−2
)
‖u‖2

(20)
for any u ∈ HtA(Ω,C2).

Proof. Firstly let j ∈ Jk and suppose w ∈ C∞0 (Sk,j ,C2). Then

pSk,j ,tA(w) = ‖DtAw‖2 =
∥∥DtAk,jw − tσ.(A−Ak,j)w∥∥2

.
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Now |σ.(A−Ak,j) ξ| = |A−Ak,j | |ξ| for any ξ ∈ C2, so Lemma 3.3 gives

‖σ.(A−Ak,j)w‖2 ≤ ‖A−Ak,j‖2L∞(Sk,j)‖w‖
2 ≤ α2

k‖w‖2.

Basic norm estimates then lead to

(1 + ε)−1pSk,j ,tAk,j (w)− ε−1t2α2
k‖w‖2

≤ pSk,j ,tA(w) ≤ (1− ε)−1pSk,j ,tAk,j (w) + ε−1t2α2
k‖w‖2. (21)

Taking completions extends this estimate to any w ∈ HtAk,j (Sk,j ,C2).
If u =

∑
j∈Jk uj with uj ∈ C∞0 (Sk,j ,C2), j ∈ Jk, then

‖u‖2 =
∑
j∈Jk

‖uj‖2 and pΩ,tA(u) =
∑
j∈Jk

pSk,j ,tA(uj)

since the Sk,j ’s are disjoint; (19) now follows from the second estimate in (21).

Now suppose v ∈ C∞0 (Ω). Enlarge Jk to J ′k to include an index for φ and let
j ∈ J ′k. Since PtA(ψjv) = ψjPtAv − i(∇ψj)v the first part of (18) gives∑

j∈J′k

|PtA,l(ψjv)|2 = |PtA,lv|2 +
∑
j∈J′k

(∇lψj)2 |v|2

for l = 1, 2. Integration over Ω and the second part of (18) then lead to

hΩ,tA(v) ≥
∑
j∈J′k

hΩ,tA(ψjv)− C322kδ−2‖v‖2.

An easy calculation also gives b(v) =
∑
j∈J′k

b(ψjv). Hence

pΩ,tA(u) ≥ pRkδ ,tA(φu) +
∑
j∈Jk

pSk,j ,tA(ψju)− C322kδ−2‖u‖2 (22)

for any u ∈ C∞0 (Ω,C2). For such u (20) now follows from the first estimate in (21)
and the fact that

∑
j∈Jk‖ψju‖

2 = ‖u‖2−‖φu‖2 ≤ ‖u‖2. Taking completions then

gives (20) for all u ∈ HtA(Ω,C2).

Standard variational arguments allow us to use the quadratic form estimates of
Proposition 3.5 to obtain corresponding bounds on eigenvalue counting functions.

Corollary 3.6. Let t > 0 and ε ∈ (0, 1). For any λ we have

NΩ,tA(λ) ≥
∑
j∈Jk

NSk,j ,tAk,j
(
(1− ε)

(
λ− ε−1t2α2

k

))
and

NΩ,tA(λ) ≤ NRkδ ,tA
(
λ+ ε−1t2α2

k + C322kδ−2
)

+
∑
j∈Jk

NSk,j ,tAk,j
(
(1 + ε)

(
λ+ ε−1t2α2

k + C322kδ−2
))
.
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3.4 Proof of Theorem 1.1

Write λ(t) = (Λ + γ(t))t with Λ ∈ R and γ(t)→ 0 as t→ +∞. For t > 0, k ≥ k0

and ε, δ, ρ ∈ (0, 1) we can combine Corollary 3.6, Proposition 3.1, the homogeneity
of ν+ and (15) to get

1

t
NΩ,tA(λ(t)) ≥

∑
j∈Jk

2−2k(1− ρ)2 ν+
(
bk,j , (1− ε)Γ−k (t)

)
= (1− ρ)2

∫
Ω

ν+
(
Bk, (1− ε)Γ−k (t)

)
(23)

with Γ−k (t) = Λ + γ(t)− ε−1tα2
k − C2(1− ε)−1t−122kρ−2. Similarly

1

t
NΩ,tA(λ(t)) ≤ 1

t
NRkδ ,tA

(
tΓ+
k (t)

)
+

∫
Ω

ν+
(
Bk, (1 + ε)Γ+

k (t)
)

(24)

with Γ+
k (t) = Λ + γ(t) + ε−1tα2

k + C3t
−122kδ−2.

Next recall that (βk)k≥k0 is a non-increasing positive sequence with βk → 0 as
k → ∞. Thus (22kβ−1

k )k≥k0
is an unbounded increasing sequence; it follows that

we can define an unbounded non-decreasing function by setting

k(t) = min
{
k ≥ k0 : 22kβ−1

k ≥ t
}

for any t > 0. Note that, if t > 22k1β−1
k1

then t ∈
(
22k(t)−2β−1

k(t)−1, 22k(t)β−1
k(t)

]
so

tα2
k(t) = t2−2k(t)−3β2

k(t) ≤ 2−3βk(t) and t−122k(t) ≤ 4βk(t)−1.

Hence tα2
k(t), t

−122k(t) → 0 as t→∞. It follows that, for fixed ε, δ and ρ,

Γ−k(t)(t), Γ+
k(t)(t)→ Λ as t→∞. (25)

Now put k = k(t) in (23). Lemma 3.4 and (25) then give

lim inf
t→∞

1

t
NΩ,tA(λ(t)) ≥ (1− ρ)2

∫
Ω

ν−
(
B, (1− ε)Λ

)
for any ε, ρ ∈ (0, 1). Taking ε, ρ→ 0+ (together with the Fatou-Lebesgue theorem
and lower semi-continuity of ν−) now leads to the lower bound in Theorem 1.1.

To obtain the upper bound firstly apply Proposition 2.5 to get the bound

1

t
N
R
k(t)
δ ,tA

(
tΓ+
k(t)(t)

)
≤ 2C1

(
‖B‖

LA (R
k(t)
δ )

+
∣∣Γ+
k(t)(t)

∣∣‖1‖
LA (R

k(t)
δ )

)
. (26)

Now B, 1 ∈ LA (Ω) while (17) and (13) give
∣∣Rk(t)

δ

∣∣ ≤ ∣∣Ω \ Ωk(t)
∣∣+ 4|Ω|δ → 4|Ω|δ

as t→∞. Thus the right hand side of (26) must decay to 0 if we take t→∞ and
then δ → 0+. On the other hand Lemma 3.4 and (25) give

lim sup
t→∞

∫
Ω

ν+
(
Bk(t), (1 + ε)Γ+

k(t)(t)
)
≤
∫

Ω

ν+
(
B, (1 + ε)Λ

)
for any ε ∈ (0, 1). The upper bound in Theorem 1.1 now follows it we put k = k(t)
in (24), take t→∞ and then take δ, ε→ 0+.
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4 Approximate Zero Modes

4.1 Reduction to the disc

Most of the work in establishing Theorem 1.2 lies in establishing a version of this
result for single signed fields on D, the (open) unit disc in R2. We firstly quote
this as a separate result and then show how the more general result follows.

Theorem 4.1. Suppose B ∈ Cα(D) for some α ∈ (0, 1) and B is single signed on
D. If λ(t) ≥ Ce−ctσ for some constants σ ∈ (0, 1) and c, C > 0 then

lim inf
t→∞

1

t
ND,tA(λ(t)) ≥ ΦD(|B|). (27)

Remark 4.1 (General discs). Let R > 0 and suppose B ∈ Cα(DR) is single signed
and generated by the potential A ∈ L2

loc(DR). Setting A′(x) = RA(Rx) defines
a potential A′ ∈ L2

loc(D) with associated field given by B′(x) = R2B(Rx); in
particular B′ ∈ Cα(D) is single signed and ΦD(|B′|) = ΦDR(|B|). On the other
hand, the expression URu(x) = Ru(Rx) defines a unitary map UR : L2(DR) →
L2(D) with URPDR,tA U∗R = R−2PD,tA′ . Thus NDR,tA(λ) = ND,tA′(R

2λ) for any
λ. It follows that Theorem 4.1 generalises to cover any disc in R2 (translation is
clearly not an issue).

Proof of Theorem 1.2. Set Ω± =
{
x ∈ Ω0 : ±B(x) > 0

}
. Then Ω+ ∪ Ω− is

open (as B is continuous on Ω0), so the Vitali covering theorem (see [16], for
example) allows us to find a countable sequence of mutually disjoint open discs
D1, D2, · · · ⊆ Ω+ ∪ Ω− with |(Ω+ ∪ Ω−) \ ΩD| = 0 where ΩD =

⋃
k∈N Dk. Since B

is continuous and non-zero on Ω+ ∪ Ω− it must be single signed on each Dk. A
straightforward variational argument also shows NΩ,tA(λ) ≥

∑
k∈N NDk,tA(λ) for

any λ. If λ(t) ≥ Ce−ctσ we can then apply Theorem 4.1 (see also Remark 4.1) and
the superadditivity of lim inf to get

lim inf
t→∞

1

t
NΩ,tA(λ(t)) ≥

∑
k∈N

ΦDk(|B|) = ΦΩD(|B|).

However ΦΩD(|B|) = ΦΩ(|B|) since |Ω \ Ω0| = |(Ω+ ∪ Ω−) \ ΩD| = 0 while B = 0
on Ω0 \ (Ω+ ∪ Ω−).

4.2 Reduction to the circle

From Remark 2.3 it suffices to prove Theorem 4.1 in the case that B is non-
negative. Clearly we can also impose the flux normalisation condition

ΦD(|B|) = ΦD(B) =
1

2π

∫
D
B = 1 (28)

(note that, Theorem 4.1 holds trivially when B ≡ 0). We will henceforth assume
B ∈ Cα(D) is non-negative on D and satisfies (28). Let

β = ‖B‖L∞(D). (29)
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Since D is simply connected Proposition 2.7 gives us the freedom to choose any
magnetic potential A ∈ L2

loc(D) whose associated field is B. A convenient choice
can be made via the “scalar potential”. Firstly let φ : D → R be the solution
of ∆φ = B on D, with φ = 0 on ∂D = S1; such a solution exists, is unique
and satisfies φ ∈ C2,α(D) (see [13]). If we set A = (−∇2φ,∇1φ) ∈ C1,α(D,R2)
then A is a magnetic potential with associated field curlA = ∇2

1φ + ∇2
2φ = B.

Furthermore ∓i∇±φ = ∇2φ∓ i∇1φ = −(A1 ± iA2) so

−i e∓tφ∇±
(
e±tφ ·

)
= −i∇± ∓ it∇±φ = PtA,± . (30)

For u ∈ C2
0 (D,C2) it follows that

pD,tA(u) =
∥∥e−tφ∇+(u+e

tφ)
∥∥2

+
∥∥etφ∇−(u−e

−tφ)
∥∥2
.

Setting v± = u±e
±tφ we have u ∈ C2

0 (D,C2) iff v ∈ C2
0 (D,C2), while

‖u‖2 =

∫
D
|v+|2e−2tφ +

∫
D
|v−|2e2tφ (31)

and

pD,tA(u) =

∫
D
|∇+v+|2e−2tφ +

∫
D
|∇−v−|2e2tφ. (32)

It is straightforward to check that C2
0 (D,C2) is a core for the form pD,tA.

Using a variational argument we can establish Theorem 4.1 by constructing
sufficiently large spaces of test functions Xt ⊂ C2

0 (D,C2) for which

pD,tA(u) ≤ λ(t) ‖u‖2, u ∈ Xt.

By the strong maximum principle (see [13], for example) φ is strictly negative on
D. As λ(t) � 1 the exponential weights in (31) and (32) then encourage us to
seek test functions with v− = 0 and ∇+v+ = 0, at least away from the boundary
∂D = S1. Identifying R2 with C in the standard way we have ∇+ = 2∂, so
∇+v+ = 0 iff v+ is in O(D) the set of holomorphic functions on D. To get an
element of C2

0 (D) we multiply by a cut-off function χ ∈ C∞0 (D) (which should be
R-valued and differ from 1 only near S1). If we take v+ ∈ O(D) and set

u =
(
χv+e

−tφ

0

)
∈ C2

0 (D,C2), (33)

then ∇+(χv+) = v+∇+χ and |∇+χ|2 = |∇χ|2, so (31) and (32) become

‖u‖2 =

∫
D
|χ|2 |v+|2e−2tφ (34)

and

pD,tA(u) =

∫
D
|∇χ|2 |v+|2e−2tφ. (35)

The remainder of our analysis will be focused near the boundary of D (on a
neighbourhood of where ∇χ 6= 0). The information we need about B is captured
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by the boundary behaviour of φ. Let h denote the outward normal derivative of φ
on ∂D = S1. Using polar coordinates (r, θ) on D we have h(θ) = ∇rφ(1, θ), while
h ∈ C1,α(S1) since φ ∈ C2,α(D). As a consequence of the maximum principle h is
strictly positive (see [13, Lemma 3.4]); the quantity

κ = max
{
‖h‖L∞(S1), ‖1/h‖L∞(S1)

}
(36)

is thus finite and positive. The divergence theorem and condition (28) also give∫
S1

h =

∫
∂D
∇rφ =

∫
D

div∇φ =

∫
D
B = 2π. (37)

Let H2(S1) denote the Hardy space on S1. Each f ∈ H2(S1) is the boundary
trace of a unique function Ef ∈ O(D) (E is just the usual identification of H2(S1)
with the Hardy space on D). Now let f ∈ H2(S1) and set v+ = Ef . Using polar
coordinates on D define a function wf : [0, 1]→ [0,∞) by

wf (r) =

∫ 2π

0

|v+(r, θ)|2 e−2tφ(r,θ) dθ. (38)

When f 6= 0 we can then set

ωf = ∇r log(rwf (r))
∣∣
r=1

=
∇rwf (1)

wf (1)
+ 1.

To create a test function we still need to fix the cut-off function χ. We want this
to be radial (for convenience) and decaying in a layer of width δ > 0 near the
boundary of D. Choose a smooth non-decreasing function ρ : R → R with ρ = 0
on (−∞, 0], ρ = 1 on [1,∞), and |∇ρ| ≤ 1/

√
2. For δ ∈ (0, 1) and r ∈ [0, 1] set

ρδ(r) = ρ(δ−1(1− r)). (39)

Proposition 4.2. Suppose 0 6= f ∈ H2(S1) satisfies ωf ≤ −6βtδ with t > 0 and
δ ∈ (0, 1/3]. Let u be given by (33) where v+ = Ef and χ(r, θ) = ρδ(r). Then

pD,tA(u) ≤ 1

4δ2
exp
[
ωfδ + 6βtδ2

]
‖u‖2.

To use this estimate we need further information on the behaviour of ωf . A
summary of the necessary information is contained in the next result.

Proposition 4.3. Suppose νt > 0 for t ≥ 1. Then there exist constants C4,1, C4,2

and spaces Xt ⊂ H2(S1) for t ≥ 1 such that ωf ≤ −νt for all 0 6= f ∈ Xt and

dimXt ≥ t− C4,1νt − C4,2t
(1−2α)+ .

Propositions 4.2 and 4.3 are proved at the end of Sections 4.3 and 4.4 respec-
tively.
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Remark 4.2. The test functions given by (33) are purely spin-up (only the com-
ponent u+ is non-zero). To deal with the case B ≤ 0 directly by an argument
similar to that above we would need to consider purely spin-down test functions
of the form

u =
( 0
χv−e

tφ

)
,

where v− ∈ O(D) (the set of anti-holomorphic functions on D). Clearly the anti-
linear isometry J from Remark 2.3 sends test functions of one type to the other.

Proof of Theorem 4.1. Choose C5,1 and C5,2 so that

t1−σe−ct
σ

≤ 4CC2
5,1 and C5,1(C5,2 − 6βC5,1) = 2c (40)

for all t ≥ 0. Set δt = C5,1t
(σ−1)/2 and νt = C5,2t

(σ+1)/2. Suppose t ≥ t0, where
t0 = max{1, (3C5,1)2/(1−σ)}; thus t ≥ 1 and δt ∈ (0, 1/3]. Let Xt ⊂ H2(S1) be as
given by Proposition 4.3 and set

Xt =

{(
ρδt(Ef) e−tφ

0

)
: f ∈ Xt

}
⊂ C2

0 (D,C2).

Since Ef = 0 iff f = 0 we get

dimXt = dimXt ≥ t− C4,1C5,2t
(σ+1)/2 − C4,2t

(1−2α)+ , (41)

so lim inft→∞ t−1 dimXt = 1.

Let 0 6= f ∈ Xt and set u =
(
ρδt(Ef)e−tφ

0

)
∈ Xt. Now

νtδt − 6βtδ2
t = C5,1C5,2t

σ − 6βC2
5,1t

σ = 2ctσ and
1

4δ2
t

e−ct
σ

=
t1−σ

4C2
5,1

e−ct
σ

≤ C

by (40), so Proposition 4.3 leads to ωf ≤ −νt ≤ −6βtδt. Proposition 4.2 then
gives

pD,tA(u) ≤ 1

4δ2
t

exp
[
−νtδt + 6βtδ2

t

]
‖u‖2 ≤ Ce−ct

σ

‖u‖2. (42)

The result now follows from a variational argument.

Remark 4.3. A more precise version of (the error term in) (27) can be obtained
from (41); setting C5,3 = max{1, 3C5,1, C4,1C5,2} we get

ND,tA(λ(t)) ≥ t− C5,3t
(σ+1)/2 − C4,2t

(1−2α)+

for all t ≥ 0 (note that, the right hand side is negative when t < t0).

Remark 4.4. With some modifications to the proof we can extend Theorem 4.1
to obtain lower bounds for ND,tA(ε) for fixed ε > 0. With C6,1 = 2

√
ε and

C6,2 = 6βC−1
6,1 set δt = C−1

6,1 t
−1/2 and νt = (C6,1 log t + C6,2)t1/2 for t ≥ 0.
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Suppose t ≥ t0, where t0 = max{1, 9C−2
6,1}; thus t ≥ 1 and δt ∈ (0, 1/3]. Let Xt

and Xt be as above. Now

νtδt− 6βtδ2
t = C6,1C

−1
6,1 log t+C6,2C

−1
6,1 − 6βC−2

6,1 = log t and
1

4δ2
t

=
C2

6,1t

4
= εt,

so the middle estimate in (42) gives pD,tA(u) ≤ ε‖u‖2 for any u ∈ Xt. On the
other hand

dimXt = dimXt ≥ t− C4,1(C6,1 log t+ C6,2)t1/2 − C4,2t
(1−2α)+

for any t ≥ t0. Setting C6,3 = max{1, C4,1(C6,1 + C6,2), 3/C6,1} we then obtain

ND,tA(ε) ≥ t− C6,3t
1/2 log(t+2)− C4,2t

(1−2α)+

for all t ≥ 0 (note that, the right hand side is negative when t < t0).
It is possible that the log is an artefact of our method and the second term in

the asymptotics of ND,tA(ε) should be O(t1/2), at least for sufficiently regular B.

4.3 Quadratic form estimates

The aim of this section is to prove Proposition 4.2. The presentation is simplified
if we switch to polar coordinates; the magnetic momentum operators are then

Pr = −i∇r − tAr = −i∇r +
t

r
∇θφ and Pθ = − i

r
∇θ − tAθ = − i

r
∇θ − t∇rφ.

For functions u, v defined on D we will use 〈u, v〉S1 and ‖u‖S1 to indicate the
L2-inner product and norm in the S1 variable only; that is,

〈u, v〉S1 =

∫ 2π

0

u(r, θ) v(r, θ) dθ and ‖u‖2S1 =

∫ 2π

0

|u(r, θ)|2 dθ,

which depend on r ∈ [0, 1].

Firstly we take a more detailed look at the function wf defined in (38).

Lemma 4.4. Let f ∈ H2(S1) and set u = (Ef) e−tφ. Then

∇rwf = 2〈u, Pθu〉S1 and ∇r(r∇rwf ) = 4r‖Pθu‖2S1 − 2tr〈u,Bu〉S1 .

Proof. Firstly observe that for any functions v, w on D we have

∇r〈v, w〉S1 = 〈iPrv, w〉S1 + 〈v, iPrw〉S1

= 〈Pθv, w〉S1 + 〈v, Pθw〉S1 − i〈Qv,w〉S1 + i〈v,Qw〉S1 , (43)

where Q = Pr + iPθ = e−iθPtA,+. The second expression for Q and (30) lead to

Qu = −ie−iθe−tφ(∇+(Ef)) = 0 (44)
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(recall that Ef ∈ O(D)). Now wf = ‖u‖2S1 so (43) and (44) give

∇rwf = 〈Pθu, u〉S1 + 〈u, Pθu〉S1 = 2〈u, Pθu〉S1 (45)

as Pθ is symmetric with respect to 〈·, ·〉S1 . Using (43) and (44) again then gives

∇r(r∇rwf )

= 2〈Pθu, rPθu〉S1 + 2〈u, Pθ(rPθu)〉S1 − 2i〈Qu, rPθu〉S1 + 2i〈u,Q(rPθu)〉S1

= 4r‖Pθu‖2S1 + 2i〈u, [Q, rPθ]u〉S1 .

However [Q, rPθ] = [Pr, rPθ] = −i∇r(−rtAθ) + i∇θ(−tAr) = itrB.

The formulae for the derivatives of wf given by Lemma 4.4 lead to the following.

Lemma 4.5. Let 0 ≤ r0 ≤ 1 and f ∈ H2(S1). If 0 ≤ b ≤ −(ωf + 2βt(1 − r0))
then ebrrwf (r) is decreasing for r ∈ [r0, 1].

Proof. For any b ∈ R set `b(r) = log(ebrrwf (r)) = log(wf (r)) + log r + br. Then

∇r(r∇r`b) =
∇r(r∇rwf )

wf
− r (∇rwf )2

w2
f

+ b

=
r

w2
f

[
4‖Pθu‖2S1‖u‖2S1 − 4〈u, Pθu〉2S1

]
− 2tr

〈u,Bu〉S1

‖u‖2S1

+ b

using Lemma 4.4 and the fact that wf = ‖u‖2S1 . Now [·] ≥ 0, 〈u,Bu〉S1 ≤ β‖u‖2S1

(recall (29)) and r ≤ 1. Hence ∇r(r∇r`b) ≥ −2βt+ b. Integrating from r to 1 and
using the fact that ∇r`b(1) = ωf + b we get

r∇r`b(r) ≤ ∇r`b(1) +

∫ 1

r

(2βt− b) dr = ωf + 2βt(1− r) + br.

If r0 ≤ r ≤ 1 and 0 ≤ b ≤ −(ωf + 2βt(1− r0)) it follows that the right hand side
is non-positive, and hence ∇r`b(r) ≤ 0. Thus exp(`b(r)) = ebrrwf (r) is decreasing
for r ∈ [r0, 1].

Proof of Proposition 4.2. Set rδ = 1 − δ and b = −(ωf + 6βtδ) ≥ 0, so ρδ(r) = 1
for r ≤ rδ while ebrrwf (r) is decreasing for r ∈ [1 − 3δ, 1] by Lemma 4.5. Using
(34) and (38) we then get

‖u‖2 =

∫ 1

0

ρδ(r)
2 rwf (r) dr ≥

∫ rδ

1−3δ

rwf (r) dr

≥ rδwf (rδ)

∫ rδ

1−3δ

eb(rδ−r) dr = rδwf (rδ)
1

b
(e2bδ − 1) ≥ rδwf (rδ) 2δebδ.

To estimate pD,tA(u) note that |∇χ|2 = |∇ρδ|2 ≤ 1/(2δ2) and supp(∇ρδ) ⊆
[rδ, 1], while rwf (r) is decreasing for r ∈ [rδ, 1] ⊂ [1− 3δ, 1] by Lemma 4.5. Thus
(35) and (38) lead to

pD,tA(u) =

∫ 1

0

|∇ρδ(r)|2 rwf (r) dr ≤ 1

2δ2

∫ 1

rδ

rwf (r) dr ≤ 1

2δ
rδwf (rδ).

Combined with the previous estimate we then get pD,tA(u) ≤ (2δ)−2e−bδ‖u‖2.
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4.4 Analysis on the circle

Let f ∈ H2(S1) and set u = (Ef) e−tφ. Then u(1, θ) = f(θ) so wf (1) = ‖f‖2.
Also Aθ(1, θ) = ∇rφ(1, θ) = h(θ). Introducing the operator T = −i∇− th on S1,
Lemma 4.4 now gives ∇rwf (1) = 2〈f, Tf〉. If f 6= 0 it follows that

ωf = 2
〈f, Tf〉
‖f‖2

+ 1. (46)

To construct the space Xt in Proposition 4.3 we need to find f ∈ H2(S1)
for which ωf is negative. In view of (46) this leads us to consider the spectral
properties of the operator T on H2(S1). We begin by considering T as an operator
on L2(S1) where a more explicit description is possible. Set

η(θ) =

∫ θ

0

h(ω) dω

so η(0) = 0, η(2π) = 2π (recall (37)) and ∇η = h. Since h and 1/h are both
continuous and bounded away from 0 it follows that η is a C1-diffeomorphism of S1.
Thus Uf = f ◦η defines a unitary map U from L2(S1) with its usual inner-product
to L2(S1) with weighted inner-product 〈·, ·〉h given by 〈f, g〉h = 〈f, hg〉 = 〈hf, g〉.
Using ‖·‖h to denote the corresponding norm we have

κ−1‖f‖2 ≤ ‖f‖2h ≤ κ‖f‖2 (47)

for any f ∈ L2(S1) (recall (36)). The image of the standard Fourier basis under
U is {ξn : n ∈ Z} where ξn = einη/

√
2π for n ∈ Z. In particular, any f ∈ L2(S1)

can be written as f =
∑
n∈Z γnξn for some constants γn (given by γn = 〈ξn, f〉h),

whereupon ‖f‖2h =
∑
n∈Z|γn|2. Since −i∇ξn = nh ξn we get

Tξn = (n− t)hξn (48)

and thus
〈f, Tf〉 =

∑
n∈Z

(n− t)|γn|2. (49)

For M ≥ 0 let QM denote the 〈·, ·〉h-orthogonal projection onto Sp{ξn : n > M}.

Lemma 4.6. Let f ∈ L2(S1) and M ≥ 0. Then

〈f, Tf〉 ≤ (M − t)‖f‖2h + 〈QMf, TQMf〉.

Proof. Write f =
∑
n∈Z γnξn for some γn. Then QMf =

∑
n>M γnξn so

〈f, Tf〉 − 〈QMf, TQMf〉 =
∑
n≤M

(n− t)|γn|2 ≤ (M − t)
∑
n∈Z
|γn|2 = (M − t)‖f‖2h

with the help of (49).
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We shall now move our attention to consider T acting on H2(S1). Let Π+

denote the orthogonal projection of L2(S1) onto H2(S1) and Π− its complement;
that is

Π+f =
1√
2π

∑
k≥0

f̂(k) eikθ and Π− = I −Π+,

where f̂(k) denotes the kth Fourier coefficient of f . A key idea in our argument is
the fact that, for large n, ξn and hξn “almost” lie in the space H2(S1) in the sense
that Π−ξn and Π−hξn become small. This is made more precise via the quantities

αm =
∑
n>m

‖Π−ξn‖2 and βm =
∑
n>m

‖Π−hξn‖2.

Proposition 4.7. There exists a constant C7 such that

αm, βm ≤ C7 (m+ 1)−2α, m ≥ 0.

We shall consider families of diffeomorphisms of S1 which are related to η.
Firstly note that a positively oriented homeomorphism of S1 can be viewed as a
continuous strictly increasing map ψ : R→ R which satisfies ψ(θ+2π) = ψ(θ)+2π.
If ψ is differentiable then ∇ψ : R→ R is 2π-periodic and hence can be viewed as
a map on S1. It is straightforward to check that ψ is a (positively oriented) C2,α-
diffeomorphism of S1 if ∇ψ ∈ C1,α(S1) and ∇ψ is strictly positive; in this case
∇ψ and ∇ψ−1 are both uniformly bounded away from 0, while ∇ψ−1 ∈ C1,α(S1).

Proof of Proposition 4.7. For each τ ∈ [0, 1] set ητ (θ) = τη(θ) + (1 − τ)θ. Then
ητ (0) = 0, ητ (2π) = 2π and ∇ητ = τh + (1 − τ). Thus ∇ητ ∈ C1,α(S1) with
∇ητ ≥ τκ−1 + (1 − τ) ≥ κ−1, so ∇ητ is bounded away from 0 uniformly in τ . It
follows that ητ is a C2,α-diffeomorphism of S1. Setting

yτ =
1√
2π
∇η−1

τ =
1√
2π

1

(∇ητ ) ◦ η−1
τ

we get yτ ∈ C1,α(S1), while ‖yτ‖C1,α(S1) can be bounded uniformly for τ ∈ [0, 1].
Using standard estimates for the Fourier coefficients of functions in C1,α(S1) (see
[18], for example) we can then find C7,1 so that

|ŷτ (n)| ≤ C7,1|n|−1−α, τ ∈ [0, 1], n 6= 0. (50)

Now suppose n ≥ 0 and k > 0. Set τ = n/(k + n) ∈ [0, 1]. Then

ξ̂n(−k) =
1

2π

∫ 2π

0

einη(θ)+ikθ dθ =
1

2π

∫ 2π

0

1

∇ητ (θ)
ei(k+n)ητ (θ)∇ητ (θ) dθ

=
1√
2π

∫ 2π

0

yτ (ω) ei(k+n)ω dω = ŷτ (−(k+n)).

For any m ≥ 0 we can now combine this with (50) to get

αm =
∑
n>m

∑
k>0

∣∣ξ̂n(−k)
∣∣2 ≤ C2

7,1

∑
n>m

∑
k>0

(k+n)−2−2α ≤
C2

7,1

2α
(m+ 1)−2α.
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We can estimate βm using a similar argument. In particular, we need to con-
sider the C2,α-diffeomorphisms of S1 given by ζτ (θ) = τη−1(θ)+(1−τ)θ, τ ∈ [0, 1].
Then

zτ =
1√
2π
∇ζ−1

τ

is uniformly bounded in C1,α(S1), while for any n ≥ 0 and k > 0 it can be shown
that the (−k)th Fourier coefficient of hξn is just ẑτ (−(k+n)). The remainder of
the argument to estimate βm proceeds exactly as for αm.

Proposition 4.7 establishes that α0 is finite; it follows that αm is non-increasing
with limm→∞ αm = 0. A similar comment applies to βm. Also recall that Qm
denotes the 〈·, ·〉h-orthogonal projection onto Sp{ξn : n > m}.

Lemma 4.8. Suppose Qmf = f for some f ∈ L2(S1) and m ≥ 0. If αm ≤ 1/(2κ2)
then ‖f‖2h ≤ 2κ2‖Π+f‖2.

Proof. Write f =
∑
n>m γnξn for some γn. Then

‖Π−f‖2 ≤
∑
n>m

|γn|2
∑
n>m

‖Π−ξn‖2 = αm‖f‖2h.

Since f = Π+f + Π−f is an orthogonal decomposition (47) now gives

‖f‖2h ≤ κ2‖f‖2 = κ2(‖Π+f‖2 + ‖Π−f‖2) ≤ κ2‖Π+f‖2 +
1

2
‖f‖2h.

The result follows.

Lemma 4.9. Suppose M > 0 and f ∈ Sp{ξn : 0 < n ≤M}. Then

〈QMΠ+f, TQMΠ+f〉 ≤M
[
α0αMβ0βM

]1/2‖f‖2h.
Proof. Write f =

∑
0<n≤M γnξn for some γn. Then

QMΠ+f =
∑
n′>M

〈ξn′ ,Π+f〉h ξn′ =
∑
n′>M

∑
0<n≤M

γn〈ξn′ ,Π+ξn〉h ξn′ . (51)

Noting that 〈ξn′ ,Π+ξn〉h = −〈ξn′ ,Π−ξn〉h when n 6= n′, (49) and (51) now give

〈QMΠ+f, TQMΠ+f〉 ≤
∑
n′>M

(n′ − t)
∣∣∣∣ ∑
0<n≤M

γn〈ξn′ ,Π−ξn〉h
∣∣∣∣2

≤
∑
n′>M

n′
[ ∑

0<n≤M

|γn|2
∑

0<n≤M

|〈ξn′ ,Π−ξn〉h|2
]

= ‖f‖2h
∑

0<n≤M

∑
n′>M

n′ |〈ξn′ ,Π−ξn〉h|2. (52)
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However, for any n, n′ we have 〈ξn′ ,Π−ξn〉h = 〈Π−hξn′ ,Π−ξn〉 while

n′ 〈ξn′ ,Π−ξn〉h = 〈Π−ξn, n′hξn′〉 = 〈Π−ξn,−i∇ξn′〉
= 〈Π−(−i∇)ξn, ξn′〉 = n〈Π−hξn,Π−ξn′〉.

(note that, Π− is an 〈·, ·〉-orthogonal projection). Hence∑
0<n≤M

∑
n′>M

n′ |〈ξn′ ,Π−ξn〉h|2 =
∑

0<n≤M

∑
n′>M

n 〈Π−hξn′ ,Π−ξn〉 〈Π−hξn,Π−ξn′〉

≤M
∑
n>0

‖Π−ξn‖ ‖Π−hξn‖
∑
n′>M

‖Π−ξn′‖ ‖Π−hξn′‖

≤M
[
α0β0αMβM

]1/2
.

The result now follows from (52).

Proposition 4.10. Suppose 0 ≤ m < M ≤ t. Let X = Sp{ξn : m < n ≤M} and
X+ = Π+X ⊂ H2(S1). If αm ≤ 1/(2κ2) then dimX+ = M −m and

〈f, Tf〉 ≤ −κ2
(
t−M − 2M

[
α0αMβ0βM

]1/2)‖f‖2, f ∈ X+.

Proof. Let f ∈ X and set f+ = Π+f ∈ X+. If f+ = 0 then f = 0 by Lemma
4.8; thus dimX+ = dimX = M −m. On the other hand, combining (47) with
Lemmas 4.6, 4.8 and 4.9 gives

〈f+, Tf+〉 ≤ (M − t)‖f+‖2h + 〈QMf+, TQMf
+〉

≤ κ2(M − t)‖f+‖2 +M
[
α0αMβ0βM

]1/2‖f‖2h
≤ κ2

(
M − t+ 2M

[
α0αMβ0βM

]1/2)‖f+‖2,

as required.

Proof of Proposition 4.3. Choose m ≥ 0 so that αm ≤ 1/(2κ2) (which is possible
by Proposition 4.7). Also let

ν1,t =
1

2κ2
(νt + 1) + 2C2

7 t
(1−2α)+

and Mt = min{n ∈ N0 : n ≥ t− ν1,t − 1}; in particular, Mt ≥ t− ν1,t − 1. Set

Xt = Π+ Sp{ξn : m < n ≤Mt} ⊂ H2(S1).

Proposition 4.10 gives dimXt ≥Mt−m ≥ t− (ν1,t +m+ 1) (note that, Xt = {0}
when Mt ≤ m). The required estimate for dimXt now follows if we take C4,1 =
1/(2κ2) and C4,2 = C4,1 + 2C2

7 +m+ 1 (note that, t(1−2α)+ ≥ 1 for t ≥ 1).
Now let 0 6= f ∈ Xt. Then 1 ≤Mt ≤ t− ν1,t ≤ t (otherwise Xt = {0}), leading

to Mt(Mt + 1)−2α ≤M1−2α
t ≤ t(1−2α)+ . Propositions 4.10 and 4.7 then give

〈f, Tf〉 ≤ κ2
(
Mt − t+ 2Mt

[
α0αMtβ0βMt

]1/2)‖f‖2
≤ κ2

(
Mt − t+ 2C2

7 Mt(Mt + 1)−2α
)
‖f‖2

≤ κ2
(
−ν1,t + 2C2

7 t
(1−2α)+

)
‖f‖2 = −1

2
(νt+1) ‖f‖2,

so ωf ≤ −νt by (46).
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