
Are You Feeling Lucky? : Lottery-based Scheduling for
Public Displays

Mateusz Mikusz, Sarah Clinch and Nigel Davies
School of Computing & Communications

Lancaster University, Lancaster, UK
m.mikusz | s.clinch | n.davies @ lancaster.ac.uk

ABSTRACT
Scheduling content onto pervasive displays is a complex
problem. Researchers have identified an array of poten-
tial requirements that can influence scheduling decisions, but
the relative importance of these different requirements varies
across deployments, with context, and over time. In this pa-
per we describe the design and implementation of a lottery-
based scheduling approach that allows for the combination
of multiple scheduling policies and is easily extensible to ac-
commodate new scheduling requirements.

Author Keywords
public displays; scheduling.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

INTRODUCTION
Content scheduling remains a key challenge for emerging
pervasive display systems. Traditional digital signs feature
relatively static display schedules expressed as simple deter-
ministic playlists [6]. However, as display systems evolve to
embrace a wide range of content types and stakeholders the
scheduling complexity increases significantly [18, 10].

To address the problem of flexible content scheduling re-
searchers have proposed the use of constraint-based sched-
ulers [12] in which content items are tagged with a series of
constraints (e.g. only show a specific content item between
9am and 5pm) that help determine when each item can be
presented. Unfortunately, the use of constraints only provides
a partial solution to the scheduling problem. It is necessary to
understand the constraints governing when content items can
be shown but this is not sufficient to determine which item to
show at a given time as there are likely to be multiple con-
tent items that satisfy the current constraints. Similarly, con-
straints are not well suited to expressing the rich mix of prior-
ities and policies that may further influence content selection.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
PerDis ’15, June 10 - 12, 2015, Saarbruecken, Germany
Copyright c© 2015 ACM. ISBN 978-1-4503-3608-6/15/06...$15.00
DOI: http://dx.doi.org/10.1145/2757710.2757721

For example, display owners may wish to show a particular
mix of content types, optimise for different content lengths
or increase the probability that content relevant to viewers is
shown when they are close to a display. Simply adding prior-
ities to constraints is not sufficient as priority levels typically
fail to provide the fine-grained levels of control required.

Consequently, future pervasive display systems will require
scheduling techniques that extend beyond simple constraint
or priority based systems and there is a pressing need for
new insights into the problem of content scheduling [9]. In
this paper we explore the use of lottery scheduling [19] as
a technique for scheduling content in pervasive display net-
works. Originally conceived for use in operating systems,
lottery scheduling provides an efficient means of achieving
proportional-share scheduling, with probability ensuring fair-
ness and preventing starvation. Scheduling priorities and
policies can be implemented through changes in ticket allo-
cations that are immediately reflected in subsequent draws,
hence allowing lottery scheduling to be responsive to change
(e.g. for interactive systems).

Building on over twenty years experience of creating display
scheduling systems we describe how lottery scheduling can
be applied to the pervasive display domain and then present
the design, implementation and evaluation of the system in a
live signage network. While lottery scheduling does not rep-
resent the total solution to scheduling on pervasive displays,
our experiences suggest that it provides an effective way of
addressing many of the most challenging forms of schedul-
ing requirements and can be combined with other scheduling
techniques as part of a comprehensive solution.

LOTTERY SCHEDULING
Lottery scheduling was first described in the operating sys-
tems literature by Waldspurger and Weihl [19] and is a prob-
abilistic mechanism for allocating resources.

A lottery scheduling algorithm allocates ranges of tickets
(representing resource rights) to competing clients (e.g. to de-
termine which process will execute). Following ticket allo-
cation, a draw is held to determine the winning ticket and
thus which client receives the resource. In this way, lot-
tery scheduling provides a random but fair means of achiev-
ing proportional-share scheduling (i.e. each item is sched-
uled according to its allocated proportion of tickets). Fur-
thermore, since changes in ticket allocations are immediately
reflected in the next draw, lottery scheduling quickly responds
to changes in resource rights.

In their original description of lottery scheduling, Wald-
spurger and Weihl provide three additional mechanisms for
altering the proportions of tickets allocated to each client.
Ticket transfers allow a client that cannot make use of a re-
source to reallocate its tickets to another—for example, a pro-
cess waiting on a lock may transfer its tickets to the process
currently holding the lock in order that the lock may be re-
leased more quickly. Ticket inflation allows a client to esca-
late its own resource rights by creating more lottery tickets for
self-allocation. Compensation tickets allow a winning client
that yields use of the resource to be granted additional tickets
in future draws in order to maintain correct proportional use
of the resource.

Finally, lottery scheduling can also be used with a currency
abstraction that enables load insulation between groups of
clients. Specifying the exchange rate between “currencies”
enables complex allocations to be carried out with relative
simplicity.

APPLICATION TO PUBLIC DISPLAYS
Lottery scheduling was originally proposed for use in operat-
ing systems. However, we believe that the same technique can
be effectively employed in pervasive display networks and in
the following sections we illustrate how lottery scheduling
can be used to meet typical display scheduling requirements.

Ratio Based Scheduling. A common scheduling requirement
in display systems is to be able to schedule content at different
ratios. For example, a display owner might want to control the
balance of news, adverts and music videos on a display. In a
system based on lottery scheduling this simply means allocat-
ing the tickets in the appropriate ratio. Clearly some care is
needed when dealing with content items of different lengths
and the following formulae produces the expected results:

proportion of tickets to allocatei =

timeshare i·

N∑
j=1

durationj

durationi
·

N∑

k=1

timeshare k ·

N∑
j=1

durationj

durationk

−1

Prioritisation of New Content. When signage systems have a
large quantity of possible content to select from it is often im-
portant to be able to increase the likelihood of fresh content
being shown. This requires ticket allocations to be adjusted
such that new items of content receive a disproportionate al-
location of tickets – with this allocation reducing over time.

Reflecting Viewer Linger Times. The amount of time viewers
spend in front of a display may be subject to significant vari-
ation. For example, in a work cafe viewers may just glance at
a display in the morning when they collect a coffee but then
have longer to look at the display when eating their lunch.
Ticket allocations could be varied to help increase the proba-
bility of content of an appropriate duration being shown at a
given time. While this kind of tailoring could be implemented
as constraints (i.e. only show content of an appropriate length
during a specific time slot) the use of ticket allocations pro-
vides a probabilistic approach that enables displays to subtly
adjust their schedules over time to match viewer behaviours.

Long term personalisation. Display personalisation systems
such as Tacita [8] offer the potential for users to influence the
content shown on displays through both walk-by and longi-
tudinal personalisation. The latter form of personalisation, in
which users influence the long term trend in content schedul-
ing, can be well supported using lottery scheduling through
allocating tickets based on the presence of viewers.

These examples illustrate how lottery scheduling can be used
to support a range of common scheduling requirements. Cru-
cially, these are representative of requirements that are partic-
ularly difficult to support using standard constraint or priority
schemes as they require fine grained control over the long
term probability of content items being scheduled rather than
an immediate response to changes in constraints or priorities.

However, it is important to stress at this point that we are not
proposing lottery scheduling as a complete solution to display
scheduling. Rather lottery scheduling appears applicable as
part of a scheduling eco-system that includes an appropriate
mechanism (typically a UI) to enable the user to specify their
scheduling requirements and support for constraints that can
be processed prior to consideration in the context of a lottery.

For example, once the user has specified the content items
and scheduling constraints the overall sequence of operations
could be: 1) process constraints to produce a set of content
items that could be presented, 2) allocate tickets to these con-
tent items (or groups of items), and 3) perform a draw to de-
termine the “winning” content item. This sequence of opera-
tions is repeated every time a new scheduling decision needs
to be made.

An additional benefit of lottery scheduling is that the above
examples of ticket allocation can be combined in multiple
ways. Thus it is possible, for example, to combine a ticket
allocation strategy that priorities new content with one that
supports long-term personalisation without significant addi-
tional complexity. It is also possible to run multiple lottery
draws prior to scheduling a content item. This can be useful,
for example, to enable the use of an initial round of lottery
scheduling to determine which set of content items to show
and then to run an additional draw within the set to determine
the exact content item to present. Different ticket allocation
strategies can be employed for each draw.

DESIGN AND IMPLEMENTATION

Design Overview
We propose a generalised architecture for a digital signage
lottery scheduler based on six components: a scheduling
manager, a context and constraints parser, a context store,
a filter pipeline, a lottery scheduler, and a configuration com-
ponent (Figure 1).

The scheduler operates on an initial input of content items
and their associated constraints. The scheduling process is
orchestrated by the manager and involves the following se-
quence of steps. First, the context and constraints parser
processes the content items and constraints into a standard
format understood by the remaining components. The filter
pipeline then removes content items that cannot be played on

Figure 1: Lottery scheduler architecture.

the screen from the available set. The filtered content items
are then passed to the lottery scheduler and ticket allocators
for the distribution of tickets and subsequent draw. Finally,
the identity of the winning content item is produced as the
output of the system. All components have access to a shared
context and configuration store. We now describe each of
these components in more detail.

Scheduling Manager
The manager component coordinates the overall scheduling
process—waiting for new updates to the set of content items
and constraints as well as changes in the sign’s context from
the context and constraints parser, distributing the new set to
the filter pipeline and initiating the lottery scheduler to gener-
ate a scheduling decision if necessary. The manager initiates
a new scheduling iteration after each content item has been
presented or if the context of constraints change.

Context and Constraints Parser
The input to the scheduling process is a set of content items
and constraints. The context and constraints parser is capable
of receiving and reading this set of content items and con-
verting it into a format that can be read by filters and the lot-
tery scheduler. This component enables the scheduling sys-
tem to work with a range of signage systems that may use
different formats for distributing schedules – helping to lo-
calise changes that may be necessary for different formats.
Changes to the parser can be made without impacting other
components of the scheduler.

Context Store
The context store is a common repository for storing con-
textual information about the sign. All components of the
lottery scheduler (and the overall system) can feed informa-
tion into the context store (e.g. sensors capturing information
on passers-by). Other components, such as ticket allocators
and filters, can request this information from the context store
and utilise it to help inform more intelligent (context-aware)
scheduling decisions.

Filter Pipeline
The filter pipeline consists of a series of independent filters
that are able to process a set of content items and constraints
and remove items whose constraints cannot be met at the
present time. For example, constraints such as date/time can
force an item to be only shown on certain times while a pres-
ence constraint might restrict the presentation of a content
item to occurring only when a specific user is nearby. The
filtering pipeline passes the set of content items through each
filter in turn. The configuration of the filter pipeline and of
each individual filter is stored in the context and configura-
tion store.

Lottery Scheduler
The main component of the overall scheduling system is the
lottery scheduler. The lottery scheduler receives a filtered set
of eligible content items and distributes this set to all avail-
able ticket allocators. As described previously, there may be
multiple scheduling requirements and each of these require-
ments can be represented by a separate ticket allocator. The
modular design of the scheduler component allows new ticket
allocators to be plugged in at any time in response to chang-
ing requirements.

The lottery manager distributes the same set of eligible con-
tent items and a fixed number of lottery tickets to each ticket
allocator. Each ticket allocator then allocates lottery tickets
to content items, and drops tickets into the ticket pool. The
number of lottery tickets allocated is limited to the set of
empty tickets distributed by the lottery manager. To enable
a ticket allocation based on the context of the display (e.g. for
personalised content) all ticket allocators are given access to
the context and configuration store. The lottery manager will
typically wait for all ticket allocators to be complete prior
to making a scheduling decision, but ticket allocators can be
interrupted by the manager if the ticket allocation process is
taking too long to complete. All tickets dropped into the ticket
pool at the point of the lottery are considered for the draw that
determines a scheduling decision.

The scheduling manager decides when the draw should take
place. This may be when all ticket allocators are ready, or, for
example, when the ticket allocators have exceeded the maxi-
mum time for allocating tickets. Once the decision has been
made to initiate a draw the scheduling manager will draw a
random ticket from the pool. The description of the winning
content item will be returned to the scheduler manager and
sent to the display immediately.

In common with the filtering component, the scheduler man-
ager and all ticket allocators are given access to the context in-
formation of the sign (described in more detail below). Con-
text information can be used by ticket allocators to improve
their allocation process. The scheduler manager can allow
the user to specify which ticket allocator should be used, and
how many empty tickets each of the ticket allocators should
receive. This provides a mechanism for changing the content
displayed and influencing the scheduling decision. Context-
sensitive ticket allocators can also utilise this information
from the context store – for example to reflect current viewer
preferences.

Configuration
The configuration component is designed to enable display
owners to configure the sign to their individual needs. In the
context of the lottery scheduler, users can specify in the con-
figuration which filters and ticket allocators should be used as
well as how many tickets each allocator should distribute.

Implementation
We implemented a proof-of-concept lottery scheduler as a
component within our existing e-Campus deployment at Lan-
caster [12]. Our deployment consists of approximately 30
Mac Minis running the Yarely software [4] and displaying
content from a combination of e-Channels [12] and Mercury
[5]. The e-Channels system focusses on organising content
items into logical groups (‘Channels’) of items provided by
content providers. Display owners subscribe their displays to
content from one or more channels. The Mercury application
store allows for the distribution of content modelled as appli-
cations, providing support for both traditional signage con-
tent and new types of interactive applications. Display own-
ers can purchase applications from Mercury and add these
to their displays. Both e-Channels and Mercury export dis-
play content subscriptions (content plus constraints) in the
XML-based Content Descriptor Set (CDS) format described
in Clinch et al. [4].

The lottery scheduler was implemented in Python (1,051 lines
of code) as a plugin to the existing Yarely signage player run-
ning on our display nodes. Yarely accepts a CDS as input and
controls both scheduling and playback. The Yarely software
is a component-based system allowing easy substitution of
subsystems and the lottery scheduling component proposed
in this paper was therefore implemented as a direct replace-
ment for Yarely’s existing “Playlist Generation and Schedul-
ing” component [4].

Each component of the lottery scheduler (illustrated in Fig-
ure 1) was built as a separate Python module. Within the
filtering and lottery components, filters and ticket allocators
were written as separate Python classes that can be registered
within the system and communicate using ØMQ. Conceptu-
ally, lottery tickets are allocated to content items. However, in
the underlying implementation each ticket allocator receives
a set of pre-generated empty ticket instances that can each
hold a reference to one content item. The ticket allocation
process is threaded: ticket allocators run in parallel and are
managed and monitored by the lottery manager.

EVALUATION

Benchmarking
We benchmarked our scheduler to explore its performance
with varying numbers of content items and lottery tickets.
This evaluation focussed on the time taken to make a schedul-
ing decision.

Our benchmarks were performed on a Mac Mini (2.6 GHz
Intel “Core i5”, 8 GB 1600 MHz LPDDR3 SDRAM; 1 TB
HDD). The Mac Mini ran Mac OS X 10.10.2 (Yosemite)
and the Yarely digital signage player [4], our scheduling sys-
tem was dropped in as a direct replacement to the existing

scheduling and playlist generation component in Yarely. We
benchmarked the system with two ticket pool sizes: 1, 000
and 10, 000, and a varying number of content items (all im-
age files with resolution 1, 000× 1, 000 and approximate file
size of 0.6 MB) from 1–10, 000. Each combination was mea-
sured 30 times. The results of our benchmarks are shown in
Figure 2.

Overall we find that an increased number of tickets increases
the time taken to schedule content. This is primarily due to
an increase in the time taken to perform the ticket allocation
– on average, the duration of the lottery increases 7.77 times
with the ten-fold increase in tickets (1,000 tickets vs. 10,000).
We attribute this increase in time taken for larger ticket pools
to overhead in our implementation of the ticket allocation
process—our use of Python Queue objects in the current im-
plementation means that each allocation of a ticket typically
results in a context switch between threads. Filtering based on
constraints takes place prior to ticket allocation and hence the
performance of this component is independent of the number
of tickets allocated.

We find that an increased number of content items results in
an increase in the time taken to schedule content. Running the
lottery with 1,000 tickets takes 181.60, 736.0, 1477.47 mil-
liseconds with 100, 1,000, and 10,000 content items respec-
tively. This relationship is broadly linear [Figure 2], how-
ever we note that at the point at which the number of content
items exceeds the number of tickets to be allocated the rate
of increase in allocation time slows. Running the lottery with
10,000 tickets the time taken continues to increase steadily
throughout —the draw takes 1317.73, 5962.23 and 18313.47
milliseconds for 100, 1,000, and 10,000 content items respec-
tively. In this set of test cases we do not reach the point at
which the number of content items exceeds the number of
tickets and hence we do not see the change in behaviour wit-
nessed with small numbers of tickets.

Unsurprisingly, the performance of other scheduling and
Yarely components is unaffected by the number of tickets but
does increase with number of content items. For example,
filtering of content items takes 171.47, 950.57 and 10405.70
milliseconds for 100, 1,000, and 10,000 content items respec-
tively. Overall time for Yarely to display images of this size
on the Mac OS platform has previously been reported as ap-
proximately 1.5 seconds [3] (this includes a 0.6 second ani-
mation to fade items onto the screen).

In terms of overall performance we note that for smaller num-
bers of content items the item scheduling can be completed
quickly (for example, the overall scheduling time for 100
items is less than a third of a second with 1,000 tickets).
However, larger content sets do take considerably longer to
schedule (overall scheduling time for 1,000 items is 1655.17
milliseconds and for 10,000 items 11581.73 milliseconds –
with 1,000 tickets each). In practice, our experiences with a
long-term display network indicate that displays are typically
subscribed to ∼30 content items (mean 31.33, median 28.5,
max:107) during any given period. Equally, the performance
cost associated with very large content sets can of course be
accommodated by the scheduler by simply starting the filter-

Figure 2: Time taken (mean and standard deviation) to schedule varying numbers of content items (top: 1–10,000 items, bottom: 1-50 items) using a
lottery draw based on 1,000 tickets (left) and 10,000 tickets (right). The top plots show scalability, whilst the bottom plots provide indicative performance
for real-world settings. All plots use the same legend (shown top left).

Figure 3: Accuracy of the lottery scheduler using a ratio allocator and sample e-Channel content. In the leftmost plot, observed ratios over 12 hours. In
the rightmost, the difference between observed and expected ratios over the same 12 hours. Both plots use the same legend (shown right); the leftmost
plot also includes paler lines to mark the expected ratio for each channel.

ing and lottery process before the current item reaches the end
of its playback.

Real World Dataset
In addition to the above benchmarking, we wanted to un-
derstand the accuracy of our scheduler implementation in a
real-world deployment. Our own campus deployment fea-
tures content grouped into ‘Channels’ [12], with most dis-
plays drawing content from multiple channels and each chan-

nel allocated a specific ratio. We created a representative con-
tent set with four Channels that incorporated a range of con-
tent items from those currently playing on our deployment.
Channel A contained 16 images and was allocated 0.51 of the
airtime. Channel B contained four images and was allocated
0.25 of the airtime. Channel C contained a single 60-second
video and was allocated 0.12 of the airtime. Channel D con-
tained four images and was also allocated 0.12 of the airtime.

We ran the lottery scheduler with a single ticket allocator (the
ratio-based allocator) and 10,000 tickets. The scheduler ran
on a single display, scheduling and rendering content for 12
hours continuously, in line with the channel subscriptions de-
scribed above. The video was played for its full duration, and
all other content types for a default period of 15 seconds (i.e.
total content duration across the channels was 420 seconds).

Our scheduler performed well in the deployment. The system
quickly approximates the specified ratios [Figure 3] of 0.51 :
0.25 : 0.12 : 0.12—during the first hour, the observed ratios
move from 0.65 : 0.16 : 0.07 : 0.12 (fifteen minutes in) to
0.59 : 0.22 : 0.11 : 0.08 (half an hour in) and then to 0.50 :
0.25 : 0.13 : 0.13 (forty-five minutes in). Although some
variation is seen over time, after twelve hours of playback,
the observed ratios are very close to the expected ratios at
0.52 : 0.24 : 0.12 : 0.12.

Within the channels, all content items can be seen to be
played fairly frequently. Our ticket allocator treated each item
within the channel to an equal portion of the channel’s ratio
(taking into account the total duration of each item) and so
we would expect to see items within a channel played with
broadly the same share of the channel’s overall screen time;
this is roughly the case although we also see the effect of the
randomness that lottery scheduling provides. Using Chan-
nel D as a case study, for example, we see that after the first
hour, the channel had occupied the screen for just over nine
minutes. Each of the four items in the channel had played for
between 1.16 and 3.23 minutes each accounting for 12.86–
35.77% of the channel’s screen time (a completely even dis-
tribution would have given each 2.25 minutes, i.e. 25%). Af-
ter four hours, Channel D had played for almost thirty min-
utes with each item receiving between 6.00 and 8.91 minutes
(20.04–29.79% of the channel’s screen time), and at the end
our twelve hour study period, Channel D had played for al-
most 87 minutes with each item receiving between 16.16 and
25.70 minutes (18.64–29.65% of the channel’s screen time).

Finally, we note that our scheduler demonstrates some be-
haviour not typically seen in other approaches (e.g. round
robin). Due to the random selection of lottery tickets the same
item may be presented multiple times consecutively. Dur-
ing our 12 hour run, we see items being played up to three
times consecutively (i.e. an image that stays on the screen for
45 seconds rather than 15). Combining ratio-based selection
with other ticket allocators (e.g. to prefer content that has not
been played recently) may help to overcome this behaviour.
Of course, our study only shows the effects of using a single
ticket allocator. In practice we anticipate that combining mul-
tiple ticket allocators will result in variation in the accuracy of
the ratios as the system attempts to balance a variety of ticket
allocator preferences against each other.

RELATED WORK
Early pervasive display research systems provided little in
the way of scheduling control—some were restricted to sin-
gle items of content (e.g. media links), whilst others sched-
uled items only in response to specific presence or interac-
tion events (e.g. [7]) or by simply ‘cycling’ through content
items (i.e. round robin scheduling) (e.g. [13]). Combining

interaction-driven and round-robin scheduling has continued
as a common pattern for pervasive display systems (e.g. [11,
14, 2, 10]).

As digital signage has become more commonplace, a greater
need for more complex scheduling behaviour has emerged.
Payne et al. [15] proposed the use of auctions to select adver-
tisements on public displays. Their display used Bluetooth
scanning to count users in front of the display and build up
user histories. A repetitive second-price sealed bid auction
determined the winner from a set of advertising agents, each
bidding on behalf of an advertisement to be shown.

Other approaches have attempted to combine multiple dis-
tinct algorithms in order to accommodate groups of schedul-
ing preferences. For example, CommunityWall [16] used
combinations of rules to generate priorities for available
content—for example, to prefer items based on time of day,
or those that had led users to interact. In commercial signage
systems, a variety of timeline and constraints-based systems
have emerged (e.g. Sony Ziris [17], BroadSign [1]). Such sys-
tems typically feature sophisticated user interfaces that offer
display owners very fine-grained control over their displays
but may be overly cumbersome for non-expert users [12].

An alternative approach for flexible accommodation of mul-
tiple scheduling concerns was conceived by Storz et al. [18]
and Elhart et al. [10]. Both proposed providing APIs that
would allow the implementation of complex schedulers to
manage content transitions on a display node. Elhart et al.
also identified a wide range of scheduling constraints and
preferences and a notation that would allow description of
a specific scheduling problem (i.e. a specific combination of
scheduling and application environment together with the de-
sired scheduling behaviour).

CONCLUSIONS
Despite significant research activity content, scheduling re-
mains a key challenge for emerging pervasive display sys-
tems. We believe that this is is the first paper to explore
the development of a generalised scheduling architecture for
public displays based on lottery scheduling. Our initial im-
plementation experiences and evaluation suggest that lottery
scheduling, when combined with effective constraint process-
ing, can form part of a comprehensive scheduling solution for
pervasive displays. Our future work is to demonstrate the in-
tegration of our lottery scheduler with Tacita [6] to support
personalisation and to explore whether lottery scheduling can
be used to provide an appropriate metaphor for users when
specifying scheduling preferences.

ACKNOWLEDGMENTS
This research is partially funded through the Future and
Emerging Technologies (FET) programme within the 7th
Framework Programme for Research of the European Com-
mission, under FET grant number: 612933 (RECALL), and
was made possible with the support of a Google Faculty Re-
search Award and a Google Cloud Credits Award.

REFERENCES
1. BroadSign Digital Signage Software Solutions.

http://broadsign.com/ [Last accessed: February
2015].

2. Churchill, E. F., Nelson, L., Denoue, L., and
Girgensohn, A. The plasma poster network: Posting
multimedia content in public places. In Proceedings of
INTERACT ’03, IOS Press (2003).

3. Clinch, S. Supporting User Appropriation of Public
Displays. PhD thesis, Lancaster University, 2013.

4. Clinch, S., Davies, N., Friday, A., and Clinch, G. Yarely
– a software player for open pervasive display networks.
In Proceedings of PerDis ’13, ACM (2013).

5. Clinch, S., Mikusz, M., Greis, M., Davies, N., and
Friday, A. Mercury: An application store for open
display networks. In Proceedings of UbiComp ’14,
ACM (2014), 511–522.

6. Davies, N., Clinch, S., and Alt, F. Pervasive Displays:
Understanding the Future of Digital Signage. Synthesis
Lectures on Computer Science. Morgan & Claypool
Publishers, 2014.

7. Davies, N., Friday, A., Newman, P., Rutlidge, S., and
Storz, O. Using bluetooth device names to support
interaction in smart environments. In Proceedings of
MobiSys ’09 (2009).

8. Davies, N., Langheinrich, M., Clinch, S., Friday, A.,
Elhart, I., Kubitza, T., and Surajbali, B. Personalisation
and privacy in future pervasive display networks. In
Proceedings of CHI ’14, ACM (2014).

9. Elhart, I., Langheinrich, M., Davies, N., and José, R.
Key challenges in application and content scheduling for
open pervasive display networks. In Adjunct
Proceedings of PerCom’13 : Works-in-Progress (2013).

10. Elhart, I., Langheinrich, M., Memarovic, N., and
Heikkinen, T. Scheduling interactive and concurrently

running applications in pervasive display networks. In
Proceedings of PerDis ’14, ACM (2014).

11. Finney, J., Wade, S., Davies, N., and Friday, A. Flump:
The FLexible Ubiquitous Monitor Project. In Cabernet
Radicals Workshop (May 1996).

12. Friday, A., Davies, N., and Efstratiou, C. Reflections on
long-term experiments with public displays. Computer,
IEEE 45, 5 (May 2012), 34–41.

13. Kray, C., Galani, A., and Rohs, M. Facilitating
opportunistic interaction with ambient displays. In
Workshop on Designing and Evaluating Mobile
Phone-Based Interaction with Public Displays at CHI
2008 (2008).

14. McCarthy, J. F., Costa, T. J., and Liongosari, E. S.
Unicast, outcast & groupcast: Three steps toward
ubiquitous, peripheral displays. In Proceedings of
Ubicomp ’01, Springer-Verlag (2001), 332–345.

15. Payne, T., David, E., Jennings, N. R., and Sharifi, M.
Auction mechanisms for efficient advertisement
selection on public displays. In Proceedings of ECAI
2006, IOS Press (2006), 285–289.

16. Snowdon, D., and Grasso, A. Diffusing information in
organizational settings: Learning from experience. In
Proceedings of CHI ’02, ACM (2002), 331–338.

17. Sony ZirisTM. http://pro.sony.com/bbsc/ssr/
cat-digitalsignage/resource.solutions.
bbsccms-assets-cat-digsignagedev-solutions-Ziris.
shtml [Last accessed: April 2014].

18. Storz, O., Friday, A., and Davies, N. Supporting content
scheduling on situated public displays. Computers &
Graphics 30, 5 (2006), 681–691.

19. Waldspurger, C. A., and Weihl, W. E. Lottery
scheduling: Flexible proportional-share resource
management. In Proceedings of USENIX OSDI ’94,
USENIX Association (1994).

http://broadsign.com/
http://pro.sony.com/bbsc/ssr/cat-digitalsignage/resource.solutions.bbsccms-assets-cat-digsignagedev-solutions-Ziris.shtml
http://pro.sony.com/bbsc/ssr/cat-digitalsignage/resource.solutions.bbsccms-assets-cat-digsignagedev-solutions-Ziris.shtml
http://pro.sony.com/bbsc/ssr/cat-digitalsignage/resource.solutions.bbsccms-assets-cat-digsignagedev-solutions-Ziris.shtml
http://pro.sony.com/bbsc/ssr/cat-digitalsignage/resource.solutions.bbsccms-assets-cat-digsignagedev-solutions-Ziris.shtml

	Introduction
	Lottery Scheduling
	Application to Public Displays
	Design and Implementation
	Design Overview
	Scheduling Manager
	Context and Constraints Parser
	Context Store
	Filter Pipeline
	Lottery Scheduler
	Configuration

	Implementation

	Evaluation
	Benchmarking
	Real World Dataset

	Related Work
	Conclusions
	Acknowledgments
	REFERENCES

