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Job Shop Control:  
In Search of the Key to Delivery Improvements 

 
Abstract 
The last major performance breakthroughs in job shop control stem from the 1980s and 1990s. 

We generate a new search direction for designing job shop control policies, providing a key to 

delivery improvements. Based on a common characteristic shared by the most effective job 

shop control policies, we posit that control should have a specific focus during high load 

periods. A probability analysis reveals that substantial periods of high load are common, and 

even occur under assumptions of stationarity and moderate utilization. Subsequent 

simulations show nearly all tardy deliveries can be attributed to high load periods; and that the 

success of the best control policies can be explained by their ability to switch focus 

specifically during these periods, from reducing the dispersion of lateness to speeding up the 

average throughput time. Building on this, we demonstrate that for example small capacity 

adjustments targeted at handling high load periods can improve the percentage tardy and other 

delivery-related performance measures to a much greater extent than the best existing policies. 

Sensitivity analysis confirms the robustness of this approach and identifies a performance 

frontier reflecting the trade-off between capacity resources used and delivery performance 

realized. We conclude that a paradigm shift in job shop research is required: instead of 

developing single policies for application under all conditions, new policies are needed that 

respond differently to temporary high load periods. The new paradigm can be used as a design 

principle for realizing improvements across a range of planning and control decisions relevant 

to job shops. 
 

Keywords: Job shop control; Delivery performance; Capacity control; Simulation. 
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1. Introduction 

This paper aims to provide a contribution to the design of job shop control policies by 

identifying new search directions that improve delivery performance. Ever since the seminal 

work of Conway et al. (1967), the delivery performance of job shops has received much 

research attention. Contributions to improving delivery performance have spanned the full 

range of planning and control levels relevant to job shops, including policies for setting due 

dates (e.g. Ragatz & Mabert, 1984; Thürer et al., 2014a), controlling order release (e.g. 

Melnyk & Ragatz, 1989; Hendry et al., 1998), and sequencing or priority dispatching on the 

shop floor (e.g. Blackstone et al., 1982; Kanet & Hayya, 1982). Most attention has been on 

order release and priority dispatching, with the resulting policies generally seeking to make 

improvements either by: (i) reducing the dispersion of lateness across jobs; or (ii) speeding up 

the average throughput time of jobs. Reducing the dispersion of lateness is the focus of all due 

date or slack oriented policies, while the average throughput time of jobs can be reduced 

either through improved workload balancing or by prioritizing small jobs (Land & Gaalman, 

1998).  

Historically, both of the above improvement directions have been shown to be effective at 

reducing the percentage of tardy jobs (Conway et al., 1967), but performance was found to be 

dependent on the level of utilization (Jones, 1973; Elvers & Taube, 1982) or on the tightness 

of due dates (Baker & Bertrand, 1981; Kanet & Hayya, 1982). For example, due date-oriented 

priority dispatching rules like the Operation Due Date (ODD) rule that focus on (i), the 

dispersion of lateness, only performed well in terms of the percentage tardy if utilization was 

low or if due dates were relatively loose. Meanwhile, rules like the Shortest Processing Time 

(SPT) priority dispatching rule that focus on (ii), average throughput times, performed best 

when utilization was high or due dates were tight. Although most early research pursued one 

or the other search direction, one of the most remarkable improvements in delivery 

performance came about when the two were successfully combined in the early 1980s.  

Baker & Kanet (1983) demonstrated that a single priority dispatching rule – the Modified 

Operation Due Date (MODD) rule, based on Baker & Bertrand’s (1982) Modified Due Date 

rule – can be designed to reduce the dispersion of lateness and speed up the average 

throughput time of jobs. The MODD rule achieved this by automatically shifting its focus 

from the dispersion of lateness – through an operation due date orientation – to speeding up 

the average throughput time – through SPT effects – when multiple jobs exceed their 

operation due dates and, therefore, become urgent. Later, in the 1990s, Land & Gaalman 

(1998) introduced an order release policy known as SLAR – Superfluous Load Avoidance 
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Release – capable of replicating the sorts of improvements achieved on the shop floor by 

MODD at the order release level. Like MODD, SLAR switches its focus from reducing the 

dispersion of lateness to speeding up the average throughput time when multiple jobs become 

urgent. More recently, Thürer et al. (2014b) adapted MODD so it can be used to dictate 

priorities when jobs are considered for order release. The resulting rule – called MODCS 

(Modified Capacity Slack) – also appeared to improve performance significantly compared to 

rules with a single focus.  

All three highly effective policies referred to above – MODD, SLAR and MODCS – share 

a common feature: the same “focus-switching” behavior. Having made this observation, it 

becomes important to identify the temporary conditions that lead to switching from a focus on 

the dispersion of lateness to speeding up the average throughput time of jobs. As all policies 

discussed switch their focus when multiple jobs become urgent – and more jobs become 

urgent when loads increase – we posit that it is switches in focus during high load periods in 

particular that are responsible for the success of the policies. Prior research has not studied job 

shop control policies over time, including when and why they change behavior; hence, this 

conjecture requires investigation. This leads to the first research question addressed in this 

paper:  
 

Is the effectiveness of the aforementioned control policies attributable to a switch in 

control focus during periods of high load?  
 

If the core success of the control policies in improving delivery performance is indeed as a 

result of a switch in focus during specific high load periods, then it seems very restrictive to 

embed this switch within a single control rule, as is the case for MODD, SLAR and MODCS. 

Instead, it might be more effective to determine an alternative policy to be applied during high 

load periods only and to couple this alternative with a policy in place for other, “normal” load 

situations. This leads to our second research question:  
 

Can specific policies, designed for application during high load periods only, further 

improve delivery performance? 
  

We will focus on policies for capacity adjustment – since adjusting capacity is likely to be 

the most straightforward response to a high load – and attempt to show that small capacity 

adjustments during high load periods are sufficient to create significant improvements in 

delivery performance. In answering our second research question, we provide a general search 

direction for improving job shop control. 
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The remainder of this paper is organized as follows. Since our study is distinctly different 

from earlier job shop research in considering load fluctuations over time, we will start our 

study in Section 2 with an analysis of high load probabilities in common job shop models. 

Section 3 then outlines the experimental design of a simulation study that investigates: (i) the 

relationship between high load periods and the effectiveness of existing job shop control 

policies that switch their focus, with MODD used as an example of such a policy; and, (ii) the 

effect of small capacity adjustments applied during high load periods only. The results of the 

simulation study are presented in Section 4. Finally, the paper concludes with Section 5, 

where a discussion on managerial implications and future research directions is provided. 

 
 

2. Preliminary Analysis: Probabilities of High Load Periods 
This study started with the conjecture that switches in focus during high load periods are 

responsible for the success of policies like MODD. Most control policies have been evaluated 

using stationary job shop models with fixed utilization levels and only average load levels 

have been specified in the results. This neglects the fact that temporary periods of high and 

low load will occur in these models. Loads will build up in periods where more work arrives 

than a workstation can handle. In such periods – where capacity requirements exceed capacity 

availability – the utilization implied by demand temporarily exceeds 100%. The longer such a 

period persists, the more probable it is that congestion will increase loads to levels that cause 

the due dates of orders to be exceeded. Therefore, this section analyzes the probability of a 

period with an implied utilization that exceeds 100% occurring and, more specifically, the 

relationship between the probability of occurrence and the length of the period. 

If the utilization of a workstation is ρ during a time interval T, then the average amount of 

work that arrives in that period will be ρT time units. The probability that the workload 

arriving for a certain workstation, given by the sum of the processing times, exceeds T during 

an interval of length T, can be specified as ( )( )( )TpPr Tn

j j >∑ =1
, where: n(T) refers to the number 

of arrivals during an interval of length T; and, pj refers to the processing time of job j. The 

stochastic variable n(T) may follow a generic discrete distribution and is assumed to be 

independent of the processing times. Meanwhile, processing times are assumed to be 

independent and identically distributed (i.i.d.). Since calculating the workload for a long 

interval T involves aggregating a large number of stochastic processing times together, we can 

apply the central limit theorem. This implies that the convolution associated with ∑ =

n

j jp
1

can 

be approximated by a Normal distribution for high values of n, independent of the processing 
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time distribution. The mean and variance of the sum of a random number of i.i.d. variables 

can be determined using Equation (1) and Equation (2) below (see, e.g. Ross, 1993). 
 

( )[ ] ( )[ ] [ ]pETnEpE Tn

j j ⋅=∑ =1
 (1) 

 

( )( ) ( )[ ] ( ) [ ] ( )( )TnVarpEpVarTnEpVar Tn

j j ⋅+⋅=∑ =
2

1
 (2) 

 

This means that the probability that the workload arriving at a workstation during an 

interval of length T exceeds T time units can be approximated by Equation (3) below, with Φ  

being the cumulative standard normal distribution function. 
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To simplify this expression, we make the common assumption that jobs arrive according to 

a Poisson process. Without loss of generality, we can also define our time units such that the 

average processing time is equal to one time unit, which means that T can be interpreted as a 

multiple of the average processing time. In other words, T=10 refers to a period equal to 10 

multiplied by the average processing time of one time unit. Under the above assumptions, 

E[n(T)]=ρT; Var(n(T))=ρT; and E[p]=1. In addition, the variance of processing times is equal 

to the squared coefficient of variation, i.e. Var(p)=cv2(p). This means that Equation (3) can be 

simplified to Equation (4) below. Therefore, to determine the stationary probabilities for each 

possible interval T – assuming Poisson arrivals – we need only know the average utilization 

level ρ and the coefficient of variation of the processing times cv(p). This makes Equation (4) 

widely applicable to a large number of potential settings. 
 

( )( )( )
( )( ) 














+⋅
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Φ−≅>∑ = pcvT
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j j 21 1
1

r

r
 (4) 

 

Figure 1 shows the relationship that results from Equation (4) for values of ρ=0.9 and  

cv2(p)=0.5, which are not uncommon values in job shop models (e.g. Land, 2006; Fernandes 

& Carmo-Silva, 2011). As we might expect, given that capacity is only utilized for an average 

of 90% of the time, the probability decreases with the length of the period. However, we can 

also observe from Figure 1 that these probabilities remain at considerable levels, even for 

longer periods. For example, in a period of 200 time units (the average processing time 

multiplied by 200), there is still an 11% probability that the jobs arriving require more than 

200 time units of work at a given workstation. We may reasonably expect the average lateness 
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of jobs to increase substantially after such prolonged periods with an implied utilization that 

exceeds 100%. This also means policies that focus on reducing the dispersion of lateness may 

no longer be effective at reducing the percentage tardy.  
 

[Take in Figure 1] 

 

Notice that the above calculations hold for an arbitrary configuration with Poisson arrivals. 

In other words, work arriving may refer to arrivals to the queue of a workstation but may also 

refer to arrivals to a job shop for processing at a certain workstation. A job shop simulation 

will now be used to further analyze the implications of periods of high load after prolonged 

periods where the implied utilization exceeds 100%.  

 
 

3. Experimental Design 
A substantial proportion of orders may become tardy when a high load period occurs that is 

sustained for a significant time horizon; and the preliminary analysis in Section 2 showed that 

such prolonged periods of high load can occur frequently. In Section 1, we suggested that a 

shift in focus may be required to handle these periods. Retaining a due date-oriented focus – 

aimed at reducing the dispersion of lateness – is likely to become ineffective; instead, a 

general shift towards speeding up throughput times – in a bid to counteract an increasing 

average lateness – is likely to be more appropriate. This shift in focus is what characterizes 

some of the most effective job shop control policies from the literature, such as MODD 

(Baker & Kanet, 1983) and SLAR (Land & Gaalman, 1998). But it has not been explicitly 

demonstrated whether these shifts in focus take place during specific periods of high load or if 

they are spread out more generally over time.  

Therefore, in line with our two research questions, a simulation study has been designed to: 

1. Show how control policies improve delivery performance by switching their focus 

specifically during periods of high load. This will be achieved by confining our 

investigation of focus-switching policies to the MODD priority dispatching rule – both the 

order release method, SLAR and the pre-shop pool sequencing policy, MODCS build on 

exactly the same principles as MODD. 

2. Evaluate whether further performance improvements can be realized through particular 

control policies specifically applied to handle high load periods. This will be achieved by 

applying small capacity adjustments during periods of high load only. 
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The MODD rule, together with the other rules included in our study, is outlined in Section 

3.1 before the design of a simple capacity adjustment policy is specified in Section 3.2. 

Section 3.3 then describes the basic job shop simulation model underpinning our study before 

Section 3.4 reviews the experimental variables and Section 3.5 the performance measures 

applied. 
 

3.1 The MODD Rule and its Components 

In this study, we focus on the MODD rule as an example of a focus-switching control policy 

and evaluate its effectiveness. But as a reference, and to demonstrate how delivery 

performance over time is generally affected by periods of high load, we start our experiments 

with the basic First-Come-First-Served (FCFS) rule. As MODD combines the SPT and ODD 

rules, we also include SPT and ODD individually in our experiments. This allows us to better 

understand the performance impact of MODD’s two underlying mechanisms.  

Equation (5) specifies the calculation of the operation due date ijδ for the ith operation of a 

job j, as used in the ODD and MODD rules. The operation due date ijδ  for the last operation 

with index nj in the routing of the job is equal to the due date jδ , while the operation due date 

of each preceding operation is determined by successively subtracting a constant allowance c 

from the operation due date of the next operation. 
 

( ) cin jjij ⋅−−= δδ   jni ..1:         (5) 
 

Several approaches to calculating ODDs have been suggested in the literature. The 

calculation in Equation (5) has been selected since it was proven to function particularly well 

in situations with uncontrolled order release (Land et al. 2014), as applied in this study. 

The MODD rule prioritizes jobs, starting at the job with the lowest priority number given 

by the maximum of the operation due date and earliest finish time (Baker, 1984), i.e. 

( )ijij pt +,max δ  for an operation with processing time ijp , where t refers to when the 

dispatching decision was made. At one extreme, MODD results in unmodified ODD 

sequencing if the operation due dates of none of the jobs are exceeded by their finish times. 

At the other extreme, if the finish times of all jobs exceed their operation due dates, then 

MODD results in exactly the same sequence as the SPT rule in isolation. 
 

3.2 Capacity Adjustments for High Load Periods 

Our second research question concerns the design of specific policies to speed up throughput 

times during periods of high load. The most logical solutions would be to either: (i) increase 
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capacity; or, (ii) alleviate the capacity requirements of workstations with a high load. Various 

options exist in practice to temporarily increase capacity, e.g. using overtime, reallocating 

operators from under-loaded to high load workstations, etc; or to alleviate capacity 

requirements, e.g. by re-routing orders, by outsourcing the operations of overloaded 

workstations, by outsourcing whole orders, etc. However, we are not interested in the specific 

adjustment mechanisms used but in the performance impact of any temporary adjustment. 

Therefore, during a high load period, we simply decrease the operation processing times of 

jobs at the workstations with a high load by a predetermined percentage α. A processing time 

reduction α of 20% will be used in the main experiments of this study.  

In practice, capacity adjustments may be applied on a more ad-hoc basis, but for the 

accuracy of our comparisons, we will specify: (i) a well-defined workload measure, with 

precise thresholds; (ii) the load that triggers the commencement of the capacity adjustments; 

and (iii) the level signaling that the load has reduced sufficiently to cease the adjustments. The 

latter thresholds directly specify which periods will be distinguished as high load periods. 

First, we measure the workload level that triggers the adjustments in the simulations in 

units of a corrected aggregate load. This measure gives the best representation of the future 

expected direct load of a workstation based on the mix of routings actually present on the 

shop floor (Oosterman et al., 2000). It gives the earliest possible indication that congestion is 

foreseen at a certain workstation as it includes not only the direct load but also a proportion of 

the work on its way to the workstation. The corrected aggregate load contribution of a job to 

the ith workstation in its routing is determined by
i
pij . A job contributes to the load of a 

workstation upon its entry to the shop and is excluded as soon as the operation at this 

workstation is complete. Dividing by the workstation position corrects for a workstation being 

further downstream in the routing of a job and allows for more work to become underway in 

the shop. 

Second, a parameter β is used to specify the workload level that determines the start of the 

capacity adjustment. As soon as the load exceeds this level β for a workstation, the realized 

processing times will be decreased by the percentage α at this work station. The parameter β 

is expressed as a percentile of the frequency distribution of the corrected aggregate workload 

that emerged in the simulation experiment without capacity adjustment. It is set at 85% during 

our main experiments. 

Third, to avoid returning to normal capacity after just a single operation has been 

completed, the capacity increase will only be stopped when the corrected workload has been 
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reduced to a level of γ percentage points below the triggering level β. A γ value of 5% is 

applied in the main experiments, which means that the adjustments are stopped when the 

workload has subsided to an 80% level.  

While single-parameter values have been applied in the main experiments, a sensitivity 

analysis has also been included with a full experimental design to test four different levels of 

each of the three parameters α, β and γ. These parameters will be specified in Section 3.4 after 

the discussion below of the basic job shop model applied in this study. 
 

 

3.3 The Basic Job Shop Model  

A simulation model of a randomly routed job shop (Conway et al., 1967) or pure job shop 

(Melnyk & Ragatz, 1989) has been implemented in Python© using the SimPy© module. It has 

been kept as simple as possible to focus on the research questions addressed by this study and 

to avoid any irrelevant interactions. For example, we assume that due dates are specified 

exogenously, releases take place instantaneously, and control is based entirely on the priority 

dispatching rule. The basic model – described below – is similar to those commonly used in 

studies on due date setting (e.g. Thürer et al., 2014a), order release (e.g. Melnyk & Ragatz, 

1989; Thürer et al., 2012), and priority dispatching (e.g. Fredendall & Melnyk, 1995; 

Fredendall et al., 1996) to allow for verification.  

The basic job shop model contains six workstations, where each workstation is modeled as 

a single capacity resource. The routing length of jobs varies uniformly from one to six 

operations. All workstations have an equal probability of being visited and a particular 

workstation is required at most once in the routing of a job. Processing times follow a 2-

Erlang distribution, a common approach since the study by Land & Gaalman (1998). For ease 

of interpretation – and as discussed in Section 2 – the average processing time is scaled to one 

time unit. Jobs arrive at the shop according to a Poisson process, resulting in exponential 

times between arrivals. The average inter-arrival time is set such that a 90% workstation 

utilization rate is maintained. But it is important to be aware that the capacity adjustments – 

based on reducing processing times – decrease the average utilization level compared to this 

original steady-state average of 90%. None of the capacity adjustments in the experiments 

reduced the overall utilization level by more than 0.5 percentage points. Therefore, we also 

include experiments with a utilization level of 89.5% by multiplying all processing times by a 

factor of 89.5/90. This adaptation provides an appropriate lower bound for a constant capacity 

that would lead to a comparable average utilization level. 
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Due dates are set exogenously by adding a random allowance factor – uniformly 

distributed between 30 and 45 time units – to the job entry time. As a constant allowance (c) 

of 5 time units per operation is applied in all experiments to determine operation due dates 

according to Equation (5), the minimum due date allowance of 30 time units corresponds to 

the requirements for the longest routing length of 6 operations. Given the processing time 

distribution, a negligible fraction of less than 5 out of 10,000 processing times will exceed the 

allowance for a single operation, while preliminary experiments have shown that this 

allowance also reflects a generally realizable throughput time. The maximum due date 

allowance of 45 time units was also determined through preliminary experiments and set such 

that the percentage tardy remains between 5% and 25% for our initial experiments, i.e. prior 

to capacity adjustments designed to improve the handling of high load periods. This range for 

the percentage tardy covers the values that have been used in most previous job shop studies. 

The maximum percentage tardy of 25% avoids certain adverse effects, since rules that reduce 

the variance of lateness across jobs might even lead to an increase in the percentage tardy 

when due date allowances are too tight on average. Meanwhile, setting the minimum to 5% 

avoids our results being affected by incidental effects, as very few jobs would be responsible 

for the performance of the shop. Finally, a summary of the model characteristics is provided 

in Table 1. 
 

[Take in Table 1] 

 

3.4 Experimental Variables 

The factors that we vary in this model are the four dispatching rules specified in Section 3.1 in 

combination with: (i) a constant capacity, resulting in a 90% and an 89.5% utilization level; 

and (ii) the capacity adjustments specified in Section 3.2. In the sensitivity analysis, the 

influence of the capacity adjustment parameters is tested in a full factorial design with four 

levels for each of the parameters α, β and γ, as specified in Table 2. The different values have 

been determined numerically via simulation experiments since they are the result of several 

stochastic processes.  
 

[Take in Table 2] 

 

3.5 Performance Measurement 

This study needs two types of performance measure to be evaluated: steady-state average 

indicators of delivery performance; and, measures that relate delivery performance to the load 

level over time. 



12 
 

 

3.5.1 Steady-State Average Indicators of Delivery Performance  

We confine ourselves to presenting the following four steady-state averages of delivery 

performance: (i) the percentage of jobs delivered tardy; (ii) the mean lateness; (iii) the 

standard deviation of lateness; and, (iv) the mean tardiness. The percentage tardy gives the 

most general indication of delivery performance, while the mean lateness indicates whether a 

policy speeds up jobs on average. To a degree, both the mean tardiness and the standard 

deviation of lateness measure the dispersion of lateness across jobs. The standard deviation 

has the advantage of being relatively independent of the mean lateness, while the mean 

tardiness can be strongly correlated with the mean lateness. However, the standard deviation 

of lateness is more sensitive to extreme values than the mean tardiness. In the sensitivity 

analysis that evaluates the capacity adjustments, the average percentage tardy – as a measure 

of the effectiveness of the adjustment – will be set against efficiency in terms of the amount of 

additional capacity resources that are used to make the adjustment. 

All steady-state averages are based on simulation experiments of 1,000,000 time units, 

following a validated warm-up period of 3,000 time units, using the method of Batch Means 

to split each experiment into 100 runs. This allowed us to measure significant effects while 

keeping the simulation run time to a reasonable level. As common random numbers have been 

used to reduce variance, the significance of differences between individual experiments can 

be verified using paired t-tests. A 95% confidence level is in place whenever we mention 

differences between steady-state statistics in the results section. 
 

 

3.5.2 Delivery Performance vs. Load Levels over Time 

A novelty of this study is its focus on the effects of switches in behavior over time. While 

discrete event simulations inherently allow for identifying behavior over time, most prior 

studies focus on overall steady-state statistics, with differences over time offset in the average 

values reported. When it comes to identifying patterns over time, graphs will be more 

illuminating than statistics. Our experiment lengths of 1,000,000 time units are important for 

determining statistical significance, but they do not aid the visualization of patterns. Therefore, 

we will show graphs of the workload and lateness of every job delivered over one continuous 

time interval of 6,000 time units during the first simulation run only; this includes moments of 

both low and high load. As we are interested in a typical period, we have checked that the 

chosen interval does not contain any patterns that are distinctly different to those observed 

during other runs although, obviously, every run is different at the individual job level. The 

same run number and time interval has been selected for every experiment, which – given the 
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use of common random number streams – allows for the best possible comparison and for 

visualizing the same periods of high load.  

 
 

4. Results 
The results of this study are organized around our two research questions. The first question is 

addressed in Section 4.1, where we investigate how delivery performance for each of the four 

priority dispatching rules is affected by periods of high load. In this section, we pay particular 

attention to the functioning of the combined priority dispatching rule, MODD that switches its 

focus from ODD to SPT effects. In line with our second research question, Section 4.2 then 

evaluates the performance effect of our new policy of making small capacity adjustments 

when a high load occurs. Finally, the impact of the three parameters we set for adjusting 

capacity (α, β and γ) on the effectiveness of the adjustments are examined through a 

sensitivity analysis in Section 4.3.  

 Figures 2 and 3 provide overviews of the results of our main experiments. These figures 

will be referred to in both Section 4.1 and Section 4.2. The graphs in each figure are presented 

together to aid comparison between the results with and without capacity adjustments. 

 

[Take in Figure 2 & Figure 3] 
 

4.1 The Impact of High Load Periods on Delivery Performance 

To examine the impact of high load periods on delivery performance, we record both the 

lateness of jobs and the workload over time. Figure 2 presents the results for a representative 

period of 6,000 time units for each of the four priority dispatching rules (FCFS, ODD, SPT, 

and MODD). Figure 2 consists of eight graphs from 2a to 2h. The first four graphs, on the 

left-hand side of the figure (2a-2d), are relevant to this section and to examining the impact of 

high load periods on delivery performance for each of the four rules. Time is placed on the 

horizontal axis while the vertical axis depicts both the workload at each moment in time and 

the lateness of jobs delivered at that same moment in time, both measured in time units. Here, 

the workload is measured in terms of the corrected aggregate load (Oosterman et al., 2000) of 

one workstation. The lateness measure corresponds only to jobs that visit this particular 

workstation. 

The two curves in Figure 2a clearly show that – after a short time lag – there is a strong 

correlation between lateness and the temporary workload when jobs are simply handled at 

each workstation on a FCFS basis. The temporary workload and lateness of jobs roughly 
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follow the same pattern over time. This relationship becomes even more pronounced when 

jobs are prioritized according to the ODD rule (see Figure 2b) because the due date 

orientation of the ODD rule reduces the variance of lateness compared to FCFS. Under the 

ODD rule, only when high load periods occur does the lateness curve tend to climb above the 

horizontal axis. Hence, it becomes clear that it is high load periods that are responsible for 

nearly all of the jobs that are completed tardy. Some lateness does occur in periods when the 

workload is lower, but Figure 3 demonstrates that this must be due to a high load at another 

workstation in the routing of the tardy job.  

Figure 3 presents a scatter plot for the same jobs used to construct the ODD graphs in 

Figure 2. In Figure 3, the horizontal axis indicates the maximum corrected load across all 

workstations in the routing of a job at the time the job arrived at the shop, while the vertical 

axis indicates the lateness. Figure 3a presents the results without capacity adjustments. Each 

dot in Figure 3a relates to one of the completed jobs from Figure 2b. Although we can no 

longer distinguish load patterns over time, Figure 3a clearly shows that at least one 

workstation in the routing of every job delivered tardy had a substantial load level. More 

specifically, all of the jobs that arrived tardy in Figure 3a had at least one workstation with a 

load level higher than 10 time units. In general, the scatter diagram confirms the strong 

correlation between the temporary load situation and lateness. Based on the r2 value across the 

full simulation experiment, 73% of the variance in lateness could be explained by variance in 

the maximum of the relevant corrected aggregate loads at the time of a job’s arrival. 

Returning to Figure 2, MODD is shown to be highly effective at further reducing the 

periods that the lateness curve stays above the horizontal axis for ODD. This can be seen, for 

example, by comparing the period before time 7,000 in Figures 2b and 2d. This implies that 

MODD reduces the percentage of jobs that are delivered tardy compared to ODD. The 

remaining tardiness largely occurs during the periods of high load. By comparing figures 2b, 

2c and 2d, we can clearly see that MODD combines the strength of SPT during high load 

periods with the strength of ODD during low load periods. The strength of SPT (Figure 2c) is 

that less tardy jobs occur than under ODD and less specifically in the high load periods; 

however, SPT does create a high variance of lateness, including tardiness in periods of 

relatively low load. From Figure 2b, we can see that a strength of ODD is that it keeps the 

variance continuously low. MODD still has some variance, mainly in the high load periods – 

as illustrated by a number of substantial spikes in Figure 2d – but avoids the continuous 

lateness of ODD in these periods. Thus, for the most part, the ODD element dominates the 

MODD rule and keeps the variance low. It is only when necessary, i.e. during the periods of 
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high load, that the SPT element of MODD speeds up jobs. This confirms our conjecture that it 

is indeed switches in focus during high load periods that are responsible for MODD’s success. 

The above influences on the steady-state statistics can be seen in Table 3. The table shows 

that applying ODD reduces the realized percentage of tardy jobs down to 12.1% compared to 

23.7% under the FCFS rule. Meanwhile, the SPT rule results in 5.8% and MODD in just 5.0% 

of jobs being delivered tardy. The standard deviation of lateness – lowest under ODD 

dispatching at 12.4% – increases to 19.1% for FCFS and 24.5% for SPT, but to only 13.1% 

for MODD. Hence, MODD keeps the standard deviation of lateness reasonably close to that 

achieved under ODD. MODD also results in by far the lowest mean tardiness (0.49). The 

dramatic impact of MODD on mean tardiness can be explained by a combination of: (i) more 

jobs achieving a tardiness of zero compared to the ODD rule; and, (ii) the relatively low 

standard deviation of lateness of MODD compared to SPT. The substantial decrease that can 

be observed in the mean lateness of SPT compared to ODD is hardly reflected in the results 

for the MODD rule, as SPT effects within this rule only take place during high load periods. 

This emphasizes once more that the effectiveness of MODD can be attributed to temporary 

switches in focus during limited periods of high load. 
 

[Take in Table 3] 
 

 

4.2 The Impact of Capacity Adjustments on Delivery Performance 

We are mainly interested in evaluating the basic notion of responding to a temporary high 

load by further shifting the focus to speeding up throughput times. Therefore, this section is 

confined to straightforward capacity adjustments to represent this shift and applies a single set 

of parameters for the size and timing of the capacity adjustments discussed in Section 3.2 

(α=20%; β=85%; γ=5%). The robustness assessment will follow in Section 4.3.  

The right-hand side of Figure 2 (2e-2h) shows the graphs when capacity adjustments take 

place. In all four graphs, we see that the peaks in the workload are significantly reduced 

compared to the situation without capacity adjustments (Figure 2a-2d vs. Figure 2e-2h). 

Depending on the particular rule being applied, we can also observe a sizeable impact on 

lateness. For FCFS (Figure 2e), ODD (Figure 2f) and MODD (Figure 2h) dispatching, 

lateness during high load periods is greatly reduced compared with the equivalent scenario 

without capacity adjustments. The most important implication for the ODD and MODD rules 

is that the lateness curves change such that they are now almost completely below the 

horizontal axis, suggesting that a much larger percentage of jobs are delivered in time to meet 

their due dates. This can also be observed for the ODD rule by comparing the scatter plots of 



16 
 

Figure 3b and Figure 3a, which clearly shows that most of the original tardy deliveries related 

to high loads have now disappeared and that it is these tardy deliveries in particular that have 

been affected. 

Returning to Figure 2, capacity adjustments clearly contribute to a further reduction in the 

variance of lateness for MODD (Figure 2h), particularly for those jobs that must be delivered 

during high load periods. Moreover, it is apparent that when capacity adjustments are made, 

the SPT effect incorporated in the MODD rule no longer leads to the extreme postponement 

of jobs. In other words, the spikes observed in Figure 2d are not evident in Figure 2h. The 

SPT rule itself (see Figure 2c vs. 2g) takes far less advantage of the capacity adjustments than 

MODD, because its late deliveries are not just related to high load periods. 

Table 4 presents the steady-state averages of the experiments for each of the four priority 

dispatching rules without capacity adjustments at a 90% and at an 89.5% utilization level; and 

with the temporary capacity adjustments, which result in intermediate utilization levels. The 

numbers in Table 4 clearly confirm the positive impact on performance of adjusting capacity 

during high load periods. For all methods except SPT, the percentage tardy is greatly 

decreased when capacity adjustments are made during high load periods compared to the 

original results at a 90% or at an 89.5% utilization level. When the SPT rule is applied in 

isolation, adjusting capacity leads to only a very limited improvement in percentage tardy 

performance because, as we earlier explained, its weaknesses were not restricted to the high 

load periods. The percentage tardy improvements for FCFS, ODD and MODD are perhaps 

stronger than may have been expected, given that Table 4 reveals only small reductions in 

mean lateness and in the standard deviation of lateness. However, there is a reasonably large 

reduction in the mean tardiness for all three rules. The difference between the influence on 

tardiness and lateness measures implies that only a small group of particular jobs is affected 

by the capacity adjustments, which must be the jobs that become tardy during high load 

periods. 
 

[Take in Table 4] 
 

Finally, the importance of changing the focus during high load periods only is confirmed 

by the fact that the overall reduction of processing times – leading to an 89.5% utilization rate 

– has much less of an effect on performance improvements than the specific, temporary 

capacity adjustments. However, either stronger, earlier or more prolonged capacity 

adjustments may help to realize further delivery performance improvements, as we will show 

in the sensitivity analysis that follows in the next section. The sensitivity analysis will also 
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indicate that all types of parameter changes lead to a similar trade-off between the use of extra 

capacity resources and the realized improvements, which proves the robustness of the findings 

in this section. 
 

 

4.3 Sensitivity Analysis 

In Section 4.2, we used a single setting for each of the capacity adjustment parameters (α, β, 

and γ). Here, we will show why these settings were appropriate and that other settings would 

not have affected our conclusions and only resulted in a different position along a 

“performance frontier”. Figure 4 illustrates this frontier in terms of the trade-off between the 

additional resources used by the capacity adjustments on the horizontal axis and the resulting 

percentage tardy performance on the vertical axis. The former is measured in terms of the 

average reduction in processing time units processed over a period of 1,000 time units, since 

we simulate capacity adjustments by decreasing processing times. 
 

[Take in Figure 4] 
 

Each marker in the graphs shows both the percentage tardy and the additional resources 

used for a certain combination of the adjustment parameters α, β and γ. For clarity, Figure 4a 

has been confined to the experiments with α=20%, while Figure 4b includes the experiments 

with all α-values. The largest triangular marker in Figure 4a indicates the settings applied in 

the preceding section and shows that the reduction to 2.8% of tardy jobs reported for ODD in 

Table 4 was realized by reducing the total processing times by only 3.6 time units over a 

1,000 time unit period. The connected curve with triangular markers in Figure 4a shows how 

the results change if α and β are kept constant (at 20% and 85%, respectively) but γ is varied. 

The markers show the results for γ=0%, 5%, 10% and 15%. As γ increases, the capacity 

adjustment is maintained for a longer period of time, thereby resulting in the use of more 

resources. The payback is that this further reduces the percentage tardy: to 2.2% when γ is 

10%, and to 1.8% when γ is 15%.   

The curve with x-markers in Figure 4a – below that with triangular markers – indicates the 

results when β is decreased to 80% and α is maintained at 20%; again, each marker on the 

curve relates to a different value of γ. By comparing this with the previous curve, we can see 

that decreasing the load level (β) that triggers a capacity adjustment allows for a stronger 

reduction in the percentage tardy than varying γ. However, it still follows the same frontier in 

the trade-off between percentage tardy and used resources. The curves with round and square 

markers – this time above and to the left of the triangular markers – indicate the results for 

higher β values of 90% and 95%, respectively. Here, we wait longer before starting the 



18 
 

capacity adjustments and therefore use fewer resources, but are less effective at reducing the 

percentage tardy.  

The impact of a heavier capacity adjustment can be seen in Figure 4b, which in addition to 

the curves from Figure 4a includes dotted curves for the extreme where α=40%. Points 

resulting from α-values of 10% and 30% are also depicted in Figure 4b but left unconnected 

for clarity; they are indicated in the legend as “all other”. The stronger capacity adjustments 

resulting from α=40% lead to greater reductions in the percentage tardy than for α=20%, 

when the same β and γ values are adopted. But similar effects can also be achieved without a 

heavy capacity adjustment if β and/or γ are set differently. Overall, we can conclude that 

higher α values simply result in a different point along the same performance frontier. 

However, an α value of just 10% leads to the unconnected points that can be observed to the 

right of this frontier. This means that a very weak capacity adjustment would require more 

resources to realize the same percentage tardy. Finally, it is important to note that the scenario 

where no capacity adjustments are made is equal to either setting α to 0% or β to 100%. This 

resulted in the point on the vertical axis at 12.1% tardy. Virtual curves connecting varying 

levels of either α or β would converge to this point.  

The findings of this sensitivity analysis have important implications. We have identified a 

single performance frontier, which means that the choice of capacity parameters is simply a 

trade-off between: (i) efficiency, in terms of the additional resources used; and, (ii) 

effectiveness, in terms of the impact of the adjustment on percentage tardy performance. A 

capacity increase of just 20% in high load periods is already sufficient to realize points on the 

performance frontier illustrated in Figure 4. In fact, we could have chosen almost any 

parameter combination without leaving the frontier. Although we have defined our parameters 

precisely for the purposes of our simulations, we might expect that a manager in practice will 

determine when to adjust capacity on a more ad-hoc basis, while the size of the adjustment 

will depend on context-specific possibilities within their given shop. Our sensitivity analysis 

suggests that most choices will result in the same trade-off between invested resources and 

reward, which favors the practical use of capacity adjustments as an instrument for 

responding to temporary high load periods. 
 

 

 
5. Conclusion 
Some of the most effective job shop control policies from the 1980s and 1990s – like MODD 

for priority dispatching and SLAR for order release – are able to reduce the dispersion of 

lateness and speed up the average throughput time of jobs. This study has shown that the 
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performance breakthroughs can be attributed specifically to an improved effectiveness during 

temporary periods of high load. When only a due date-oriented control policy is applied, 

nearly all tardy deliveries occur during these periods. While, for the most part, it is sufficient 

to focus prioritization on the relative urgency of jobs to reduce the dispersion of lateness, 

periods of high load require a more general focus on speeding up throughput times so 

consecutive jobs do not become tardy. This insight has provided a new search direction for 

the development of job shop control policies that further improve delivery performance. 

After establishing the main design principle that control policies should have a particular 

focus on speeding up throughput times during periods of high load, this principle was 

evaluated using simulation to test the effect of temporary capacity adjustments. The 

simulation study evaluated a straightforward policy for speeding up jobs specifically during 

high load periods: by temporarily increasing the capacity of a workstation when its load 

increased above a certain threshold. The results demonstrated that small adjustments can have 

a large impact on performance. In our model, temporary capacity increases for a single 

workstation during an extremely limited part of the simulation run time were sufficient to 

reduce the percentage of tardy jobs from 12.1% to just 2.8% when only a simple ODD rule 

was in operation. Hence, this dedicated policy for high load periods can be used to allow the 

dispatching rule to remain relatively simple; but it can also be used to further enhance the 

performance of focus-switching policies like MODD. In our model, the percentage tardy 

under MODD could be reduced from 5.0% to 1.3%; and, the mean tardiness to virtually zero 

(0.04). 

Moreover, sensitivity analysis showed that the results are highly robust to the setting of our 

capacity adjustment parameters, while further delivery improvements are possible, e.g. via 

stronger adjustments, but must be traded off against an increase in the use of capacity 

resources. Varying the parameters only leads to different positions along a performance 

frontier given by the best possible combinations of effectiveness and efficiency, with 

effectiveness determined by the realized delivery performance (the percentage tardy) and 

efficiency determined by the amount of extra capacity resources used. Small capacity 

adjustments were sufficient to reach a point on this frontier, while larger adjustments allow 

for moving along the frontier. If a firm is responsive and makes timelier capacity adjustments, 

i.e. at lower workload levels, it can further reduce the percentage tardy, but again following 

the same frontier and trade-off with the amount of resources used. 

Our findings can be summarized in the following three managerial rules. Management 

should: 
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• Monitor any load increases closely, checking the load contributions of newly arriving jobs;  

• Focus control on periods of high loading and change the normal policy to ensure 

throughput times are speeded up sufficiently during these periods; and, 

• Be responsive in taking actions when a high load begins to develop in order to realize the 

best delivery performance. However, our results also show that it is a matter of making the 

trade-off decision between desired performance and investment in extra resources. 
 

This paper showed that an effective way of implementing these rules in practice could be 

to makes small temporary capacity adjustments as soon as high loads are observed. A 

limitation of this study is that the simplified, flexible approach to adjusting capacity that we 

have modelled neglects possible practical complications. Future research, therefore, should 

examine how the complexities of adjusting capacity in reality would affect the results. Future 

research could also embed our design principle of focusing on high load periods in other 

control policies relevant to job shops, e.g. for outsourcing, order acceptance and process 

planning. Beyond investigating the same principle in other policies, analogous principles 

might be derived for other temporary phenomena than high loads, e.g. deviations in the mix of 

routings and increases or decreases in the tightness of due dates. Responding to strong 

changes in these aspects may provide further opportunities for improvement, even under the 

assumption of a stationary setting.  
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Table 1: Summary of Model Characteristics 
 

Shop: 6 workstations (with 1 machine each) 
Routing sequence: Random, no re-entrant loops 
Operations per job: Discrete uniform [1, 6] 
Operation processing times:   2-Erlang with a mean of 1 time unit 
Inter-arrival times: Exponential with a mean of 0.648 time units  
Job due-date allowance:       Uniform [30, 45] time units 
Operation due dates: Constant allowance (c) of 5 time units per operation 
 
 
 

  

Table 2: Summary of Capacity Adjustment Parameters 
 

Parameter Definition Main Settings 
(Section 4.2) 

Sensitivity Analysis 
(Section 4.3) 

α 

Size of the capacity adjustment, measured 
as the percentage reduction in operation 
processing times, at the triggering 
workstation  

20% 10, 20, 30 and 40% 

β Workload level that triggers the start of the 
capacity adjustment. 85% 80, 85, 90 and 95% 

γ 
Percentage points below the triggering 
level (β) at which the workstation returns 
to normal capacity conditions. 

5% 0, 5, 10 and 15% 

 

 

 

 

Table 3: Steady-State Results  
 

 
Rule 

Percentage  
Tardy 

Mean  
Lateness 

Standard Deviation 
of Lateness 

Mean  
Tardiness 

FCFS 23.7% -11.8 19.1 3.67 

ODD 12.1% -14.0 12.4 1.03 

SPT 5.8% -24.1 24.5 2.46 

MODD 5.0% -14.9 13.1 0.49 
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Table 4: Steady-State Results Including Experiments with Capacity Adjustments 

 

 
      Experiment 

Percentage  
Tardy 

Mean  
Lateness 

St. Deviation 
of Lateness 

Mean  
Tardiness 

FCFS 

90% steady 23.7% -11.8 19.1 3.67 

89.5% steady 21.2% -13.1 18.1 3.07 

cap. adjusted 16.9% -15.2 15.4 1.72 

ODD 

90% steady 12.1% -14.0 12.4 1.03 

89.5% steady 9.8% -15.1 11.8 0.78 

cap. adjusted 2.8% -16.6 9.7 0.06 

SPT 

90% steady 5.8% -24.1 24.5 2.46 

89.5% steady 5.5% -24.5 22.8 2.19 

cap. adjusted 5.3% -25.0 18.6 1.72 

MODD 

90% steady 5.0% -14.9 13.1 0.49 

89.5% steady 4.1% -15.8 12.3 0.38 

cap. adjusted 1.3% -16.9 9.5 0.04 
 
 

 

 
Figure 1: Probability that More Than T units of Work Arrive in an Interval of T Time Units 
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Figure 2: Time-Phased Projection of the (Corrected Aggregate) Load Level versus Lateness of Delivered Jobs 

(a) FCFS without capacity adjustments (e) FCFS with capacity adjustments

(b) ODD without capacity adjustments (f) ODD with capacity adjustments

(c) SPT without capacity adjustments (g) SPT with capacity adjustments

(d) MODD without capacity adjustments (h) MODD with capacity adjustments
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 (a) ODD without Capacity Adjustments (b) ODD with Capacity Adjustments 

 
Figure 3: The Relationship between Workload and Lateness for the Jobs from Figure 2
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(a) Results for α=20% only (b) Results for all experiments 

 
Figure 4: The Impact of Capacity Adjustment Parameter Combinations on the Performance of ODD – The Resulting Performance Frontier 

 
 


	The last major performance breakthroughs in job shop control stem from the 1980s and 1990s. We generate a new search direction for designing job shop control policies, providing a key to delivery improvements. Based on a common characteristic shared b...
	2. Preliminary Analysis: Probabilities of High Load Periods
	[Take in Table 4]

