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Supplementary Figure 1: DFT-PBE and DFT-BLYP enthalpy and geometry comparison.

Results are shown for (a) DFT-PBE geometries and DFT-PBE static-lattice enthalpies, (b) DFT-

PBE geometries and DFT-BLYP static-lattice enthalpies, (c) DFT-BLYP geometries and DFT-PBE

static-lattice enthalpies, and (d) DFT-BLYP geometries and DFT-BLYP static-lattice enthalpies.
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Supplementary Figure 2: Zero-temperature enthalpies for all phases relative to C2/c-24 as

calculated using (a) DFT-PBE with harmonic and anharmonic DFT-PBE vibrational correc-

tions, (b) DMC with harmonic and anharmonic DFT-PBE vibrational corrections and (c)

DMC with harmonic (and no anharmonic) DFT-PBE vibrational corrections. It is clear that

the Cmca-4 structure, which is the most stable structure in DFT calculations over a broad pressure

range1, is uncompetitive in our DMC calculations. The only transition that is significantly affected

by temperature is the one from the C2/c-24 structure to Pc-48, as explained in the main body of our

article. Comparing panels (a), (b), and (c), it can be seen that our revision of the theoretical phase

diagram of solid hydrogen is primarily due to our use of DMC rather than our use of anharmonic

vibrational corrections.
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Supplementary Figure 3: Static-lattice DMC energy against volume. Results are shown for

the (a) C2/c-24, (b) Cmca-12, (c) Cmca-4, (d) P21/c-24, and (e) Pc-48 structures of H. Twist-

averaged results obtained at finite system sizes N together with data corrected using the Kwee-

Zhang-Krakauer scheme2 and data extrapolated to the thermodynamic limit are shown.
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Supplementary Figure 4: Finite-size corrections to the energy per atom in a 768-atom cell

against volume. Results are shown for the (a) C2/c-24, (b) Cmca-12, (c) Cmca-4, (d) P21/c-

24, and (e) Pc-48 structures of H. The three corrections shown are the results of extrapolation to

infinite system size by fitting Supplementary Eq. (2) to the energy data at N = 96 and N = 768

minus the energy at N = 768; the Kwee-Zhang-Krakauer DFT-based correction2; and the sum of

the exchange-correlation and kinetic-energy corrections proposed in Supplementary Refs.3 and 4.

The solid lines are fits of quadratics in Ω−1 to the corrections, where Ω is the volume per atom.

4



150 200 250 300 350

Pressure (GPa)

0

100

200

300

400

500

T
e

m
p

e
ra

tu
re

 (
K

)

Cmca-4

C2/c-24

Phase I

models
phase III

Supplementary Figure 5: Phase diagram predicted by DFT-PBE calculations (with

harmonic-phonon free energies). The DFT-PBE phase diagram is strikingly different from the

DMC phase diagram reported in the main body of our paper: at high pressure it is dominated by

the metallic Cmca-4 phase, which is energetically irrelevant in our DMC calculations and does not

match the experimentally observed insulating behaviour of hydrogen at these pressures. It should

be noted that the DFT-PBE phase diagram presented in Supplementary Ref. 5 is incorrect; the

DFT-PBE phase diagram shown here is in agreement with an erratum to that paper1.
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Supplementary Figure 6: Dependence of harmonic contributions to relative Gibbs free ener-

gies on density functional used for vibrational calculations at 0 K. The harmonic vibrational

free energies were calculated using (a) DFT-PBE and (b) DFT-BLYP.
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Supplementary Figure 7: Dependence of harmonic contributions to relative Gibbs free ener-

gies on density functional used for vibrational calculations at 300 K. The harmonic vibrational

free energies were calculated using (a) DFT-PBE and (b) DFT-BLYP.
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Supplementary Note 1. Geometry optimisation

We have studied the P21/c-24, C2/c-24, Cmca-12, Pc-48, and Cmca-4 structures of hydrogen at a

range of pressures suggested by previous theoretical work on the phase diagram1, 5–8. The structures

are described and motivated in the main body of our article. The geometries used in our quantum

Monte Carlo calculations were determined by relaxing the lattice vectors and internal parameters

of each phase within DFT at fixed external pressures. The geometry optimisation calculations

were performed using the CASTEP plane-wave basis code9, the Perdew-Burke-Ernzerhof (PBE)

generalised gradient approximation density functional10, and an ultrasoft pseudopotential11. We

used a plane-wave cutoff energy of 1200 eV and a Monkhorst-Pack12 Brillouin zone sampling grid

of spacing 2π× 0.02 Å−1. The forces on the atoms were converged to less than 0.01 eV/Å and the

components of the stress tensor were converged to less than 0.01 GPa. We tested the dependence

of the relative enthalpies as a function of pressure on the density functional used to perform the

geometry optimisation calculations. The DFT-PBE static-lattice relative enthalpies with DFT-PBE

and DFT-BLYP geometries shown in Supplementary Figs. 1(a) and 1(c) are very similar, as are the

DFT-BLYP static-lattice relative enthalpies with DFT-PBE and DFT-BLYP geometries shown in

Supplementary Figs. 1(b) and 1(d). Changing the functional used to optimise the geometry alters

the relative enthalpies by about 1 meV/atom.

We have directly verified that our DMC calculation of the transition pressure between the

P21/c-24 and C2/c-24 structures (which model phases II and III, respectively) is robust against

the choice of method used to optimise the geometry. If the DFT-PBE geometry is replaced by

the DFT-BLYP geometry then the DMC enthalpies of 96-atom cells of the P21/c-24 and C2/c-

24 structures are both reduced by 10.0(4) meV/atom; however the estimated transition pressure

between the structures is reduced by an insignificant amount [5(7) GPa]. The fact that the DMC

enthalpies with DFT-BLYP geometries are lower than the DMC enthalpies with DFT-PBE geome-

tries indicates that the DFT-BLYP geometries are more accurate, as also reported in Supplementary

Ref.13. With hindsight it would have been preferable to use DFT-BLYP geometries in all our cal-

culations; nevertheless, we have at least verified that our choice of geometry-optimisation method
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has negligible effect on the relative enthalpies and hence predicted phase boundaries.
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Supplementary Note 2. Quantum Monte Carlo calculations

All our quantum Monte Carlo (QMC) calculations were performed using the CASINO code14.

Our trial wave functions consisted of products of Slater determinants of single-electron orbitals

multiplied by symmetric Jastrow correlation factors exp(J). The Jastrow exponents J consisted

of polynomial and plane-wave expansions in the electron-electron distances, polynomial expan-

sions in the electron-nucleus distances, and polynomial terms coupling the electron-electron and

electron-nucleus separations15. The polynomial electron-electron term was smoothly cut off at the

radius of the largest sphere that can be inscribed in the Wigner-Seitz cell of the simulation cell.

The electron-nucleus and electron-electron-nucleus terms were smoothly truncated at optimisable

cutoff lengths. A total of 112 optimisable parameters were present in the Jastrow exponent, includ-

ing the free cutoff lengths. The free parameters in J were optimised by minimising the variational

Monte Carlo (VMC) energy expectation value16, with the exception of the cutoff lengths, which

were optimised by minimising the mean absolute deviation of the local energies of VMC-sampled

sets of configurations from the median local energy. The orbitals in the Slater determinants were

taken from DFT calculations using the CASTEP code9 and the PBE density functional10. The nuclei

were represented by bare Coulomb potentials. A plane-wave cutoff energy of 5442.28 eV (= 200

Ha) was used in our DFT wave-function-generation calculations. The plane-wave orbitals were re-

represented in a B-spline (blip) basis17 to improve the scaling of the QMC calculations with system

size, and the orbitals were modified in the vicinity of the nuclei to impose the electron-nucleus Kato

cusp conditions18, 19.

Our DMC calculations were performed at two different time steps, 0.01 and 0.04 a.u., with

the target configuration population being four times larger in the former case. We extrapolated our

energies linearly to zero time step. This simultaneously extrapolated the DMC energy to infinite

population, because time-step bias is linear in the time step and population-control bias falls off

as the reciprocal of the target population. Coupling between time-step and finite-population biases

is proportional to the product of the time step and the inverse population, and can therefore be

assumed to be negligible; numerical tests for the homogeneous electron gas confirm that time-step
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and finite-population biases are essentially independent of one another.

Through the use of the enormous resources of Oak Ridge Leadership Computing Facility, we

were able to achieve statistical error bars of less than 0.3 meV/atom in all our DMC calculations.

The dominant sources of error in QMC studies of condensed matter are usually finite-size

effects. Finite-size errors in the total energy primarily consist of (i) oscillatory single-particle

finite-size effects due to momentum quantisation (analogous to k-point sampling errors in DFT)

and (ii) systematic effects due to the long range of both the Coulomb interaction and two-body

correlations. Single-particle errors may be greatly reduced by twist averaging in the canonical

ensemble20 (i.e., averaging the DMC energy over offsets ks to the grid of k vectors at a given

system size), while long-range effects can be reduced by extrapolation or corrections2–4. We have

carried out twist-averaged DMC calculations at two different system sizes (N = 96 and N = 768

atoms) for each phase and volume. To reduce finite-size effects further, for each structure and

system size we chose our supercell lattice vectors to be such that the radius of the largest sphere

that can be inscribed in the supercell is maximised (and hence the distance between the nearest

images of each particle is made as large as possible). To perform the twist averaging, we fitted

E(N,ks) = Ē(N) + b [EPBE(N,ks)− EPBE(∞)] (1)

to the DMC energiesE(N,ks) obtained with 24 randomly chosen k-vector offsets ks, where Ē(N)

is the twist-averaged energy in the N -atom cell and b is a fitting parameter. EPBE(N,ks) is the

DFT-PBE energy obtained with exactly the same grid of k vectors as the corresponding DMC

calculation, while EPBE(∞) is the DFT-PBE energy obtained with a fine k-point grid, in which

the maximum spacing of k points was 0.0189 Å−1. The Jastrow factor was optimised within VMC

once for each system size N , using a value of ks for which the system had time-reversal symmetry.

We tested each possible such ks to find the one for which the DFT energy was closest to the DFT

energy with a fine k-point mesh, and used this ks in our optimisation calculations.

The twist-averaging process introduces an uncertainty of due to the finite number of random

ks values used and in our calculations the magnitude of this uncertainty is greater than that inherent

11



in the DMC method due to the finite number of electronic configurations visited during the ran-

dom walk. Performing a least-squares fit of the twist-averaged energy-volume data to an analytic

function also has an associated uncertainty. These two sources of uncertainty are not independent,

since we use the same set of twist angles in fractional coordinates for each structure at different

volumes, making the energy difference between any two points in the same curve more precise

than the uncertainty in the absolute energy of any of the individual points would suggest. The

effect of residual single-particle finite-size errors therefore reduces to an uncertainty in the vertical

shift of the energy-volume and enthalpy-pressure curves without affecting their shape.

We considered three entirely different approaches to correct long-range finite-size errors.

The first approach is to extrapolate the twist-averaged energy per atom to the thermodynamic limit

by fitting

Ē(N) = E(∞) + cN−1 (2)

to our DMC data at the two different system sizesN = 96 andN = 768, where c is a fitting param-

eter and E(∞) is the energy per atom in the infinite-system limit. This fitting form is appropriate3,

because the finite-size error in the energy per atom falls off asymptotically as N−1. The second

approach, proposed by Kwee, Zhang, and Krakauer (KZK)2, is to add a correction given by the

difference of the DFT energy in the usual local density approximation (LDA) minus the DFT en-

ergy obtained with a modified LDA functional appropriate for a finite homogeneous electron gas

contained in the simulation-cell volume. The KZK DFT-LDA calculations were performed with a

fine k-point sampling, because the correction was applied to twist-averaged DMC data. As can be

seen in Supplementary Fig. 3, the two methods for removing finite-size effects are in good agree-

ment; in particular the KZK-corrected DMC data with N = 768 atoms are very close to the results

obtained by extrapolation using Supplementary Eq. (2). Supplementary Fig. 4 shows the finite-size

corrections to the energy data with N = 768 atoms in greater detail.

A third approach for removing long-range finite-size errors is that introduced by Chiesa et

al.3 and further developed by Drummond et al.4, in which corrections based on the static structure

factor and the two-body Jastrow factor are applied to remove finite-size errors in the exchange-
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correlation energy and the kinetic energy, respectively. We find that the sum of the exchange-

correlation and kinetic-energy corrections for the hydrogen structures with N = 768 atoms is

systematically higher than the correction corresponding to extrapolation to infinite system size

by about 3 meV/atom, as shown in Supplementary Fig. 4. The exchange-correlation and kinetic-

energy corrections suffer from random errors due to the fact that they make use of stochastically op-

timised wave functions that were generated at one particular ks value for each phase and pressure.

In particular, the correction to the kinetic energy relies on the fitting of a model electron-electron

Jastrow term u(k) to two-body Jastrow terms optimised in VMC calculations. Furthermore, the

static structure factor that we used to evaluate the exchange-correlation correction was obtained

from DMC data; an extrapolated estimate21 of the static structure factor using VMC and DMC

data would be more accurate. The KZK approach does not rely on a stochastically optimised wave

function, and gives noise-free relative energies. However, it is clear from Supplementary Fig. 4

that, whichever correction is applied, the finite-size errors in the relative energies are much smaller

than 3 meV per atom.

Our final results for the energies in the limit of infinite system size were obtained by extrapo-

lation using our DMC energy data atN = 96 andN = 768. Extrapolation has the advantage that it

can approximately account for finite-size effects that are not considered in the correction schemes,

such as finite-size effects in the fixed-node error. Furthermore, it does not suffer from the reliance

on stochastically optimised trial wave functions that affects the kinetic-energy correction, because

it is purely based on Slater-Jastrow DMC energies.

We have performed DMC calculations using Slater-Jastrow-backflow trial wave functions22, 23

for systems with N = 96 atoms. Unlike a Jastrow factor, a backflow function modifies the nodal

surface of the Slater wave function and hence can potentially improve the fixed-node24 DMC en-

ergy. Unfortunately, we find that the difference between the Slater-Jastrow and Slater-Jastrow-

backflow DMC energies exhibits a noisy dependence on both the system size and the choice of

simulation-cell Bloch vector ks used for the optimisation of the backflow function. We therefore

report only DMC results obtained using Slater-Jastrow wave functions (for which the DMC energy
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is independent of the Jastrow factor and hence the Bloch vector ks at which it was optimised).

In order to find enthalpy–pressure curves for the different phases, we fitted model equations

of state E(Ω) to our finite-size-corrected DMC energy per atom against volume per atom Ω. From

these models it is straightforward to determine the pressure p = −(∂E/∂Ω) at zero temperature

and hence obtain the enthalpy per atom H = E + pΩ. We investigated several choices of model,

including the Vinet equation of state25, polynomials, and cubic spline fits to our energy-volume

data. For Cmca-12, Cmca-4, P21/c-24, and Pc-48, we found that a quadratic in Ω−1 gives a

relatively good fit to our DMC E(Ω) data with lower χ2 values than the Vinet equation of state.

For C2/c-24, we used a cubic polynomial in Ω−1. We found that cubic splines tend to overfit our

data.

An alternative approach for determining the pressure directly from the QMC calculations

would be to use the virial theorem. However, the resulting estimate suffers from much larger noise

than the total energy (there is no zero-variance theorem for the pressure) and furthermore the virial

estimate of the pressure depends on the entire trial wave function, not just its nodal surface. We

find that it is much more precise and accurate to determine the pressure by fitting model equations

of state to energy-volume data.
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Supplementary Note 3. Lattice dynamics

We have performed quasiharmonic calculations to evaluate the harmonic vibrational contribution

to the free energy at a range of pressures. We constructed the matrix of force constants using the

finite-displacement method26 by averaging over positive and negative displacements of a magni-

tude of 0.005 Å. We then transformed the real-space force-constant matrix to the reciprocal-space

dynamical matrix and diagonalised the latter to obtain the harmonic frequencies ωn(k) over a

Fourier-interpolated grid of k-space points and branches n. All our harmonic free energies are

converged to better than 0.1 meV per atom, which required simulation cells containing 192 atoms

for P21/c-24 and C2/c-24, 108 atoms for Cmca-4, and 96 atoms for Cmca-12 and Pc-48.

We have also performed anharmonic vibrational calculations using the method described in

Supplementary Ref. 27. We mapped the Born-Oppenheimer energy surface along the directions

determined by the harmonic normal modes, sampling a total of 17 points along each direction and

to a maximum amplitude of 5×
√
〈q2nk〉, where qnk is the normal-mode coordinate of the vibrational

mode (n,k). We then solved the resulting vibrational Schrödinger equation by expanding the

vibrational wave function in a basis of simple harmonic oscillator eigenstates determined by a

quadratic fit to the mapped Born-Oppenheimer energy surface. Converged results were achieved

by including up to 50 basis functions for each degree of freedom.

We have investigated the effect of the choice of density functional used to calculate harmonic

vibrational free energies. Calculating vibrational free energies using DFT-BLYP28, 29 instead of

DFT-PBE10 at 0 K has little effect on the harmonic contribution to the relative Gibbs free energies

of C2/c-24 and P21/c-24 (see Supplementary Fig. 6). Calculating vibrational free energies using

DFT-BLYP instead of DFT-PBE at 300 K increases the harmonic contribution to the Gibbs free

energy of Pc-48 relative to C2/c-24 by about 2 meV per atom at 250 GPa and decreases it by

about 1 meV per atom at 400 GPa (see Supplementary Fig. 7). Our final harmonic and anharmonic

results were obtained using DFT-PBE.
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