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Abstract

The energy-optimal migration of a chaotic oscillator from one attractor to an-

other coexisting attractor is investigated via an analogy between the Hamiltonian

theory of fluctuations and Hamiltonian formulation of the control problem. We

demonstrate both on physical grounds and rigorously that the Wentzel-Freidlin

Hamiltonian arising in the analysis of fluctuations is equivalent to Pontryagin’s

Hamiltonian in the control problem with an additive linear unrestricted control.

The deterministic optimal control function is identified with the optimal fluctua-

tional force. Numerical and analogue experiments undertaken to verify these ideas

demonstrate that, in the limit of small noise intensity, fluctuational escape from the

chaotic attractor occurs via a unique (optimal) path corresponding to a unique (op-

timal) fluctuational force. Initial conditions on the chaotic attractor are identified.

The solution of the boundary value control problem for the Pontryagin Hamiltonian

is found numerically. It is shown that this solution is approximated very accurately

by the optimal fluctuational force found using statistical analysis of the escape tra-

jectories. A second series of numerical experiments on the deterministic system (i.e.

in the absence of noise) show that a control function of precisely the same shape and

magnitude is indeed able to instigate escape. It is demonstrated that this control

function minimizes the cost functional and the corresponding energy is found to be

smaller than that obtained with some earlier adaptive control algorithms.

PACS numbers: 05.45.Gg, 02.50.-r, 05.20.-y, 05.40.-a
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1 Introduction

The control of chaotic systems is a challenging problem that is both of intrinsic interdisci-

plinary interest, and also of obvious importance in relation to applications. In general the

presence of noise complicates considerably any analysis of the dynamics. But we describe

in what follows how a statistical analysis of fluctuations can be used to solve a problem in

the nonlinear energy-optimal control of chaos. We consider the energy-optimal entraining

of a nonlinear oscillator from a chaotic attractor to another coexisting attractor. Our ap-

proach is based on an analogy between the variational formulations of the deterministic

control problem and the problem of fluctuations, based on the concept of the optimal fluc-

tuational path. One of the key points is the identification of the optimal control function

with the optimal fluctuational force. The solution of the energy-optimal control problem

can thus be found to an excellent approximation by building the prehistory probability

distribution [Dykman et al., 1992] of fluctuational escape trajectories. We compare the

performance of the control function found in this way with some earlier adaptive control

algorithms.

Methods already available for the control of chaos include a variety of minimal forms

of interaction which are restricted by the linear approximations adopted [Shinbrot et al.,

1990; Boccaletti et al., 2000; Shinbrot, 1995; Shinbrot et al., 1993; Hubinger et al., 1994;

Barreto et al., 1995], and methods of strong nonlinear control [Jackson, 1997; Raj &

Rajasekar, 1997] which necessarily require a large modification of the system’s dynamics,

at least for limited periods. Although the latter methods have been widely used for

directing the motion from a chaotic attractor (CA) to another coexisting attractor, the

question of how to do so in an energy optimal way has remained an unsolved problem.

Its solution must amount to an important extension of the range of model-exploration

objectives (c.f. [Jackson, 1997] and [Hubinger et al., 1994]) achievable through minimal

control techniques.

Consider a system of the form

ẋ = f(x, u, t), (1)

with the state variable x ∈ Rn, and an admissible control function u ∈ Rm in the control

set U . We assume that it is desired to transfer the system from a given state X0 = x(t0)

to a terminal state X1 = x(t1) in such a way that the (“cost”) functional

J = min
∫ t1

t0

f0(x, u, t)dt (2)

is minimized, with t1 unspecified.

Let (u(t), x(t)) be a solution of this problem. Then there exist continuous, piece-wise

differentiable functions y0(t), ..., yn(t) that are not simultaneously zero and which, together

with the functions xi(t), satisfy the differential equations (see e.g. [Hocking, 1997])
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ẋi = ∂H
∂yi

ẏi = − ∂H
∂xi

(3)

where the Hamiltonian is

H(x1, ..., xn; y0, ..., yn; u(t), t)

=
n
∑

i=0

yifi(x1, ..., xn; u(t), t). (4)

The optimal control function u(t) maximizes H at each instant. H is a continuous function

of time and one has H(t1) = 0. If the functions fi, i = 0, ..., n do not depend on time

explicitly, then H is constant and equal to zero.

It can be seen that finding the force that will direct the system from a chaotic attractor

to another coexisting attractor with minimum expenditure of energy requires the solution

of a boundary value problem for the Hamiltonian dynamics (3),(4). The difficulty in

solving it stems from the complexity of the system’s dynamics near a CA and relates, in

particular, to delicate problems connected to the uniqueness of the solution, its behaviour

near a CA, and the boundary conditions at a CA.

In this paper we show how the energy-optimal control of chaos can be effected via

a statistical analysis of the fluctuational trajectories of a chaotic system in the presence

of small random perturbations. This approach is based on the analogy between the

variational formulations of both problems discussed by Smelyanskiy & Dykman [1997]:

the problem of the energy-optimal control of large fluctuations, and that of the stability

of an attractor weakly perturbed by random fluctuations. One of the key points of the

approach is an identification of the optimal control function with the optimal fluctuational

force. Brief accounts of the preliminary results [Luchinsky & Khovanov, 1999; Khovanov

et al, 2000a,b] of this approach have already been published.

We emphasize that the question of the stability of a CA under small random perturba-

tions is itself an important unsolved problem in fluctuation theory [Kautz, 1987; Graham

et al., 1991; Grassberger, 1989; Beale, 1989], and the difficulties in solving it are similar

to those mentioned above. Thus it is quite unclear at first sight how an analogy between

two unsolved problems can be of any help. Recently, however, a new method for the sta-

tistical analysis of fluctuational trajectories was introduced [Dykman et al., 1992, 1996;

Luchinsky, 1997; Luchinsky & McClintock, 1997; Luchinsky et al., 1998], allowing direct

experimental insight into the deterministic dynamics underlying the seemingly random

fluctuational motion in the limit of small noise intensity. Using this technique one can in-

vestigate experimentally the structure of the invariant manifolds in the phase space of an

auxiliary Hamiltonian system arising in the analysis of both the problem of fluctuations

and the problem of energy-optimal control. It turns out, in particular, that we can verify

experimentally the existence of a unique solution, identify the boundary condition on the
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CA, and find an accurate approximation for the optimal control function. The approach

described below can readily be generalized to encompass systems where the boundaries of

the CA’s basin of attraction are fractal, and where the ergodic properties on the attractor

are different.

The paper is organized as follows. In Sec. 2 we describe the particular model – a pe-

riodically driven nonlinear oscillator – formulate the control problem and write down the

corresponding Pontryagin Hamiltonian. In Sec. 3 the basic ideas needed from Hamiltonian

fluctuation theory are introduced and it is shown for a given model that the Hamiltonian

systems arising in the analysis of both the problem of fluctuational escape and the prob-

lem of the energy-optimal control are equivalent. Sec. 5 describes and reports the results

of numerical experiments to investigate fluctuational escape from the chaotic attractor

showing that, in the limit of very weak noise intensity, there is a unique (optimal) es-

cape path. Measurement of the corresponding optimal fluctuational force yields the the

required optimal control function. The numerical analysis of the boundary value problem

for Pontryagin’s Hamiltonian is discussed in Sec. 6. It is shown that the optimal fluctu-

ational force found from the statistical analysis of the escape trajectories provides a very

accurate approximation to the solution of the boundary value problem. A second series

of numerical experiments, described in Sec. 7, verifies that application of the optimal

force (derived from the fluctuation experiments) brings about the desired escape from the

chaotic attractor in the absence of noise and, furthermore, that the total energy used in

the control process is then a minimum. The results are discussed and summarised, and

conclusions are drawn, in Sec. 8.

2 Model

We will first formulate the energy-optimal control problem. Then we summarize briefly

some relevant properties of the deterministic dynamics of the oscillator in question.

2.1 The energy-optimal control problem

Consider the motion of a periodically driven nonlinear oscillator

q̇1 = K1(q(t)) = q2, (5)

q̇2 = K2(q(t)) + u(t)

= −2Γq2 − ω2
0q1 − βq2

1 − γq3
1 + h sin(ωt) + u(t).

Here u(t) is the control function. This particular model is of interest in number of contexts,

and theoretical analysis is possible over a wide range of parameter values [Soskin et al.,
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1997]. It is a system in which chaos can be observed for relatively small values of the

driving force amplitude h ≈ 0.1.

We consider the following energy-optimal control problem: How can the system (5)

with unconstrained control function u(t) be steered from a CA to a coexisting stable limit

cycle (SC) such that the “cost” functional

Jc = inf
u∈U

1

2

∫ t1

t0

u2(t)dt. (6)

is minimized? Here t1 is unspecified and the control set U consists of functions (control

signals) able to move the system from a CA to the SC.

The Pontryagin Hamiltonian and corresponding equations of motion (3),(4) take the

form

q̇i =
∂Hc

∂pi

, ṗi = −∂Hc

∂qi

, i = {1, 2}, (7)

Hc = 1/2p2
2 + p1K1 + p2K2.

It is assumed that the optimal control function u(t) at each instant takes those values

u(t) = p2 that maximize Hc over U .

We note that for p1 = p2 = 0 the dynamics of (7) are reduced to the deterministic

dynamics of the original system (5) in the absence of any control (u(t) = 0). So we begin

our analysis by considering some relevant properties of the deterministic dynamics of the

periodically driven nonlinear oscillator (5).

2.2 Deterministic dynamics of a nonlinear oscillator

The parameters of the chosen system (5) were selected such that: the potential is monos-

table, (β2 < 4γω2
0); the dependence of the energy of oscillations on their frequency is

nonmonotonic, ( β2

γω2

0

> 9
10

); and the motion is underdamped, Γ � ω ≈ 2ω0.

A simplified parameter space diagram obtained from the numerical simulations is

shown in the Fig. 1(a). The blue dots bound the region in which both the linear and

nonlinear responses of period 1 can coexist. The upper line marks the boundary of the

linear response and the lower line marks that for the nonlinear responses. The boundaries

of the hysteresis of the period 1 resonance are shown by yellow crosses. The region in which

linear response coexists with one or two nonlinear responses of period 2 is bounded by

open green circles. This region is similar to one bounded by the yellow crosses. The region

of coexistence of the two resonances of period 2 is bounded by the red triangles. Chaotic

states are indicated by the small black dots. The numerical investigations described in

this paper where carried out for the parameter values indicated by the bold plus sign

(Γ = 0.025, ω0 = 0.597, β = 1, γ = 1, ωf = 0.95, h = 0.13).
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A bifurcation diagram is shown in Fig. 1(b) for one set of parameters. The chaotic

state appears as the result of period-doubling bifurcations, and thus corresponds to a

non-hyperbolic attractor. Its boundary of attraction ∂Ω is nonfractal and is formed by

the stable invariant manifold of the saddle cycle of period 1 (S1).

For a given damping (Γ = 0.025) the amplitude and the frequency of the driving

force were chosen so that the chaotic attractor coexists with the stable limit cycle (SC):

h = 0.13, ωf = 0.95 (see Fig. 1(a)).

The basins of attraction of the coexisting strange attractor CA and the SC are shown

in Fig. 2 for a Poincaré cross-section ωf t = 0.6π(mod2π) in the absence of noise. The

value of the maximal Lyapunov exponent for the CA is 0.0449.

The presence of the control function effectively doubles the dimension of the phase

space (compare Eqs. (5) and (7)) and changes its geometry near the non-hyperbolic at-

tractor. In the extended phase space the attractor is connected to the basin of attraction

of the stable limit cycle via an unstable invariant manifold. It is precisely the complexity

of the structure of phase space for the auxiliary Hamiltonian system (7) near the non-

hyperbolic attractor that makes it difficult to solve the energy-optimal control problem.

However, as already indicated, we can apply the new method for experimental analysis

of the Hamiltonian flow [Dykman et al., 1992; Luchinsky, 1997; Luchinsky & McClintock,

1997; Luchinsky et al., 1998], exploiting the analogy between the Wentzel-Freidlin and

Pontryagin Hamiltonians. To see how this can be done, we consider the fluctuational

dynamics of our nonlinear oscillator (5).

3 Hamiltonian dynamics of large fluctuations

As pointed out above, there is an important analogy between Hamiltonians arising in the

theory of fluctuations and in control theory. It arises from the small-noise asymptotic

analysis of the fluctuational dynamics. We note that, for a particle interacting with a

heat bath under quite general conditions, dissipative equations of motion can be related

to the microscopic Hamiltonian of the system as a whole, including the heat bath and

the interaction between the bath and the system. Proceeding on this basis, one arrives

at the stochastic differential (or integro-differential, see e.g. [Zwanzig, 1973; Dykman &

Krivoglaz, 1984]) equations of motion

q̇1 = q2,

q̇2 = −2Γq2 − ω2
0q1 − βq2

1 − γq3
1 + h sin(ωt) + ξ(t), (8)

〈ξ(t)〉 = 0, 〈ξ(t)ξ(0)〉 = Dδ(t) = 4ΓkTδ(t).

In thermal equilibrium the energy losses due to dissipation are compensated by the transfer

of energy back to the system due to fluctuations, as expressed in the fluctuation-dissipation

relations [Landau & Lifshitz, 1980] which take the form D = 4ΓkT for the system (8).
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This energy balance underlies the fact that in the zero-noise-intensity limit, a consistent

theoretical development [Zwanzig, 1973; Dykman & Krivoglaz, 1984] from the microscopic

to the macroscopic equations of motion leads to descriptions of the system’s deterministic

(dissipative) and fluctuational dynamics within the framework of the same Hamiltonian

formalism [Freidlin & Wentzel, 1984].

If the intensity of fluctuations is small, the system spends most of the time fluctuating

about the stable state, only occasionally fluctuating far away from it. In particular, noise

can force the system to escape from the basin of attraction of a given stable state. These

are rare events but, when they occur, they do so in an almost deterministic way: e.g. escape

from a domain of attraction typically follows a unique optimal trajectory. It corresponds

to an optimal (most probable) realization of the random force. The probability of any

given realization of the random force for a white Gaussian noise ξ(t) of strength D is

given by the probability density functional P [ξ(t)] in the form [Feynman & Hibbs, 1965]

P [ξ(t)] ∝ exp
(

− 1

2D

∫ t1

t0

ξ2(t)dt
)

. (9)

This equation shows that in the D → 0 limit the most probable (optimal) realization of

the random force is given by the condition

Jn = inf
q1(t0)=qi,

q1(t1)=qf

−1

2

∫ t1

t0

ξ2(t)dt, (10)

where the minimum is taken over all realizations ξ(t) moving the system from an initial

state qi to the final state qf . The similarity between (6) and (10) is apparent and intuitively

clear because, in thermal equilibrium (D = 4ΓkBT ), the probability of fluctuations is

determined by the minimum work from the external source needed to produce the given

change in the thermodynamic quantities P ∝ exp(−Rmin/kBT ) [Landau & Lifshitz, 1980].

Using (8) one can transform [Feynman & Hibbs, 1965] the “cost” functional (10) to

an action integral in the form

S(q1, t) =
∫ t1

t0

dtL(q1, q̇1, q̈1, t), (11)

calculated along the deterministic trajectories minimizing (11), where the Lagrangian L

is given by

L(q1, q̇1, q̈1, t) =
1

2

[

q̈1 + 2Γq̇1 + ω2
0q1 + βq2

1 + γq3
1 + h sin(ωt)

]2
. (12)

Accordingly the escape probability takes the form P ∝ exp(−S/D) and it can be seen

[Onsager & Machlup, 1953; Freidlin & Wentzel, 1984] that in the limit of small noise

intensity the large rare deviations of the system from the stable state follow the deter-

ministic trajectories of an auxiliary classical mechanical system (12). The corresponding
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so-called Wentzel-Freidlin Hamiltonian Hn can readily be obtained using the following

relations

H =
∑

i

piq̇i − L, pi =
n
∑

j=i

(−1)j−i dj−i

dtj−i

(

∂L

∂x(j)

)

, (13)

where n is the dimension of the system. For the system (12) Hn takes a form (see e.g.

[Einchcomb & McKane, 1995])

Hn =
1

2
p2

2 + p1q2 + (−2Γq2 − ω2
0q1 − βq2

1 − γq3
1 + h sin(ωt))p2, (14)

pi =
∂S

∂qi

, i = 1, 2.

It follows from (11) and (13) that the function S(q1) satisfies the Hamilton-Jacobi equation

in the form

St + H(q,
∂S

∂q
, t) = 0, (15)

where the Hamiltonian H is given by (14). S(q1) is non-decreasing along the optimal

fluctuational trajectories. Although S(q1) is in general not differentiable, it can be proven

[Freidlin & Wentzel, 1984] that it satisfies a local Lipshitz condition, which implies dif-

ferentiability almost everywhere and justifies the use of this function as a generalized

Lyapunov function for the deterministic system (14) [Jauslin, 1987].

The trajectories of (14) minimize the action S(q1, t) in (11). In general there will be

many such trajectories that begin at qi, ti and terminate at qf , tf . As a consequence,

the quantity S(q1, t) is in general multivalued. Trajectories providing a global minimum

for the action are called optimal fluctuational paths (see also e.g. [Maier & Stein, 1993;

Dykman et al., 1994a,b; Maier & Stein, 1996; Dykman et al., 1996; Maier & Stein, 1997;

Smelyanskiy et al., 1997] and discussion therein). The action calculated along the optimal

fluctuational paths for the system (14) is sometimes called a generalized nonequilibrium

potential (see e.g. [Graham & Tel, 1984; Jauslin, 1987]). For the system (14) in thermal

equilibrium (h = 0) the fluctuational trajectories become time-reversed images of the

relaxational trajectories (see e.g. [Onsager & Machlup, 1953]) and as a consequence the

nonequilibrium potential is reduced to the equilibrium one.

It is clear that the Hamiltonians (7) and (14) coincide. The analogy between two

problems opens the possibility of direct experimental insight into the geometry of the

phase space of system (4) using a statistical analysis of the fluctuational trajectories in

this system when a control function u(t) is substituted for the random function ξ(t). In

particular, the optimal control function ū(t) can be identified with the optimal fluctua-

tional force which drives the system from the chaotic attractor to the stable limit cycle

[Smelyanskiy & Dykman, 1997]. We note that both ū(t) and the optimal force are related

to p2 in (7) and (14).
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We have therefore suggested that the optimal control function ū(t) can be found exper-

imentally by measurement of the optimal fluctuational force [Luchinsky, 1997; Luchinsky

et al., 1998].

We emphasise that the analysis in this section and in Sec. II(A) draws an analogy

between two seemingly separate problems: the deterministic energy-optimal control prob-

lem and the problem of stability in the presence of small random perturbations. However,

similar conclusions can be drawn using a more general formulation of the stochastic opti-

mal control problem (see e.g. [Smelyanskiy & Dykman, 1997]) as discussed briefly in Sec.

7.

It is of central imoortance that: (i) the Hamiltonian dynamics of large fluctuations

can, at least in some cases [Zwanzig, 1973; Dykman & Krivoglaz, 1984], be related directly

to the microscopic classical equations of motion for a system interacting with a heat bath;

(ii) the corresponding formalism includes both the dynamics of relaxation toward the

stable state and the dynamics of a fluctuation-induced large deviation from this state on

equal grounds; (iii) the motion described by the corresponding Hamiltonian equations is

experimentally observable [Luchinsky, 1997; Luchinsky & McClintock, 1997; Luchinsky et

al., 1998]; experimental investigations of the Hamiltonian dynamics of large fluctuations

can be used to solve the energy-optimal control problem.

4 Statistical analysis of fluctuational trajectories

The statistical analysis of the fluctuational trajectories is based on measurements of the so-

called prehistory probability distribution introduced by Dykman et al. [1992], ph(q, t;qf , tf).

Here ph gives the probability for the system to pass through the point q at the instant t

under the condition that it departs from the CA at t = −∞ and arrives at the final point

qf at t = tf . Note that it differs from the ordinary conditional probability distribution and

that it sets optimal paths into a physical context: their physical significance follows from

the fact that ph(q, t;qf , tf) at any given moment of time t should have a sharp maximum

in q lying on the optimal path, q = qopt(t|tf ,qf ); and the optimal path is in fact just the

D → 0 limit of the ridges of the prehistory distribution. By investigating the prehistory

probability distribution experimentally, one can establish the region of phase space within

which optimal paths are well defined, i.e. where the tube of fluctuational paths around an

optimal path is narrow. The prehistory distribution thus provides information both about

the optimal path and about the probability that it will be followed. In experiments the

technique involves following the dynamics of the system continuously and constructing

the distribution of all realizations of fluctuational trajectories that transfer the system

from a state of equilibrium to the prescribed remote state. The advantages of this ap-

proach have been demonstrated previously [Luchinsky, 1997; Luchinsky & McClintock,

1997; Luchinsky et al., 1998] in the course of investigations of the fundamental symmetry
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properties of optimal trajectories and singular characteristics of their distribution.

To find the optimal control function ū(t) we have performed digital simulations of (8)

using the Heun algorithm, with particular attention being paid to the random number

generator (see [Mannella, 1997; Marsaglia & Tsang, 1984]), because simulation times nec-

essarily grow exponentially as D → 0. We have also carried out a complementary analog

electronic modeling [Luchinsky et al., 1998] of (8). We drive the model with zero-mean

quasi-white Gaussian noises from a noise generator, digitize the response q1(t), q2(t), ξ(t),

and analyze it with a digital data processor. In both the analog and digital simulations,

trajectories moving the system from the chaotic attractor to the stable limit cycle were

collected, and the corresponding distributions of escape trajectories were built and ana-

lyzed. Qualitatively similar results were obtained but, because precision is of particular

importance here, most of the data reported below are those from the digital simulations.

For the technique to be applicable, a solution of (7) moving the system from the CA

to ∂Ω must of course exist, and one has to be able to identify the boundary conditions

for this solution on the CA.

4.1 Escape scenario

In the presence of weak noise there is a finite probability of noise-induced transitions

between the chaotic attractor and the coexisting stable limit cycle. In Fig. 2 the small

filled circles show the intersections of one of the actual escape trajectories with the given

Poincaré section. We now discuss the escape scenario that is intuitively to be expected

on the basis of the Hamiltonian formalism.

We consider first escape of the system from the basin of attraction of a stable limit

cycle that is bounded by a saddle cycle. In general, escape occurs along a single optimal

trajectory qopt(t) connecting the two limit cycles. The trajectory qopt(t) is determined by

minimizing S in (11) over the set of all classical deterministic trajectories determined by

the Hamiltonian H (14) that start on the stable limit cycle as t → −∞ and terminate on

the unstable limit cycle as t → ∞. That is, qopt(t) is a heteroclinic trajectory of the system

(14) with minimum action, where the minimum is to be understood in the sense indicated

above. We note that the existence of optimal escape trajectories and the validity of the

Hamiltonian formalism have been confirmed experimentally for a number of nonchaotic

systems (see [Luchinsky, 1997; Luchinsky & McClintock, 1997; Luchinsky et al., 1996,

1998, 1999] and the references cited therein). If the noise is weak, then the probability

P ≈ exp(−S/D) of escape along the optimal trajectory is exponentially small, but it is

exponentially greater than the escape probability along any other trajectory, including

along other heteroclinic trajectories of the system (14).

We next consider escape from a chaotic attractor. Because the basin of attraction of

the CA is bounded by an unstable limit cycle S1, the situation near S1 remains qualita-

tively the same and the escape trajectory remains unique in this region. However, the
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situation is different near the chaotic attractor itself. In this region it is virtually impossi-

ble to analyze the Hamiltonian dynamics of the auxiliary system (14), and no predictions

have been made about the character of the distribution of optimal trajectories near the

CA. The simplest scenario is that an optimal fluctuational trajectory approaching (in

reversed time) the boundary of a chaotic attractor is smeared into a “cometary tail” and

is lost, merging with the boundary of the attractor.

However, a statistical analysis of measured fluctuation-induced escape trajectories

gives a different and more detailed picture of what actually occurs during noise-induced

escape from a chaotic attractor. Several thousand escape trajectories of the system (8)

from the basin of attraction of its CA have been measured for a variety of different

operating regimes. The typical situation as measured in the analog and digital simulations

is displayed in Fig. 3(a) for system parameters close to the point P in Fig. 1 and a noise

intensity D ≈ 0.0005. The figure shows 65 measured fluctuational escape trajectories,

each of which has been shifted in time so that the regions corresponding to the transition

from chaotic to regular motion coincide with each other.

It is evident that all the trajectories end up close together, passing through the imme-

diate neighborhood of some optimal trajectory within a tube of radius ∝
√

D; at earlier

time, however, they separate into distinct groups. It is therefore possible to determine

the optimal escape paths by simple ensemble-averaging, separately for each group of tra-

jectories. Three optimal paths determined from the digital simulations are shown in Fig.

3(b). Analysis of the optimal trajectories shows that fluctuation-induced escape from the

boundary of the basin of attraction of the CA is characterised by the following features–

(i) The system may escape from the CA along any one of several nearly optimal tra-

jectories.

(ii) These merge into a single trajectory approaching the saddle cycle S3 located near

the CA.

(iii) The final escape occurs along a single optimal escape trajectory connecting S3 and

the saddle cycle S1 located at the boundary of the basin of attraction of the CA.

The number of optimal trajectories of the transition CA → S3 depends on the choice

of the working point. Usually, between one and three escape trajectories were observed

experimentally. The escape probabilities along them differ (see, caption to Fig. 3(b). If

the noise intensity is reduced further, one of the escape paths becomes exponentially more

probable than all the others. In what follows we concentrate on the properties of this most

probable escape path.
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4.2 Boundary conditions

To find the boundary conditions at the CA we analyze the prehistory probability distri-

bution ph(q, t;qf , tf) of the escape trajectories. The measured distribution is shown in

Fig. 4. By inspection of how the ridge of the most probable escape path merges with the

CA, it can be inferred that most of the escape trajectories pass close to the saddle cycle

of period 5 embedded in the CA.

This inference can be elaborated further using the fact that all the measured escape

trajectories merge the saddle cycle of period 3 and that this cycle is situated near the

attractor. It is therefore possible to perform a statistical analysis of the trajectories

arriving in a small tube around S3, with the temperature reduced by a few orders of

magnitude, to T = 1.5 × 10−6. The corresponding trajectories are shown in Fig. 4, from

which it can be seen that: (i) there is indeed only one optimal path connecting the CA to

the saddle cycle S3 at lower temperatures; and (ii) the system escapes from the chaotic

attractor via the saddle cycle S5.

Finally, we use the generalized monodromy technique of Simonovic [1999] to verify

that, given initial conditions on the actual escape trajectory passing close to S5, this

method converges to S5. Simultaneously with convergence to S5 this method produces

the monodromy matrix of the cycle. The corresponding multipliers are m1 = 4.5643,

m2 = 0.0420.

4.3 Approximate solution of the energy-optimal control prob-

lem

The above statistical analysis of escape trajectories reveals that the energetically most

favorable way of moving the system from the CA to the stable limit cycle starts at the

saddle cycle S5 embedded in the CA, passes through the saddle cycle S3, and finishes at

the saddle cycle S1 marking the boundary of the basin of attraction of the CA. Further

motion of the system towards the stable limit cycle does not require external action.

To find an approximation to the optimal control function we collect all successful real-

isations (qesc
1 (t), qesc

2 (t), ξesc(t)) corresponding to passage from S5 to ∂Ω. An approximate

solution ũ(t) is then found as an ensemble average over the corresponding realisations

of the random force 〈ξesc(t)〉 (the exact solution is ū(t) = limD→0 ũ(t)). The results of

this procedure are shown in the upper part of Fig. 6 where, to minimise the irrelevant

high-frequency component still remaining after the averaging procedure, we have applied

a zero-phase low-pass filter with a high frequency cut of ωcut = 1.9. It can be seen from

the figure that the optimal force switches on at the moment when the system leaves S5

along its unstable manifold. The optimal force returns to zero again when the system

reaches the saddle cycle S1.

Thus we conclude that the solution ũ(t) and the corresponding boundary conditions
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can indeed be found by use of our new experimental method. Moreover the problem of

escape from the CA of a periodically driven nonlinear oscillator evidently reduces to the

analysis of transitions between the three saddle cycles S5 → S3 → S1. We note that

the latter result is in qualitative agreement with the well known statement that unstable

cycles provide detailed invariant characterizations for dynamical systems of low intrinsic

dimension (see e.g. [Auerbach et al., 1987; Grebogi et al., 1988; Schmelcher & Diakonos,

1997]). This result opens up the possibility of numerical solution of the corresponding

boundary value problem for the energy-optimal control formulated in Sec. 2.

4.4 Finite noise intensity

An essential feature of the experimental technique outlined above is the presence of noise

of finite intensity D. The later introduces some changes to both the energy-optimal control

problem and the dynamics of the system on the CA. Therefore, if we are interested in

finding an approximate solution of the deterministic control problem, there are at least

two key questions we need to address: (i) to what extent is the observed form of the most

probable escape path independent of the initial conditions on the strange attractor; (ii)

how accurate is the approximate solution?

4.4.1 Natural measure on the attractor

To demonstrate that the measured fluctuational force is an approximation to the true

stationary optimal control function one has to show that the shape of the optimal force

does not depend on the initial conditions on the attractor. In particular, this means

that the characteristic time required for the system to approach S5 from an arbitrary

point inside the attractor basin (tr) should be much shorter then the average time of

noise-induced escape from the basin of attraction (te).

The time required for the system to approach the saddle cycle S5 is typically [Grebogi

et al., 1988; Dhamala & Lai, 1999]

tr =
1

pi(l)
∝ l−Dp, (16)

where pi(l) is a natural measure contained in a small square of unit size l centered on S5

in a Poincaré cross-section and Dp is the pointwise dimension of S5.

To analyze the behaviour of the natural measure as a function of noise intensity,

the portion of the Poincaré cross-section containing the attractor was partitioned into

squares {Si} of unit size l. The pi were measured as the fraction of time the trajectory

originating at an arbitrary initial condition x̄ spends in the vicinity of each Si: pi =

limN→∞ Ni/N, where N is the number of periods of the driving force corresponding to

the total time of observation and Ni is the number of periods the trajectory is found in

Si. The measurements were performed for the limit cycle S5 and for two other saddle
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cycles embedded into the chaotic attractor of period 2 (S2) and period 8 (S8). The later

two cycles are situated in the region where the stationary probability distribution on the

attractor in the presence of fluctuations has maximum.

The pointwise dimensions obtained from a linear fit of the log-log dependence of pi on

l are 1.5327, 1.2148 and 1.3396 for S2, S5 and S8 respectively. A conjecture by Grebogi

et al. [1988] relates Dp to the magnitudes of the unstable and stable eigenvalues λ1 > 1

and λ2 < 1 of the Jacobian matrix of the vector field linearised about corresponding

limit cycles Dp = 1 − log λ1/ log λ2. For future reference we give here the values of Dp

calculated according the formula above: 1.5344, 1.4800, 1.5132 for the cycles S2, S5 and

S8 respectively. We note that there is a some correlation between the calculated and

measured eigenvalues, although further research and better statistics will be needed to

analyze this correlation.

The average time for the system to approach S5 is, according to (16), of the order of

tr ≈ 104 for a box size of l = 0.002. For non-zero temperatures the distribution becomes

more uniform, and the pointwise dimension increases towards the limiting value Dp = 2.

Correspondingly, the relaxation time increases to tr ≈ 105. These estimates are consistent

with direct measurements of the dependence of pi on N for different values of T .

The average escape time on the other hand is of the order of te ≈ 108 for a typical

value of the temperatures used in our simulations, T = 0.001.

Thus we conclude that the optimal escape path found from a statistical analysis of the

escape trajectories is independent of the initial conditions on the attractor and provides an

approximation to the global minimum of the corresponding deterministic control problem.

However, the problem of behaviour of the natural measure of a non-hyperbolic attractor in

the presence of noise is an open problem of fundamental importance (see e.g. [Anishchenko

et al., 2000] and references therein). And we emphasize the preliminary character of the

empirical results reported in this section.

4.4.2 Stochastic control problem

An analysis of the accuracy and convergence of the approximate solution to the exact one

requires a more general formulation of the stochastic control problem which goes beyond

the scope of the present paper, see e.g. [Fleming, 1978; Whittle, 1996; Smelyanskiy &

Dykman, 1997] and references therein. However, as concerns the control of switching

probabilities the main conclusion of earlier work [Smelyanskiy & Dykman, 1997] was that

the in the limit of small noise intensity the control function converges to the optimal

fluctuational force. Here we provide some additional semi-quantitative arguments to

illustrate this idea and to gain further insight into the analogy between two problems.

Let us consider a stochastic version of the problem formulated in the Introduction

(following e.g. [Dreyfus, 1965]) of the form

ẋi = fi(x, u, t) + ξi(t), i = 1, .., n, (17)
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〈ξi(t)〉 = 0, 〈ξi(t)ξj(0)〉 = Dδijδ(t).

We seek that control function u(x, t) which transfers the system from a given state X0 =

x(t0) to a terminal state X1 = x(t1) and minimizes the functional

J [u] = E
[
∫ t1

t0

f0(x, u, t)dt + Φ(t1)
]

. (18)

Here E denotes a mathematical expectation with respect to the joint probability function

of random variables ξm(t). The later are assumed for simplicity to be Gaussian indepen-

dent variables of equal strength D. Φ(t1) is a given terminal boundary condition for the

expected value function defined by the following relation

S̃(x, t) = min
u

E
ξ

[

f0(x, u, t)∆t + o(∆t) + S̃(x(t + ∆t), t + ∆t)
]

. (19)

In (19) only f0 is optimized with respect to the control function while S̃(x(t+∆t), t+∆t)

is known and optimized over u, t is a given instant of time t0 < t < t1, and ∆t is a small

time step. Expanding S on the right hand side, assuming that the third derivatives of S

are bounded, and collecting terms ∝ ∆t yields [Dreyfus, 1965] an equation

0 = min
u



f0(x, u, t) + S̃t +
n
∑

i=1

S̃xi
fi +

D

2

n
∑

i=1

n
∑

j=1

S̃xixj



 (20)

that, with boundary conditions S̃(x(t1), t1) = Φ(t1), provides a solution for the Brownian

motion control process. It can be seen from Eq. (20) that in the presence of weak noise

D determines the width of the distribution about the optimal path and thus defines the

accuracy of the solution.

For small noise intensities D the last term in the Eq. (20) can be neglected. Defining a

classical action S(x, t) as y0S̃(x, t) (where y0 is an arbitrary negative constant) the solution

of (20) is reduced to the analysis of Pontryagin’s Hamiltonian system (3) and (4). We

see from Eq. (19) that, for the energy-optimal control (f0 = 1
2
u2) S(x, t) = y0, S̃(x, t) is

a nondecreasing function along the optimal path and thus that it can be considered as a

generalized Lyapunov function of the corresponding deterministic problem.

5 Numerical solution of the boundary value problem

It was mentioned in the introduction that finding the optimal control function requires

the solution of a boundary value problem for the Hamiltonian dynamics (3),(4). But even

for this relatively simple system, the solution represents a formidable task. First, the

boundary conditions are in general unknown, in particular those applying at the starting

time (which belong to the strange attractor). But even if the boundaries were known,

the functional R of Eq. (6) has so many local minima that it has proved impractical to

attempt a general search for the optimal path.
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However, a statistical analysis of the fluctuational trajectories provides the a priori

information needed to calculate the optimal path from Pontryagin’s Hamiltonian. This

approach exploits the escape scenario that had emerged from the experiments: as men-

tioned above, the optimal escape trajectory starts at S5 and ends at S1, passing through

S3. We therefore built an initial trial function such that at short times it coincides with

S5, while at large times it coincided with S1. At intermediate times, we had a mixture

of S5 and S1 in the initial trial function, but no S3. Using a well known algorithm for

two point boundary conditions (TWPBVP, obtained via netlib1 see [Cash, 1986, 1988;

Cash & Wright, 1990, 1991] for details), we then relaxed this trial function to find the

optimal path, defined as the path which minimises the functional (6). It is striking that

the relaxed optimal path that we found does go through S3, in good agreement with the

optimal path obtained by ensemble averaging fluctuational trajectories and building the

prehistory distribution.

The result is shown in Fig. 7(a). The blue dashed lines are examples of the three

different initial trial functions. All the different trial functions relax to the same optimal

function shown by the green dotted line. The red solid line shows for comparison the

optimal fluctuational trajectory. We should add that we checked the robustness of this

solution, changing the time range over which the solution was sought, changing the weight

of S5 and S1 in the trial function and, finally, replacing S1 with the stable limit cycle: we

always relaxed to the same optimal function.

From the figure, it is clear that agreement with the fluctuational optimal control

function is good, albeit not perfect especially at short times. We note, however, that

in this region both of the methods used – statistical analysis of the escape trajectories

and numerical solution of the boundary value problem – have limited accuracy. The

accuracy of the first method is limited by the finite values of D. The possible errors of

the second method may be attributed to the boundary conditions: we fixed the starting

and ending boundary conditions exactly on S5 and S1, respectively. The latter is only

an approximation because the dynamical system approaches these structures, in theory,

only in the limit of large times so that, after a finite time, it cannot be identically on the

structure itself. Work is in progress to shift the boundary conditions away from S5, S1 to

their neighborhoods at finite times.

6 Energy-optimal migration control

In this section we analyse the problem of migration control in our periodically driven

nonlinear oscillator in the absence of fluctuations. We demonstrate that an application of

the approximate solution found from the statistical analysis of the fluctuational trajecto-

ries is indeed optimal in the sense that it minimises the energy of the control function.

1Codes can be obtained from http://www.netlib.no/.
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The dependence of the energy on the shape of the control function, and on the boundary

conditions, is investigated via digital simulations. And we compare the performance of

some known adaptive control algorithms with that of the control function found in our

analysis.

6.1 The algorithm for energy-optimal control

To verify that the force ũ(t) found in the experiment does minimize the energy of the con-

trol function steering the system (5) from the CA to the S1, we set the system to arbitrary

initial conditions in the basin of attraction of its CA and let it evolve deterministically

until it passed through the initial part of the unstable manifold of S5. At this moment the

deterministic control function was switched on. For small variations in the shape of the

control function and/or initial conditions, the amplitude of the control function was set

to the threshold at which switching of the system from chaotic motion to regular motion

on the stable limit cycle occurred.

It was found that the system is very sensitive to variations in either the shape of the

control function or the initial conditions: any deviation from the shape of ũ(t), or from

the initial conditions found in the experiment, leads to a substantial increase in the energy

of the control function required to steer system from the CA to S1. Some experimental

results are shown in Fig. 8(a) and (b). Thus it can be seen that the energy of the control

function becomes approximately twice larger if the optimal force is approximated by a

sin function modulated by a Gaussian, u(t) = a1 sin(a2t) exp(−(t − a3)
2a4), and that

it becomes respectively ∼4 and 20 times larger if the optimal force is approximated by

rectangular pulses, or perturbed with arbitrary low-frequency perturbations.

6.2 The OPCL control method

For comparison, we have also performed experiments using the open-plus-closed-loop con-

trol technique [Jackson, 1997] and an adaptive control algorithm [Raj & Rajasekar, 1997]

to steer the system from the CA to S1. The equations of motion can be written in the

form

q̇1 = q2 + F1(q, g, t),

q̇2 = −2Γq2 − ω2
0q1 − βq2

1 − γq3
1 − f cos(ωt)

+F2(q, g, t), q = q1, q2, g = g1, g2

(21)

Here F (q, g, t) is the control function

F (q, g, t) = (ġ − K(g)) + S(t)(K ′(g) − A)(g(t) − q(t)). (22)

We will be interested in the situation when the “goal dynamics” g(t) is a solution of (5)

with u(t) = 0, i.e. ġ = K(g). Namely g(t) describes the stable limit cycle of period 1,



6 ENERGY-OPTIMAL MIGRATION CONTROL 18

SC, coexisting with the CA. Thus the first term in (22) vanishes, and F (q, g, t) takes the

following explicit form

Fi(q, g, t) = S(t)
∑

j=1,2

(Kij − aij)(gj − qj). (23)

Here i = 1, 2 and Kij = ∂Ki/∂qj. We have considered only the case aij = −|aij|δij and

S(t) = 1− exp(−λt) as suggested by Raj & Rajasekar [1997]. Parameters |a| and λ were

varied so as to minimise the energy of the control function.

The energies of the control functions obtained by these methods vary from 0.14 to 0.6.

Thus they are more than an order of magnitude larger then the energy of the optimal

control function ũ(t) found by our new technique. The dynamics of the system in the

presence of OPCL control, and the shape of corresponding control functions, are shown in

Fig. 9(a) and (b) respectively. The integration was stopped after the system had crossed

the saddle cycle of period 1, at the boundary of the basin of attraction because, as

mentioned above, its further evolution towards the stable limit cycle requires no external

action. The energy of the control function in question (which we note has two components)

is compared to the energy of our optimal control function in Fig. 8(b).

6.3 The algorithm for adaptive control of chaos

The migration of the nonlinear oscillator from the CA to SC with a single control function

in the form of (5) was also effected through application of the adaptive chaos control

algorithm proposed by Boccaletti et al. [2000].

Just as in the case of the OPCL method the control function at every time step is

proportional to the difference between the goal dynamics g(t) and the current state q(t)

u(tn) = K(tn)(g(tn) − q(tn)), (24)

where the coefficient of proportionality is given by

K(tn) = K0/ (1 − tanh(σλ(tn))) , (25)

λ(tn) = ln

(∣

∣

∣

∣

∣

g(tn) − q(tn)

g(tn−1) − q(tn−1)

∣

∣

∣

∣

∣

)

.

The coefficients K0 > 0 and σ > 0 were varied in the digital simulations so as to minimize

the energy of the control function. The migration dynamics and the corresponding control

function are shown in Fig. 10(a) and (b), and its energy is compared to that of the optimal

control in Fig. 8(b).

We note in conclusion of this section that neither the OPCL nor the adaptive control

algorithm were devised to minimize the energy of the control pulse, but rather the recovery

time. It is clear that these methods are insensitive to the initial conditions on the CA.

The shapes of the control functions are to a large extent prescribed by the algorithms and
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are not optimized. In this sense the relatively high energy of the control functions is not

a surprise. The results presented in the last two subsections illustrate compellingly the

great sensitivity to the shape of the control function as well as to the initial conditions

discussed above.

7 Discussion

We have found a novel technique for determination of the optimal control force needed to

steer a nonlinear oscillator away from the basin of attraction of a non-hyperbolic strange

attractor. The technique applies to the case where the cost functional, referred to as the

“energy” of the control force, is quadratic in the control force.

Our approach is based on the formal correspondence that exists between the solution

of the deterministic optimal control problem and the problem of escape from the attractor

under the action of a zero-mean, delta-correlated, Gaussian random force that substitutes

for the control force in the equations of motion. In the limit where the noise intensity

goes to zero, the form of the most probable realization of the random force that effects

escape of the system from the attractor approaches the optimal form of the control force

in the deterministic equations of motion, i.e. the force that minimizes the total energy

of the control pulse. Similarly, the activation energy for escape approaches the optimal

control energy in this limit.

The interrelation between the theory of large deviations and that of optimal control

was considered by Fleming [1978] and Smelyanskiy & Dykman [1997] (see also [Whittle,

1996] and references therein). However, the experimental technique presented in the

present paper is new. We use it to determine the optimal control force from an analysis of

the escape trajectories using the prehistory probability distribution [Dykman et al., 1992].

If a unique solution (or a finite number of solutions of approximately equal probability)

exists, the prehistory distribution peaks sharply around the most probable escape path

(or around a few nearly equally probable escape paths). In this case the solution can be

found by statistical averaging of the observed realizations of the random force leading to

the escape events.

The technique opens up a new avenue for the study of complex nonlinear control

problems where an analytical solution is impossible. Its main significance lies in the

fact that it enables one to obtain fundamental information about the globally optimal

control function merely by observing the system’s natural behavior in the presence of

noise. Once the boundary conditions for the control problem are identified, and the form

of the solution has been qualitatively understood from the simulations, one can obtain

the optimal control solutions for any given choice of system parameters using standard

methods, as demonstrated above.

Note that in studying complex nonlinear control problems, similar to the one consid-
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ered here, conventional numerical methods require a priori knowledge of the initial and

final states of the system corresponding to the optimal control solution, and thus these

methods would have to be used in conjunction with the stochastic technique described in

the paper. Moreover, even when the boundary conditions are identified, the determina-

tion of the optimal path is in practice a formidable task because the cost functional has

many local minima and it is often impossible to attempt a search for the global minimum.

In this situation an initial trial function can also be found using the stochastic technique

as described.

The stochastic technique described in the paper can profitably be combined with

known “minimal” forms of control and it extends substantially the variety of model-

exploration objectives that can be achieved by this methods. For example, it was shown

recently [Feudel & Grebogi, 1997; Feudel et al., 1998; Kraut et al., 1999; Gadaleta &

Dangelmayr, 2001] that the task of controlling complexity in multistable systems goes far

beyond the original [Shinbrot et al., 1990] control-of-chaos idea. As well as stabilising the

system on one of the attractors, one needs to control switching between them. Thus far,

new switching strategies have been restricted to the possibility of linearising the flow in the

neighbourhood of the stable state [Feudel & Grebogi, 1997]. The efficiency of switching

can be significantly increased by the combination of the linear control algorithms with

migration control methods [Raj & Rajasekar, 1997; Jackson, 1997] or with our novel

energy-optimal switching technique.

As already mentioned, the migration control algorithms were devised to minimise the

recovery time, rather than the control energy. But the possibility of reducing the energy

of the switching pulse by an order of magnitude, through our new technique, may have

important advantages in application to the control of chaos in multistable systems, e.g. in

laser systems as discussed by [Chizhevsky et al., 1997], by [Chizhevsky & Turovets, 1994],

and by [Corbalán et al., 1995].

We note also that the time required for the system to approach the unstable manifold

(the saddle limit cycle S5) varies for different initial conditions on the CA and is typically

l−Dp, where l is the linear dimension of the region and the Dp is the pointwise dimension

of the periodic point in his region [Grebogi et al., 1988]. In order to reduce this waiting

time, our approach can again be combined with the technique that [Barreto et al., 1995]

developed earlier for targeting the system on a given unstable periodic orbit embedded in

a CA.

There are a number of important questions related to further application of this tech-

nique that require detailed investigation. A possible extension of the method to problems

in higher-dimensions needs to be analysed in detail for each particular case. No general

recipe can be given at this stage; but we comment that the analysis of lower dimensional

cases, as here, is likely to provide a useful guide. We also comment that extension to

higher dimensions will require a corresponding extension to maps of the technique for
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analysing optimal fluctuational trajectories – which can be done, at least in principle: see

e.g. [Graham et al., 1991; Grassberger, 1989; Kifer, 1990b,a].

A very important problem is that of the ergodicity of the attractor. In the limit of very

weak noise it may require, in general, an exponentially long time to communicate between

different parts of the chaotic attractor. In this sense the deterministic control problem

of switching from a strange attractor is fundamentally ill-posed at zero noise intensity.

However, in the presence of finite external noise [Fleming, 1978; Smelyanskiy & Dykman,

1997] one can define the problem of optimal control. In this case it is guaranteed that at

some noise level the transit time between different points of the strange attractor is small

compare to the escape time from the attractor.

Preliminary investigations [Khovanov et al, 2000b] demonstrate that the method can

be extended to the analysis of escape from the Lorenz attractor. They have shown that

ergodicity can be a real problem in such cases, where the optimal escape path follows the

separatrix of the saddle point, which cannot be reached experimentally during a finite

time in the absence of noise. In the particular case of the Lorenz attractor, the transit

time has to be considered explicitly. It has recently been demonstrated, however, that the

method can also reveal non-stationary optimal escape trajectories [Arrayás et al., 2000],

i.e. trajectories that minimize the escape energy on a fixed time interval.

In summary, a novel technique for solution of the energy optimal control problem of

steering a nonlinear oscillator from the basin of attraction of a CA has been proposed

and verified experimentally. We believe that the technique can readily be extended to the

treatment of more complex cases.
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Figure 1: (a) Phase diagram of the system (5) in the (ω, h) plane obtained in numerical

simulations for the parameter values Γ = 0.025, ω0 = 0.597, β = 1, γ = 1. Regions where

chaos was found are shown by the vertical lines of small black dots. The filled blue

circles enclose the regions where two nonlinear responses of period 1 coexist. The yellow

pluses indicate the boundaries of the hysteretic creation and annihilation of nonlinear

responses of period 1, and the green circles show those for the period 2 resonance. The

region where two period 2 attractors coexist is shown by the red triangles. The associated

full, dashed-dotted and dashed lines are guides to the eye. The working point P with

ωf = 0.95, h = 0.13, shown by the large plus, was chosen to lie in the region of coexistence

of the period 1 stable limit cycle and of the strange attractor.
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Figure 1: (b) A bifurcation diagram for (5) in Poincaré cross-section obtained with ωf t =

0(mod2π), ωf = 1.005 shows values of q1 for different h. The region of hysteresis for the

period 2 resonance lies between the arrows 1 and 4. The region of coexistence of the two

resonances of period 2 lies between arrows 2 and 5; that of the large stable limit cycle

of period 1 lies between arrows 3 and 9. Arrows 6–9 show the boundaries of the chaotic

states.
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Figure 2: The basin of attraction (shaded red) of the stable limit cycle SC1 (filled red

circle) and that of the chaotic attractor CA (white) in Poincaré cross-section with ωf t =

0.6π(mod2π), ωf = 0.95. The boundary S1 of the CA’s basin of attraction, the saddle

cycle of period 1, is shown by the black square. The saddle cycle of period 3 is shown by

black pluses. The intersections of the actual escape trajectory with the Poincaré cross-

section are indicated by the small blue filled circles.
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Figure 3: (a) Escape trajectories (black lines) found in the analogue simulations for the

parameters h = 0.19, ωf ≈ 1.045, ω0 ≈ 0.597, T ≈ 0.005. The red triangles show the

calculated saddle cycle of period 1 at the boundary of the basin of attraction. The back-

plane shows for comparison the Poincaré cross-section and the basins of attraction chaotic

attractor (blue-shaded) and stable limit cycle (white) for ωf t = 0. The red filled circle

and the black filled square indicate respectively the intersections of the stable limit cycle

and saddle cycle with the Poincaré section.
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Figure 3: (b) Three optimal escape trajectories obtained in digital simulations for pa-

rameters corresponding to the point P in Fig. 1 with T ≈ 0.005 are shown by the full

black, red dashed solid, and green dotted lines respectively. Their relative probabilities

are 9.5:4:1, respectively. The filled circles and triangles show one period of an unstable

saddle cycle of period 3 (S3) and one period of an unstable limit cycle S1, respectively.

The thin blue lines show 15 real escape trajectories corresponding to the same optimal

trajectory.
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Figure 4: Contour plot of the prehistory probability distribution of escape trajectories

for the same parameters as in Fig. 3. The blue squares show one period of the saddle

cycle S3. The black circles, showing one period of S5, have been displaced vertically in

the interests of clarity. The red triangles indicate the stable limit cycle.
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Figure 5: Trajectories merging into the narrow tube around the saddle cycle S3 for the

parameters as in Fig. 3a and a temperature of T = 1.5× 10−6. The red squares and blue

circles show respectively one period of the saddle cycle S3 and one period of S5.
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Figure 6: Main figure: the most probable escape path (full blue curve) from S5 to S1,

found in the numerical simulations. Single periods of the unstable saddle cycles of period

5, 3 and 1 are shown by green circles, black squares and mauve triangles respectively; the

stable limit cycle is shown by blue rhombs. The parameters were h = 0.13, ωf ≈ 0.95,

ω0 ≈ 0.597, D ≈ 0.01. Inset: the optimal force (full blue curve) corresponding to the

optimal path, after filtration. The red-dotted line in both parts of the figure is from a

numerical solution of the boundary value problem.
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Figure 7: (a) The relaxation of some initial trial functions (blue) onto the optimal path

(green dots). The saddle cycles of the period 1, 3 and 5 are shown by the black circles,

squares and triangles respectively. The red line represent the optimal fluctuational force

found from statistical analysis of the escape trajectories. The parameters were h = 0.13,

ωf = 0.95, ω0 = 0.597.
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Figure 7: (b) Examples of local minima obtained by the relaxation method as a function

of the starting time on the S5 and of the duration of the escape path.
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Figure 8: (a) The control functions (not to the same scale) used in the numerical ex-

periments: 1 - optimal force found by statistical analysis of the fluctuational escape

trajectories; 2 - approximation of the optimal force by u(t) = a1 sin(a2t) exp(−(t−a3)
2a4)

where ai are constants; 3 - approximation of the optimal force by the rectangular pulses;

4 - arbitrary perturbation of the optimal force with a low-frequency perturbation; 5 - con-

trol functions produced by the OPCL algorithm. (b) Energies of the control functions

shown in (a).
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Figure 9: (a) Migration dynamics of the system (21). The blue line is a trajectory taking

the system from the chaotic attractor (centre) to the stable limit cycle (red dotted line).

The parameters of the OPCL algorithm where: a11 = −2.12, a22 = −3.79, λ = 0.11. (b)

The control functions F1 (blue dashed line) and F2 (red line).
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Figure 10: (a) Migration dynamics of the system (5) in the presence of adaptive chaos

control. The blue line is a trajectory taking the system from the chaotic attractor (centre)

to the stable limit cycle (red dotted line). The parameters of the algorithm where: σ =

0.5 × 10−3, K0 = 0.15. (b) The corresponding control function u(t).


