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Abstract In 2005, Bob Connelly showed that a generic framework in Rd is globally rigid if it
has a stress matrix of maximum possible rank, and that this sufficient condition for generic global
rigidity is preserved by the 1-extension operation. His results gave a key step in the characterisation
of generic global rigidity in the plane. We extend these results to frameworks on surfaces in R3.
For a framework on a family of concentric cylinders, cones or ellipsoids, we show that there is a
natural surface stress matrix arising from assigning edge and vertex weights to the framework, in
equilibrium at each vertex. In the case of cylinders and ellipsoids, we show that having a maximum
rank stress matrix is sufficient to guarantee generic global rigidity on the surface. We then show
that this sufficient condition for generic global rigidity is preserved under 1-extension and use this
to make progress on the problem of characterising generic global rigidity on the cylinder.
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1 Introduction

A bar-joint framework (G, p) in d-dimensional Euclidean space Rd is a realisation of a (simple) graph
G = (V,E), via a map p : V → Rd, with vertices considered as universal joints and edges as fixed
length bars. A framework (G, p) is rigid if the only continuous motions of the vertices in Rd that
preserve the edge lengths, arise from isometries of Rd. More strongly, (G, p) is globally rigid in Rd if
every realisation (G, q) with the same edge lengths as (G, p) arises from an isometry of Rd. We refer
the reader to [22] for more information on rigidity and its applications.

It is NP-hard to determine if an arbitrary framework is rigid [1] or globally rigid [20]. These
problems become more tractable if we restrict to generic frameworks, for which rigidity and global
rigidity can be determined in polynomial time when d = 1, 2. It remains a difficult open problem to
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characterise, in an efficient combinatorial way, when a 3-dimensional generic framework is rigid or
globally rigid.

Results have recently been obtained concerning the rigidity and global rigidity of frameworks
in R3 that are constrained to lie on a fixed surface [15,18,19]. In this paper we obtain a natural
sufficient condition for such a framework to be globally rigid.

We first recall some fundamental results about the generic (global) rigidity of bar-joint frame-
works in Euclidean space. A graph G = (V,E) is (2, k)-sparse if for every subgraph G′ = (V ′, E′),
with at least one edge, the inequality |E′| ≤ 2|V ′|−k holds. Moreover G is (2, k)-tight if |E| = 2|V |−k
and G is (2, k)-sparse. While the definitions of (2, k)-sparse and (2, k)-tight make sense for graphs
with multiple edges and loops, such edges are of no use when considering rigidity so we will restrict
our attention to simple graphs.

Theorem 1 ([11]) A generic framework (G, p) in R2 is rigid if and only if G contains a spanning
(2, 3)-tight subgraph.

A framework (G, p) is said to be redundantly rigid if (G− e, p) is rigid for all edges e of G.

Theorem 2 ([7,12]) A generic framework (G, p) in R2 is globally rigid if and only if G is a complete
graph on at most three vertices or (G, p) is redundantly rigid and G is 3-connected.

Hendrickson [10] had previously shown that (d + 1)-connectivity and redundant rigidity are
necessary conditions for generic global rigidity in Rd for all d. Examples constructed by Connelly [6]
show that they are not sufficient to imply generic global rigidity when d ≥ 3. Connelly also obtained
a different kind of sufficient condition for generic global rigidity in terms of ‘stress matrices’ (which
will be defined in Section 4).

Theorem 3 ([7]) Let (G, p) be a generic framework in Rd with n ≥ d + 2 vertices. Suppose that
(G, p) has an equilibrium stress ω whose associated stress matrix Ω has rank n− d− 1. Then (G, p)
is globally rigid in Rd.

Gortler, Healy and Thurston [9] have shown that Connelly’s sufficient condition for generic
global rigidity is also a necessary condition. This characterization implies that generic global rigidity
depends only on the underlying graph (but does not give rise to a polynomial algorithm for deciding
which graphs are generically globally rigid in Rd).

In this paper we develop natural analogues of an equilibrium stress and a stress matrix for
frameworks constrained to lie on a surface. Our main result is an analogue of Theorem 3, giving a
sufficient condition for generic frameworks on families of concentric cylinders and ellipsoids to be
globally rigid.

We conclude the introduction by giving a short outline of what follows. Section 2 recalls basic
definitions and results for frameworks on surfaces. We describe the rigidity map and rigidity matrix
for surfaces in Section 3. In Section 4 we develop basic properties of stresses, stress matrices and
energy functions for frameworks on surfaces. Section 5 contains our main result, Theorem 9, an
analogue of Theorem 3 for generic frameworks on cylinders and ellipsoids. We use this result in
Section 6 to show that the property of having a maximum rank surface stress matrix is preserved
by 1-extensions on these surfaces. We finish by applying our results to make some progress on the
problem of characterising generic global rigidity on the cylinder.
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2 Frameworks on Surfaces

It was shown in [18] that the rigidity of a generic framework on a surface depends crucially on the
number of continuous isometries of R3 admitted by the surface, see Theorems 4, 5 and 7 below.
Since generic rigidity and global rigidity on the plane and sphere [8], the surfaces with 3-dimensional
isometry groups, are now well understood, we consider cylinders, cones and ellipsoids as natural
examples of surfaces with 2, 1 and 0-dimensional isometry groups, respectively.

Let r = (r1, r2, . . . , rn) be a vector of (not necessarily distinct) positive real numbers. For 1 ≤
i ≤ n, let Yi = {(x, y, z) ∈ R3 : x2 + y2 = ri}, Ci = {(x, y, z) ∈ R3 : x2 + y2 = riz

2} and
Ei = {(x, y, z) ∈ R3 : x2 +αy2 +βz2 = ri} for some fixed α, β ∈ Q with 1 < α < β. Let Y =

⋃n
i=1 Yi,

C =
⋃n
i=1 Ci and E =

⋃n
i=1 Ei.

We will use S =
⋃n
i=1 Si to denote one of the three surfaces Y, C, E , and ` for the dimension

of its space of infinitesimal isometries (so ` = 2, 1 or 0 when S = Y, C or E , respectively). We will
occasionally use S(r) when we wish to specify a particular vector r and S(1) for the special case
when r1 = r2 = · · · = rn (there is no loss in generality in assuming that ri = 1 for all 1 ≤ i ≤ n
when the ri are all equal).

A framework on S is a pair (G, p) where G = (V,E) is a graph with V = {v1, v2, . . . , vn}, and
p : V → R3 with p(vi) ∈ Si for all 1 ≤ i ≤ n. Two frameworks (G, p) and (G, q) on S are equivalent
if ‖p(vi)−p(vj)‖ = ‖q(vi)− q(vj)‖ for all vivj ∈ E and congruent if ‖p(vi)−p(vj)‖ = ‖q(vi)− q(vj)‖
for all vi, vj ∈ V . The framework (G, p) is globally rigid on S if every framework (G, q) on S which
is equivalent to (G, p) is congruent to (G, p). We say that (G, p) is rigid on S if there exists an ε > 0
such that every framework (G, q) on S which is equivalent to (G, p), and has ‖p(vi)− q(vi)‖ < ε for
all 1 ≤ i ≤ n, is congruent to (G, p). (This is equivalent to saying that every continuous motion of
the vertices that stays on S and preserves equivalence also preserves congruence). If (G, p) is not
rigid on S then (G, p) is said to be flexible on S. The framework (G, p) is minimally rigid on S if it
is rigid and, for every edge e ∈ E, (G− e, p) is flexible on S. It is redundantly rigid on S if (G− e, p)
is rigid on S for all e ∈ E.

An infinitesimal flex s of (G, p) on S is a map s : V → R3 such that s(v) is tangential to S
at p(v) for all v ∈ V and (p(u) − p(v)) · (s(u) − s(v)) = 0 for all uv ∈ E. The framework (G, p) is
infinitesimally rigid on S if every infinitesimal flex s of (G, p) satisfies (p(u)−p(v)) ·(s(u)−s(v)) = 0
for all u, v ∈ V .

We consider a framework (G, p) on S = S(r) to be generic if td [Q(r, p) : Q(r)] = 2|V |, where
td [Q(r, p) : Q(r)] denotes the transcendence degree of the field extension. Thus (G, p) is generic on
S if the coordinates of the vertices of G are as algebraically independent as possible. The following
results characterise when a generic framework on Y or C(1) is minimally rigid.

Theorem 4 ([18]) Let (G, p) be a generic framework on Y. Then (G, p) is minimally rigid if and
only if G is a complete graph on at most three vertices or G is (2, 2)-tight.

Theorem 5 ([19]) Let (G, p) be a generic framework on C(1). Then (G, p) is minimally rigid if
and only if G is a complete graph on at most four vertices or G is (2, 1)-tight.

It remains an open problem to characterise generic minimally rigid frameworks on E . (The natural
analogue of the above theorems is known to be false.)

The final result of this section gives necessary conditions for generic global rigidity of frameworks
on S which are analogous to Hendrickson’s conditions for Rd.
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Theorem 6 ([15]) Suppose (G, p) is a generic globally rigid framework on S with n ≥ 7−` vertices.
Then (G, p) is redundantly rigid on S, and G is k-connected, where k = 2 if S ∈ {Y, C} and k = 1
if S = E.

We believe that these necessary conditions for generic global rigidity are also sufficient when
S ∈ {Y, C}, see [15, Conjecture 9.1]. One motivation for the current paper is to try to verify this
conjecture by using the same proof technique as Theorem 2. We will return to this in Section 7.

3 The Rigidity Map

We assume henceforth that G = (V,E) is a graph with V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}.
The rigidity map FG : R3n → Rm is defined by FG(p) = (‖e1‖2, . . . , ‖em‖2) where ‖ei‖2 = ‖p(vj)−
p(vk)‖2 when ei = vjvk. Its differential at the point p is the map dFGp : R3n → Rm defined by

dFGp (q) = 2R(G, p) · q where R(G, p) is the |E| × 3|V | matrix with rows indexed by E and 3-tuples
of columns indexed by V in which, for e = vivj ∈ E, the submatrices in row e and columns vi and
vj are p(vi)−p(vj) and p(vj)−p(vi), respectively, and all other entries are zero. We refer to R(G, p)
as the rigidity matrix for (G, p).

We next define a rigidity map and matrix for a framework (G, p) constrained to lie on our surface
S. Let ΘS : R3n → Rn be the map defined by ΘS(p) = (h1(p(v1)), . . . , hn(p(vn))) where, for each
1 ≤ i ≤ n,

hi(x, y, z) =


x2 + y2 − ri, if S = Y(r1, r2, . . . , rn);

x2 + y2 − riz2, if S = C(r1, r2, . . . , rn);

x2 + αy2 + βz2 − ri, if S = E(α, β, r1, r2, . . . , rn).

(3.1)

Then the differential of ΘS at the point p is the map dΘSp : R3n → Rn defined by dΘSp (q) = 2S(G, p)·q
where

S(G, p) =


s1 0 . . . 0
0 s2 . . . 0
...

. . .
...

0 0 . . . sn

 ,
si = si(p(vi)) and

si(x, y, z) =


(x, y, 0), if S = Y;

(x, y,−riz), if S = C;
(x, αy, βz), if S = E .

(3.2)

It follows that rank dΘSp = n if p ∈ W = S1 × S2 × . . . × Sn and p(vi) 6= (0, 0, 0) for all 1 ≤ i ≤ n.

Hence p ∈ W is a regular point of ΘS unless S = C and p(vi) = (0, 0, 0) for some 1 ≤ i ≤ n.
The S-rigidity map FG,S : R3n → Rm+n is defined by FG,S = (FG, ΘS). The rigidity matrix

RS(G, p) =

[
R(G, p)
S(G, p)

]
for the framework (G, p) on S is (up to scaling) the Jacobian matrix of FG,S evaluated at the point
p. It is shown in [18] that the null space of RS(G, p) is the space of infinitesimal flexes of (G, p) on
S. This allows us to characterise infinitesimal rigidity in terms of RS(G, p).
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Theorem 7 ([18]) Let (G, p) be a framework on S. Then (G, p) is infinitesimally rigid on S if and
only if rankRS(G, p) = 3n− `.

Theorem 7 implies that the (redundant) rigidity of a generic framework (G, p) on S depends only
on the graph G. Hence we say that G is (redundantly) rigid on S if some, or equivalently every,
generic realisation of G on S is (redundantly) rigid.

We close this section by pointing out that Theorem 4 implies that a graph which is (redundantly)
rigid on some family of concentric cylinders, is (redundantly) rigid on all families of concentric
cylinders irrespective of their radii. We do not know if analogous results hold for families of concentric
cones or ellipsoids.

4 Stresses and stress matrices

In this section we develop the notion of an equilibrium stress for a framework on our surface S and
show that if (G, p) is ‘fully realised’ on S and has a maximum rank positive semi-definite stress
matrix then every equivalent framework on S is an affine image of (G, p).

A stress for a framework (G, p) on S is a pair (ω, λ), where ω : E → R and λ : V → R. A stress
(ω, λ) is an equilibrium stress if it belongs to the cokernel of RS(G, p). Thus (ω, λ) is an equilibrium
stress for (G, p) on S if and only if

n∑
j=1

ωij(p(vi)− p(vj)) + λisi(p(vi)) = 0 for all 1 ≤ i ≤ n, (4.1)

where si(p(vi)) is as defined in Equation (3.2), ωij is taken to be equal to ωe if e = vivj ∈ E and to
be equal to 0 if vivj 6∈ E. We can think of ω as a weight function on the edges and λ as a weight
function on the vertices. Note that, if the rows of RS(G, p) are linearly independent, then the only
equilibrium stress for (G, p) is the all-zero equilibrium stress.

Given a stress (ω, λ) for a framework (G, p) on S we define: Ω = Ω(ω) to be the n×n symmetric
matrix with off-diagonal entries −ωij and diagonal entries

∑
j ωij ; Λ = Λ(λ) to be the n×n diagonal

matrix with diagonal entries λ1, λ2, . . . , λn; and ∆ = ∆(λ, r) to be the n × n diagonal matrix with
diagonal entries λ1r1, λ2r2, . . . , λnrn. The stress matrix associated to (ω, λ) on S is the 3n × 3n
symmetric matrix

ΩS(ω, λ) =

Ω + Λ 0 0
0 Γ 0
0 0 Σ


where: Γ = Ω + Λ if S ∈ {Y, C} and Γ = Ω + αΛ if S = E ; Σ = Ω if S = Y, Σ = Ω −∆ if S = C,
and Σ = Ω + βΛ if S = E . Our next result, which follows immediately from the definition of an
equilibrium stress, tells us how we can use ΩS(ω, λ) to determine if (ω, λ) is an equilibrium stress
for (G, p) on S.

Lemma 1 Let (G, p) be a framework on S with p(vi) = (xi, yi, zi) and let

Π =

x1 . . . xn 0 . . . 0 0 . . . 0
0 . . . 0 y1 . . . yn 0 . . . 0
0 . . . 0 0 . . . 0 z1 . . . zn

 .
Then (ω, λ) is an equilibrium stress for (G, p) on S if and only if Π ΩS = 0.
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We next define the configuration matrix CS(G, p) for a framework (G, p) on S by modifying the
above matrix Π as follows:

CS(G, p) =


x1 . . . xn 0 . . . 0 0 . . . 0
0 . . . 0 y1 . . . yn 0 . . . 0
0 . . . 0 0 . . . 0 z1 . . . zn
y1 . . . yn 0 . . . 0 0 . . . 0
0 . . . 0 x1 . . . xn 0 . . . 0
0 . . . 0 0 . . . 0 1 . . . 1

 if M = Y,

CS(G, p) =


x1 . . . xn 0 . . . 0 0 . . . 0
0 . . . 0 y1 . . . yn 0 . . . 0
0 . . . 0 0 . . . 0 z1 . . . zn
y1 . . . yn 0 . . . 0 0 . . . 0
0 . . . 0 x1 . . . xn 0 . . . 0

 if M = C,

and CS(G, p) = Π ifM = E . We can use the configuration matrix to obtain an upper bound on the
rank of a stress matrix.

Lemma 2 Let (ω, λ) be an equilibrium stress for a framework (G, p) on S. Then each row of
CS(G, p) belongs to the cokernel of ΩS(ω, λ), rankΩS(ω, λ) ≤ 3n − rankCS(G, p) and, if equal-
ity holds, then the rows of CS(G, p) span the cokernel of ΩS(ω, λ).

Proof Equation (4.1) and the definitions of ΩS(ω, λ) and CS(G, p) imply that

CS(G, p)ΩS(ω, λ) = 0.

Thus each row of CS(G, p) belongs to the cokernel ofΩS(ω, λ). Hence dim cokerΩS(ω, λ) ≥ rankCS(G, p)
and we have rankΩS(ω, λ) = 3n−dim cokerΩS(ω, λ) ≤ 3n−rankCS(G, p). Furthermore, if equality
holds, then cokerΩS(ω, λ) is equal to the row space of CS(G, p). ut

We next use Lemma 2 to show that, if a framework (G, p) on S has an equilibrium stress (ω, λ)
whose associated stress matrix has maximum rank, then every framework (G, q) on S which has
(ω, λ) as an equilibrium stress can be obtained from (G, p) by an affine transformation.

Lemma 3 Let (G, p) and (G, q) be frameworks on S and let (ω, λ) be an equilibrium stress for
both (G, p) and (G, q). Suppose that rankΩS(ω, λ) = 3n − rankCS(G, p). Then, for some fixed
a, b, c, d, e, f ∈ R, we have

q(vi) =

a b 0
c d 0
0 0 e

 p(vi) +

0
0
f

 for all 1 ≤ i ≤ n, (4.2)

where f = 0 if S ∈ {C, E} and b = c = 0 if S = E.

Proof Lemma 2 implies that the rows of CS(G, p) span the cokernel of ΩS(ω, λ), and that each row
of CS(G, q) belongs to the cokernel of ΩS(ω, λ). It follows that each row of CS(G, q) is a linear
combination of the rows of CS(G, p). The lemma now follows from the structure of the matrices
CS(G, p) and CS(G, q). ut
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We will say that (G, q) is an S-affine image of (G, p) if it satisfies the conclusion of Lemma 3.
Our next result gives a converse to Lemma 3.

Lemma 4 Let (G, p) and (G, q) be frameworks on S such that (G, q) is an S-affine image of (G, p).
Then every equilibrium stress (ω, λ) for (G, p) is an equilibrium stress for (G, q).

Proof Since (G, q) is an S-affine image of (G, p), we have q(vi) = Ap(vi) + t for some fixed A, t
satisfying the conclusion of Lemma 3, and all 1 ≤ i ≤ n. Hence∑

j

ωij(q(vi)− q(vj)) + λisi(q(vi)) =
∑
j

ωijA(p(vi)− p(vj)) + λisi(Ap(vi) + t)

= A

∑
j

ωij(p(vi)− p(vj)) + λisi(p(vi))

 ,

since si(Ap(vi) + t) = Asi(p(vi)) by the definitions of si, A, t. The lemma now follows by applying
Equation (4.1). ut

A framework (G, p) on S is fully realised on S if the rows of its configuration matrix are linearly
independent i.e. we have rankCS(G, p) = µ where

µ =


6 if S = Y;

5 if S = C;
3 if S = E .

(4.3)

It can be seen that (G, p) is fully realised on S if and only if its points do not all lie on: a plane
containing or perpendicular to the z-axis when S = Y; a plane containing the z-axis when S = C;
one of the planes x = 0, y = 0 or z = 0 when S = E .

We will next use a similar argument to that used by Connelly in [5] to show that, if (G, p) has a
positive semi-definite stress matrix of maximum rank then any equivalent framework is an S-affine
image of (G, p).

The energy function associated to a stress (ω, λ) for a framework (G, q) and a family of concentric
surfaces S is defined as

Eω,λ,S(q) =
∑

1≤i<j≤n

ωij‖q(vi)− q(vj)‖2 +

n∑
i=1

λik(q(vi))

where

k(x, y, z) =


x2 + y2 if S = Y;

x2 + y2 − riz2 if S = C;
x2 + αy2 + βz2 if S = E .

(4.4)

Then the differential of Eω,λ,S(q) at a point q with q(vi) = (xi, yi, zi) for all 1 ≤ i ≤ n is given by

dEω,λ,S |q = 2(x1, . . . , xn, y1, . . . , yn, z1, . . . , zn)ΩS (ω, λ). (4.5)

Hence, when (G, q) is a framework on S, q is a critical point of Eω,λ,S if and only if (ω, λ) is an
equilibrium stress for (G, q) on S.
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Lemma 5 Suppose q ∈ R3n. If q is a critical point of Eω,λ,S then Eω,λ,S(q) = 0. In addition, when
ΩS(ω, λ) is positive semi-definite and (G, q) lies on S, we have Eω,λ,S(q) = 0 if and only if q is a
critical point of Eω,λ,S.

Proof Suppose q is a critical point of Eω,λ,S . Then the differential of Eω,λ,S(q) in the direction of q
is zero. This implies that Eω,λ,S(tq) is constant for all t ∈ R. We can now take t = 0 to deduce that
Eω,λ,S(q) = Eω,λ,S(0) = 0.

Observe that, if q(vi) = (xi, yi, zi) for all 1 ≤ i ≤ n, then

Eω,λ,S(q) = (x1, . . . , xn, y1, . . . , yn, z1, . . . , zn)ΩS(ω, λ)(x1, . . . , xn, y1, . . . , yn, z1, . . . , zn)T .

Thus, when ΩS(ω, λ) is positive semi-definite, we have Eω,λ,S(q) ≥ 0 for all q ∈ R3n. Hence q is a
critical point of Eω,λ,S if Eω,λ,S(q) = 0. ut

We can now deduce that equivalent frameworks with maximum rank positive semi-definite stress
matrices are linked by affine transformations.

Theorem 8 Let (G, p) be a framework which is fully realised on S and let (ω, λ) be an equilibrium
stress for (G, p). Suppose that ΩS(ω, λ) is positive semi-definite and rankΩS(ω, λ) = 3n − µ. Let
(G, q) be a framework on S which is equivalent to (G, p). Then (ω, λ) is an equilibrium stress for
(G, q), and (G, q) is an S-affine image of (G, p).

Proof Since (ω, λ) is an equilibrium stress for (G, p) we have Eω,λ,S(p) = 0. Then

Eω,λ,S(q) = Eω,λ,S(q)− Eω,λ,S(p) =

n∑
i=1

λi[k(q(vi))− k(p(vi))] = 0

since (G, p) and (G, q) are equivalent and both lie on S. Lemma 5 now implies that q is a critical
point of Eω,λ,S and hence (ω, λ) is an equilibrium stress for (G, q). The last part of the theorem now
follows from Lemma 3. ut

We close this section by showing that any two equivalent generic frameworks on S which are
linked by an S-affine map, are in fact congruent.

We say that a framework (G, p) on S is quasi-generic if it is congruent to a generic framework
on S. The framework (G, p) is said to be in standard position on S if p(v1) = (x1, y1, z1) and:
p(v1) = (0, y1, 0) when S = Y; p(v1) = (0, y1, z1) when S = C. All frameworks on E are taken to be
in standard position. Two frameworks on S are S-congruent if there is an isometry of S which maps
one on to the other. We use K to denote the algebraic closure of a field K.

We will need the following result, [15, Lemma 8].

Lemma 6 Suppose (G, p) and (G, p0) are S-congruent frameworks on S and (G, p0) is in standard
position on S. Then (G, p) is quasi-generic if and only if td [Q(r, p0) : Q(r)] = 2n− `.

Lemma 7 Let (G, p) be a generic framework on S with n ≥ 5 vertices. Suppose that (G, q) is
an equivalent framework to (G, p) on S which is also an S-affine image of (G, p). Then (G, q) is
congruent to (G, p)
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Proof We may use the isometries of S to move (G, p) and (G, q) to two frameworks (G, p0) and (G, q0)
in standard position on S. Then (G, q0) will be an S-affine image of (G, p0). Let p0(vi) = (xi, yi, zi)
and q0(vi) = (x̂i, ŷi, ẑi). We will analyse each choice of S in turn.

Case 1: S = Y. We have

q0(vi) =

a b 0
c d 0
0 0 e

 · p0(vi) +

0
0
f

 for all 1 ≤ i ≤ n. (4.6)

Applying Equation (4.6) with q0(v1) = (0, y1, 0) = p0(v1) (ŷ1 = y1 since (G, p) and (G, q) are on S)
reveals that b = 0 = f and d = 1. For i = 2, 3, . . . , n, Equation (4.6) now givesx̂iŷi

ẑi

 = q0(vi) =

a 0 0
c 1 0
0 0 e

xiyi
zi

 =

 axi
cxi + yi
ezi

 .
Using the fact q0(vi) and p0(vi) are on Yi we deduce that

(a2 − 1 + c2)x2i + 2cxiyi = 0. (4.7)

Suppose c 6= 0. Then we have

yi =
(1− a2 − c2)xi

2c
,

and

ri = x2i + y2i = x2i +
(1− a2 − c2)2x2i

4c2
.

These equations imply that xi, yi ∈ Q(r, a, c). We may now deduce that

td [Q(r, p0) : Q(r)] ≤ td [Q(r, z2, z3, . . . , zn, a, c) : Q(r)] ≤ n+ 2.

Since n ≥ 5, this contradicts the fact that td [Q(r, p0) : Q(r)] = 2n− 2 by Lemma 6. Hence c = 0.
Equation (4.7) and the fact that c = 0 implies a = ±1. It remains to show that e = ±1. We may

assume, without loss of generality, that v1v2 ∈ E. Then

x22 + (y1 − y2)2 + z22 = ‖(0, y1, 0)− (x2, y2, z2)‖2 = ‖p0(v1)− p0(v2)‖2

= ‖q0(v1)− q0(v2)‖2 = ‖(0, y1, 0)− (x̂2, ŷ2, ẑ2)‖2

= ‖(0, y1, 0)−A(x2, y2, z2)‖2 = ‖(0, y1, 0)− (±x2, y2, ez2)‖2

= x22 + (y1 − y2)2 + e2z22 .

Hence z22 = e2z22 and e = ±1.
We have shown that, if q0 6= p0, then (G, q0) is a reflection of (G, p0) in a plane which contains

(0, y1, 0) and either contains, or is perpendicular to, the z-axis or a composition thereof. Hence
(G, p0) and (G, q0) are congruent. This implies that (G, p) and (G, q) are congruent.

Case 2: S = C. We have

q0(vi) =

a b 0
c d 0
0 0 e

 · p0(vi) for all 1 ≤ i ≤ n. (4.8)
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Since p0(v1) = (0, y1, z1), q0(v1) = (0, ŷ1, ẑ1), y21 = r1z
2
1 and ŷ21 = r1ẑ

2
1 applying Equation (4.8)

shows that b = 0 and d = e. For i = 2, 3, . . . , n, we havex̂iŷi
ẑi

 = qo(vi) =

a 0 0
c d 0
0 0 d

xiyi
zi

 =

 axi
cxi + dyi
dzi

 .
Using the fact q0(vi) and p0(vi) are on Ci we deduce that

(a2 − 1 + c2)x2i + 2cdxiyi + (d2 − 1)y2i − ri(d2 − 1)z2i = 0. (4.9)

Suppose d2 6= 1. Then

z2i =
(a2 − 1 + c2)x2i + 2cdxiyi + (d2 − 1)y2i

ri(d2 − 1)
.

Since

x2i + y2i = riz
2
i =

(a2 − 1 + c2)x2i + 2cdxiyi + (d2 − 1)y2i
d2 − 1

,

this implies xi, zi ∈ Q(r, a, c, d, yi). We may now deduce that

td [Q(r, p0) : Q(r)] ≤ td [Q(r, y1, y2, y3, . . . , yn, a, c, d) : Q(r)] ≤ n+ 3.

Since n ≥ 5, this contradicts the fact that td [Q(r, p0) : Q(r)] = 2n− 1, by Lemma 6. Hence d2 = 1.
Substituting d2 = 1 into Equation (4.9) gives

(a2 − 1 + c2)x2i + 2cdxiyi = 0. (4.10)

Similar arguments to those used in Case 1 can now be applied to deduce c = 0 and a = ±1.
We have shown that, if q0 6= p0, then (G, q0) is a reflection of (G, p0) in the plane containing

(0, y1, z1) and the z-axis, or a rotation by π around the x-axis, or a composition thereof. Hence
(G, p0) and (G, q0) are congruent. This implies that (G, p) and (G, q) are congruent.
Case 3: S = E . We have

q0(vi) =

a 0 0
0 d 0
0 0 e

 · p0(vi) for all 1 ≤ i ≤ n. (4.11)

Since p0(vi) and q0(vi) both lie on Ei, we have x2i + αy2i + βz2i = ri and a2x2i + αd2y2i + βe2z2i = ri.
We can eliminate x2i from these equations to obtain

ri(a
2 − 1) + αy2i (d2 − a2) + βz2i (e2 − a2) = 0. (4.12)

Hence, if d2 − a2 6= 0, then xi, yi ∈ Q(r, a, d, e, zi). This would imply that

2n = td[Q(r, p0) : Q(r)] ≤ td[Q(r, a, d, e, z1, z2, . . . , zn) : Q(r)] ≤ n+ 3,

a contradiction since n ≥ 5. Hence d2 = a2. We can deduce similarly, from Equation (4.12), that
a2 = e2. Equation (4.12) now implies that a2 = 1.

We have shown that (G, q0) is a reflection of (G, p0) in either the plane x = 0, y = 0 or z = 0 or
a composition thereof. Hence (G, p0) and (G, q0) are congruent. This implies that (G, p) and (G, q)
are congruent. ut
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Theorem 8 and Lemma 7 immediately imply that a generic framework on S with a maximum
rank positive semi-definite stress matrix is globally rigid. We believe that the same conclusion holds
without the hypothesis that there is a positive semi-definite stress matrix.

Conjecture 1 Suppose that (G, p) is generic on S and that (ω, λ) is an equilibrium stress for (G, p)
with rankΩS(ω, λ) = 3n− µ. Then (G, p) is globally rigid on S.

5 A sufficient condition for global rigidity on families of cylinders and ellipsoids

We will show that Conjecture 1 holds when S ∈ {Y, E} and the parameters r1, r2, . . . , rn are alge-
braically independent over Q. To do this we need to change our viewpoint from the surface S ⊂ R3

to a point p ∈ R3n.

Given a map p : V → R3n, there is a unique family of concentric surfaces S with p(vi) ∈ Si for
each S ∈ {Y, C, E}, as long as p(vi) does not lie on the z-axis for all 1 ≤ i ≤ n when S ∈ {Y, C} and
p(vi) 6= (0, 0, 0) for all 1 ≤ i ≤ n when S = E . We will refer to S as the surface induced by p and
denote it by Sp.

With this restriction we can use the following result, due to Connelly [7], to obtain the special
case of Conjecture 1.

Proposition 1 ([7]) Suppose that f : Ra → Rb is a function, where each coordinate is a polynomial
with integer coefficients, p ∈ Ra is generic, and f(p) = f(q), for some q ∈ Ra. Then there are (open)
neighbourhoods Np of p and Nq of q in Ra and a diffeomorphism g : Nq → Np such that for all
x ∈ Nq, f(g(x)) = f(x), and g(q) = p.

Theorem 9 Suppose p is a generic point in R3n and let S = Sp for some S ∈ {Y, E}. Let (ω, λ) be
an equilibrium stress for (G, p) on S and let (G, q) be equivalent to (G, p) on S. Then (ω, λ) is an
equilibrium stress for (G, q) on S. Furthermore, if rankΩS(ω, λ) = 3n − µ, then (G, p) is globally
rigid on S.

Proof Let F : R3n → Rm+n be the modified surface rigidity map defined by F (p) = (FG(p), Θ̂S(p)
where FG is the rigidity map for G, Θ̂S(p) = (k(p(v1), . . . , k(p(vn)), k(x, y, z) = x2 +y2 when S = C
and k(x, y, z) = x2 + αy2 + βz2 when S = E . By Proposition 1 there exist open neighbourhoods Np
of p and Nq of q in R3n and a diffeomorphism g : Nq → Np such that g(q) = p and, for all q ∈ Nq,
f(g(q)) = f(q). Taking differentials at q, and using the fact that the Jacobian matrix of F evaluated
at p is 2RS(G, p), we obtain RS(G, q) = RS(G, p)D where D is the Jacobian matrix of g at q. Since
(ω, λ) is an equilibrium stress for (G, p) we have (ω, λ)RS(G, q) = (ω, λ)RS(G, p)D = 0D = 0.
Hence (ω, λ) is an equilibrium stress of (G, q).

Since (G, p) is generic, it is fully realised on S. We can now use Lemma 3 and the hypothesis
that rankΩS(ω, λ) = 3n− µ to deduce that (G, q) is an S-affine image of (G, p). Lemma 7 now tells
us that (G, q) is congruent to (G, p). Hence (G, p) is globally rigid. ut

The above proof works for families of cylinders and ellipsoids because we can eliminate the
parameters ri from their defining equations without changing their Jacobian matrix. This is not
possible for families of cones. We will discuss this further in Section 8.
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6 1-extensions and global rigidity

Given a graph G, the 1-extension operation constructs a new graph by first deleting an edge v1v2 and
then adding a new vertex v0 and three new edges v0v1, v0v2, v0v3 for some vertex v3 distinct from
v1, v2. Our aim is to show that the property of having a maximum rank stress matrix is preserved
by the 1-extension operation.

Lemma 8 Suppose (G, p) is a generic framework on S with n ≥ 3. Let G′ = (V ′, E′) be a 1-
extension of G, obtained by deleting an edge e = v1v2 and adding a new vertex v0 and new edges
v0v1, v0v2, v0v3. Then there exists a map q : V ′ → R3 such that rankRSq (G′, q) = rankRS(G, p) + 3.
Furthermore, if (ω, λ) is an equilibrium stress for (G, p) on S and ωe 6= 0, then there exists an
equilibrium stress (ω′, λ′) for (G′, q) on Sq such that rankΩSq (ω′, λ′) = rankΩS(ω, λ) + 3.

Proof Define (G′, q) by putting q(v) = p(v) for all v ∈ V and q(v0) = 1
2p(v1) + 1

2p(v2). Let Sq be
the surface induced by q.

We first consider the framework (G′ + v1v2 − v0v2, q) on Sq. Its rigidity matrix R can be con-
structed from RS(G, p) by adding 3 new columns indexed by v0, and 3 new rows indexed by v0,
v0v1 and v0v3, respectively. Since (p(v1), p(v2), p(v3)) is a generic point on S(r1) × S(r2) × S(r3),
the 3× 3 submatrix M of R with rows indexed by v0, v0v1, v0v3 and columns indexed by v0 is non-
singular.1 The fact that the new columns contain zeros everywhere except in the new rows now gives
rankR = rankRS(G, p) + 3. Since q(v0), q(v1) and q(v2) are collinear, the rows in RSq (G′ + v1v2, q)
corresponding to v0v1, v0v2, v1v2 are a minimal linearly dependent set. Thus

rankRSq (G′, q) = rankRSq (G′ + v1v2, q) = rankR = rankRS(G, p) + 3.

Let (ω′, λ′) be the stress for (G′, q) on Sq defined by putting ω′f = ωf for all f ∈ E − e,
ω′(v1v0) = 2ωe, ω

′(v2v0) = 2ωe, λ
′(v) = λ(v) for all v ∈ V and λ′(v0) = 0. It is straightforward to

verify that (ω′, λ′) is an equilibrium stress for (G′, q) on Sq. Let ωij be the ij-th entry of Ω(ω′) for
i 6= j and λi be the ii-th entry of Λ(λ′).

We first consider Ω(ω′) + Λ(λ′). We have

Ω(ω′) + Λ(λ′) =


4ω12 −2ω12 −2ω12 0 . . . 0
−2ω12

∑
j ω1j + ω12 + λ1 0 −ω13 . . . −ω1n

−2ω12 0
∑
j ω2j + ω12 + λ2 −ω23 . . . −ω2n

0 −ω13 −ω23 . . . . . . −ω3n

...
...

...
...

 .
By adding 1/2 times the first row to the second and third rows, respectively, this reduces to

4ω12 −2ω12 −2ω12 0 . . . 0
0
∑
j ω1j + λ1 −ω12 −ω13 . . . −ω1n

0 −ω12

∑
j ω2j + λ2 −ω23 . . . −ω2n

...
...

...
...

...

 .
1 We can consider detM as a polynomial in the coordinates of (p(v1), p(v2), p(v3)). If detM = 0, then genericness

would imply that this polynomial evaluates to 0 at all points in S(r1)× S(r2)× S(r3). It is straightforward to show
that this is not the case by finding points (p1, p2, p3) ∈ S(r1) × S(r2) × S(r3) at which the polynomial is nonzero.
When S = Y(r), we can take p1 = (

√
r1, 0, 0), p2 = (0,

√
r2, 0) and p3 = (

√
r3, 0, 1); when S = C(r), we can

take p1 = (
√
r1, 0, 1), p2 = (

√
r2, 0,−1) and p3 = (0,

√
r3, 1); and when S = E(r), we can take p1 = (

√
r1, 0, 0),

p2 = (0,
√
r2√
α
, 0) and p3 = (0, 0,

√
r3√
β

).
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Now adding 1/2 times the first column to the second and third columns, respectively, gives
4ω12 0 0 0 . . . 0

0
∑
j ω1j + λ1 −ω12 −ω13 . . . −ω1n

0 −ω12

∑
j ω2j + λ2 −ω23 . . . −ω2n

...
...

...
...

...

 =


4ω12 0 . . . 0

0
... Ω(ω) + Λ(λ)
0

 .
Since ω12 6= 0, we have rankΩ(ω′) + Λ(λ′) = rankΩ(ω) + Λ(λ) + 1.

Since λ′(v0) = 0, we can repeat the above argument for Ω(ω′) when S = Y, for Ω(ω′) −∆(λ′)
when S = C, and for both Ω(ω′) + αΛ(λ′) and Ω(ω′) + βΛ(λ′) when S = E , to deduce that
rankΩSq (ω′, λ′) = rankΩS(ω, λ) + 3. ut

We do not know whether we can find a framework (G′, q) which satisfies the conclusions of
Lemma 8 and in addition has Sq = S.2 Lacking such a result, we are forced to consider frameworks
on ‘generic surfaces’ i.e. surfaces Sq induced by some generic q ∈ R3n.

Lemma 9 Suppose (G, p) is an infinitesimally rigid framework on some surface S. Then (G, q) is
infinitesimally rigid on Sq for all generic q ∈ R3n.

Proof Choose q : V → R3 such that q(vi) does not lie on the z-axis for all 1 ≤ i ≤ n when S ∈ {Y, C}
and q(vi) 6= (0, 0, 0) for all 1 ≤ i ≤ n when S = E . Since q(vi) ∈ Sqi for all 1 ≤ i ≤ n, the Sq-rigidity

matrix for (G, q) has the form RSq (G, q) =

[
R(G, q)
S(G, q)

]
where R(G, q) is the ordinary rigidity matrix

of (G, q),

S(G, q) =


s1 0 . . . 0
0 s2 . . . 0
...

. . .
...

0 0 . . . sn

 ,
and

si =


(xi, yi, 0), if Sq = Yq;
(xi, yi,−x

2
i+y

2
i

zi
), if Sq = Cq;

(xi, αyi, βzi), if Sq = Eq.
(6.1)

The expression for si when Sq = Cq is obtained by substituting ri = (x2i + y2i )/z2i into Equation
(3.2). Since the entries in RSq (G, q) are rational functions of q, its rank will be maximised when q
is a generic point in R3n. ut

The analogous result for frameworks with a maximum rank stress matrix is not true in general.
It becomes true, however, if we restrict our attention to infinitesimally rigid frameworks.

Lemma 10 Suppose (G, p) is an infinitesimally rigid framework on S and rankΩS(ω, λ) = 3n− µ
for some equilibrium stress (ω, λ) of (G, p). Then (G, q) has an equilibrium stress (ω′, λ′) on Sq with
rankΩSq (ω′, λ′) = 3n − µ for all generic q ∈ R3n. In addition, if S ∈ {Y, E}, then (ω′, λ′) can be
chosen so that w′e 6= 0 for all e ∈ E.

2 Partial results are known for particular surfaces: there exists a framework (G, q) with rankRSq (G′, q) =
rankRS(G, p) + 3 and Sq = S when S = Y [18], and when S = C(1) or S = E(1) [19].
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Proof We adapt the proof technique of Connelly and Whiteley [8, Theorem 5]. Choose q : V → R3n

such that (G, q) is infinitesimally rigid on Sq. We saw in the proof of Lemma 9 that the entries in
RSq (G, q) are rational functions of q. Since the space of equilibrium stresses of (G, q) is the cokernel
of RSq (G, q), each equilibrium stress of (G, q) can be expressed as a pair of rational functions
(ω(q, t), λ(q, t)) of q and t, where t is a vector of m − 2n + ` indeterminates. This implies that the
entries in the corresponding stress matrix ΩSq (ω(q, t), λ(q, t)) will also be rational functions of q and
t. Hence the rank of ΩSq (ω(q, t), λ(q, t)) will be maximised whenever q, t is algebraically independent
over Q. In particular, for any generic q ∈ R3n, (G, q) is infinitesimally rigid on Sq by Lemma 9, and
we can choose t ∈ Rm−2n+` such that rankΩSq (ω(q, t), λ(q, t)) = 3n− µ. ut

Now suppose that S ∈ {Y, E} and that (ω′, λ′) has been chosen such that the number of edges
e ∈ E with ω′e = 0 is as small as possible. We may assume that ω′e = 0 for some e ∈ E. Then
(ω′|E−e, λ′) is an equilibrium stress for (G − e, p) on Sq and rankΩSq (ω′|E−e, λ′) = 3n − µ. By
Theorem 9, (G − e, p) is globally rigid on Sq. In particular (G − e, p) is rigid on Sq. Since p is
generic, (G− e, p) is infinitesimally rigid on Sq. This implies that the row of RSq (G, p) indexed by e
is contained in a minimal linearly dependent set of rows of RSq (G, p). This gives us an equilibrium

stress (ω̂, λ̂) for (G, p) on Sq with ω̂e 6= 0. Then (ω′′, λ′′) = (ω′, λ′) + c(ω̂, λ̂) is an equilibrium stress
for (G, p) on Sq for any c ∈ R. We can now choose a small c > 0 so that rankΩSq (ω′′, λ′′) = 3n−µ,
and ω′′f 6= 0 for all f ∈ E with ω′f 6= 0. This contradicts the choice of (ω′, λ′). ut

We can now obtain our result on generic 1-extensions.

Theorem 10 Suppose (G, p) is an infinitesimally rigid framework on S, for some S ∈ {Y, E}, and
(ω, λ) is an equilibrium stress for (G, p) with rankΩS(ω, λ) = 3n − µ. Let G′ = (V ′, E′) be a 1-
extension of G and q : V ′ → R3 such that q is generic in R3(n+1). Then (G′, q) is infinitesimally
rigid on Sq and has an equilibrium stress (ω′, λ′) with rankΩSq (ω′, λ′) = 3(n+ 1)− µ.

Proof We may assume that p is a generic point in R3n and that ωe 6= 0 for all e ∈ E by Lemmas
9 and 10. We can now use Lemma 8 to deduce that there exists a map p∗ : V ′ → R3 such that
(G, p∗) is infinitesimally rigid on Sp

∗
with an equilibrium stress (ω∗, λ∗) for (G′, p∗) on Sp

∗
such

that rankΩSp∗ (ω∗, λ∗) = 3(n+ 1) + 3. The theorem now follows by another application of Lemmas
9 and 10. ut

7 Global rigidity on concentric cylinders

In this section we apply our results to make progress on the conjectured characterisation of global
rigidity on concentric cylinders given in [15, Conjecture 9.1], see also [17, Conjecture 5.7].

Conjecture 2 Suppose (G, p) is a generic framework on a family of concentric cylinders Y. Then (G, p)
is globally rigid if and only if G is a complete graph on at most four vertices, or G is 2-connected
and redundantly rigid on Y.

We have seen that the redundant rigidity of G on Y is independent of the radii of the cylinders in
Y. Thus Conjecture 2 would imply that the global rigidity of a generic realisation of G on a family
of concentric cylinders is also independent of the radii of the cylinders.

Theorem 6 shows that the combinatorial conditions given in Conjecture 2 are necessary for global
rigidity. We could try to demonstrate sufficiency using a similar proof technique to that of Theorem
2. This would involve two steps: (i) a graph theoretic step obtaining a recursive construction for
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2-connected, redundantly rigid graphs; (ii) a geometric step showing that each operation used in the
recursive construction preserves global rigidity. Part (i) would be resolved by the following conjecture
(which uses the base graphsK5−e,H1, H2 and the operations of 1-, 2- and 3-join illustrated in Figures
1 and 2).

Conjecture 3 Suppose G is a 2-connected graph which is redundantly rigid on some (or equivalently
every) family of concentric cylinders. Then G can be obtained from either K5 − e, H1 or H2 by
recursively applying the operations of edge addition, 1-extension, and 1-, 2- and 3-join.

The results of [17] verify the special case of this conjecture when |E| = 2|V |− 1 i.e. E is a circuit
in the generic rigidity matroid for the cylinder.

v5

v1

v3

v2

v4

(a)

v4

v1

v5

v2

v6

v3

(b)

v4

v1

v5

v2

v6

v3

v7

(c)

Fig. 1 The graphs K5 − e,H1 and H2.
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b
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b1

a1

d1

c1

b2

a2

d2

c2

v1 v2
b1 b2

c1

a1

c2

a2a2

c2

b2

a1

c1

b1

Fig. 2 The 1-, 2- and 3-join operations. The 1- and 2-join operations form the graphs in the centre by merging a1
and a2 into a, and b1 and b2 into b.
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We close by showing that all graphs constructed from our base graphs using the edge addition
and 1-extension operations are generically globally rigid on concentric cylinders with algebraically
independent radii.

Theorem 11 Suppose G is a graph on n vertices which can be constructed from K5− e, H1, or H2

by a sequence of 1-extensions and edge additions. Then (G, p) is globally rigid on Yp for all generic
p ∈ R3n.

Proof We use induction on n to show that (G, p) is infinitesimally rigid on Yp and has an equilibrium
stress (ω, λ) with rankΩYp(ω, λ) = 3n − 6. The result will then follow from Theorem 9. The base
case of the induction is when G ∈ {K5 − e,H1, H2}. We construct a particular realisation (G, p)
for each such G which is infinitesimally rigid on Yp and has an equilibrium stress with a full rank
stress matrix in Appendix A. We may deduce that the same properties hold for all generic p by
applying Lemmas 9 and 10. To complete the induction we need to show that the 1-extension and
edge addition operations preserve the properties of infinitesimal rigidity and having a maximum rank
stress matrix. This is trivially true for edge addition. It holds for 1-extension by Theorem 10. ut

We conjecture that Theorem 11 can be strengthened to show that, if G can be constructed as in
Theorem 11 and (G, p) is a generic framework on any family of concentric cylinders Y, then (G, p)
is globally rigid on Y.

8 Closing Remarks

1. We would like to show that Theorem 9 holds for all of our surfaces S rather than just surfaces
induced by generic points in R3. This would follow from Conjecture 1, which would in turn follow
from Lemma 3 if we could show that equivalent generic frameworks on S must have the same
equilibrium stresses. To date we have only been able to prove the following partial result.

Theorem 12 Let (G, p0) be a generic framework on S and (ω, λ) be an equilibrium stress for (G, p0).
Let (G, q0) be equivalent to (G, p0). Then (ω, λ′) is an equilibrium stress for (G, q0) for some λ′ ∈ Rn.

The proof of Theorem 12 is given in Appendix B.

2. It follows from [7] and [9] that a generic framework in Rd with n ≥ d+2 vertices is globally rigid if
and only if it has a stress matrix of rank n− d− 1. It is conceivable that the stress matrix condition
given in Theorem 9 provides a necessary, as well as a sufficient, condition for the global rigidity of a
generic framework on S whenever the framework has at least 7− ` vertices. The following examples
indicate why we need this lower bound on n.

The smallest redundantly rigid graph on the cone is K5, but no framework (K5, p) on C can
have a stress matrix with the maximum possible rank of 3n− µ = 10. To see this consider a generic
p ∈ R15. Since every equilibrium stress for (K5, p) in R3 is an equilibrium stress for (K5, p) on Cp,
and since the spaces of equilibrium stresses for (K5, p) in R3 and on Cp are both 1-dimensional,
these spaces are the same. This implies that every equilibrium stress (ω, λ) for (K5, p) has λ = 0
and rankΩ(ω) ≤ 3. Hence rankΩCp(ω, λ) ≤ 9. On the other hand, (K5, p) is globally rigid on Cp for
all p.

Similarly, the smallest redundantly rigid graph on the ellipsoid is K6 − {e, f} for two nonadja-
cent edges e, f , but no framework (K6−{e, f}, p) on E can have a stress matrix with the maximum
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possible rank of 3n−µ = 15. (We do not know whether every generic framework (K6−{e, f}, p) on
Ep is globally rigid.)
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Appendix A: Base graphs

We define a framework (G, p) for G ∈ {K5 − e,H1, H2} which is infinitesimally rigid on Yp and has
a self-stress (ω, λ) on Yp with maximum rank stress matrix. We will use the labeling of the vertices
given in Figure 1 and adopt the convention that ωij is the weight on the edge vivj in ω and λi is
the weight on the vertex vi in λ.
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Case 1: G = K5 − e

Let (G, p) and (ω, λ) be defined by p(v1) = (0, 1, 0), p(v2) = (1, 1, 1), p(v3) = (−1,−2,−1), p(v4) =
(2, 3, 4), p(v5) = (5, 1,−1),

(ω12, ω13, ω14, ω15, ω23, ω24, ω25, ω35, ω45) = (−369, 192, 153, 51,−96,−279,−138, 32, 45)

and

(λ1, λ2, λ3, λ4, λ5) = (−270,−270,−192, 54,−6)).

It is straightforward to check that rankRYp(G, p) = 13, that (ω, λ) · RYp(G, p) = 0 and that
rankΩYp(ω, λ) = 9.

Case 2: G = H1

Let (G, p) and (ω, λ) be defined by p(v1) = (0, 1, 0), p(v2) = (3, 1, 0), p(v3) = (1, 4, 1), p(v4) =
(1, 2, 2), p(v5) = (2, 2, 3), p(v6) = (6, 0, 2),

(ω12, ω13, ω15, ω23, ω24, ω25, ω26, ω35, ω36, ω45, ω56)

= (41,−246, 369,−123, 30, 48, 60, 50,−40, 492, 56)

and

(λ1, λ2, λ3, λ4, λ5, λ6) = (−123,−39, 30, 123,−102, 28).

It is straightforward to check that rankRYp(G, p) = 16, that (ω, λ) · RYp(G, p) = 0 and that
rankΩYp(ω, λ) = 12.

Case 3: G = H2

Let (G, p) and (ω, λ) be defined by p(v1) = (0, 1, 0), p(v2) = (3, 1, 0), p(v3) = (1, 4, 1), p(v4) =
(1, 2, 2), p(v5) = (2, 2, 3), p(v6) = (6, 0, 2), p(v7) = (3, 4, 3),

(ω12, ω13, ω15, ω23, ω24, ω25, ω35, ω36, ω37, ω45, ω56, ω57, ω67)

= (−58, 348,−522,−108,−24,−40, 14, 21,−696, 56, 588,−42)

and

(λ1, λ2, λ3, λ4, λ5, λ6, λ7) = (−174,−6, 24, 174, 372,−28,−252).

It is straightforward to check that rankRYp(G, p) = 19, that (ω, λ) · RYp(G, p) = 0 and that
rankΩYp(ω, λ) = 15.
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Appendix B: Proof of Theorem 12

First we recall some basic concepts from differential and algebraic geometry, and prove a key technical
result, Proposition 2, which extends Proposition 1 to the case when the domain of f is an algebraic
set.

Let M be a smooth manifold and f : M → Rm be a smooth map. Then x ∈M is a regular point
of f if df |x has maximum rank, and f(x) is a regular value of f if, for all y ∈ f−1(f(x)), y is a
regular point of f .

Lemma 11 For i = 1, 2, let Mi be an open subset of Rn, pi ∈ Mi, and fi : Mi → Rm be a smooth
map with rank dfi|pi = m and f1(p1) = f2(p2). Then there exist open neighbourhoods N1 of p1, N2

of p2, and a diffeomorphism g : N1 → N2 such that f2(g(x)) = f1(x) for all x ∈ N1.

Proof We first consider the case when m = n. By the Inverse Function Theorem there exist neigh-
bourhoods Ñi ⊆ Mi of pi such that fi maps Ñi diffeomorphically onto fi(Ñi) for i = 1, 2. Let
W = f1(Ñ1)∩ f2(Ñ2) and then let Ni = f−1i (W ) for i = 1, 2. We have f1(N1) = W = f2(N2). Thus
we may choose g = f−12 ◦ f1 and find f2(g(x)) = f2(f−12 (f1(x))) = f1(x) for all x ∈ N1.

We next consider the case when m < n. Let Fi : Mi → Rm × Rn−m be defined by Fi(x) =
(fi(x), xm+1, xm+2, . . . , xn). Then rank dFi|pi = n. By the Inverse Function Theorem there exist

neighbourhoods Ñi ⊆ Mi of pi such that Fi is a diffeomorphism from Ñi to Fi(Ñi) ⊆ Rm × Rn−m.
Let Fi(Ñi) = Ui×Vi where Ui ⊆ Rm and Vi ⊆ Rn−m. Then Vi is diffeomorphic to Rn−m for i = 1, 2
so we can choose a diffeomorphism h : V1 → V2 such that h(p1) = p2, where pi is the projection of pi
onto its last n−m coordinates. Let ι be the identity map on U1 and let H = (ι, h) : U1×V1 → U1×V2.
Let F ′1 = H ◦ F1. Then we have F ′1(p1) = (f1(p1), h(p1)) = (f2(p2), p2) = F2(p2). By the previous
paragraph there exist neighbourhoods Ni ⊆ Ñi of pi and a diffeomorphism g : N1 → N2 ⊆ Rn such
that F2(g(x)) = F ′1(x) for all x ∈ N1. Since F ′1(x) = (f1(x), h(x)) and F2(g(x)) = (f2(g(x)), g(x))
we have f1(x) = f2(g(x)) for all x ∈ N1. ut

Let K be a field such that Q ⊆ K ⊆ R. A set W ⊆ Rn is an algebraic set defined over K
if W = {x ∈ Rn : Pi(x) = 0 for all 1 ≤ i ≤ n} where Pi ∈ K[X1, . . . , Xn] for 1 ≤ i ≤ m. An
algebraic set W is irreducible if it cannot be expressed as the union of two algebraic proper subsets
defined over R. The dimension of W , dimW , is the largest integer t for which W has an open subset
homeomorphic to Rt. A point p ∈ W is generic over K if every h ∈ K[X] satisfying h(p) = 0 has
h(x) = 0 for all x ∈W .

Lemma 12 ([15]) Let K be a field with Q ⊆ K ⊆ R, W ⊆ Rn be an algebraic set defined over K and
p ∈ W . Then dimW ≥ td [K(p) : K]. Furthermore, if W is irreducible and dimW = td [K(p) : K],
then p is a generic point of W .

Note that, if (G, p) is a generic framework on S, then Lemma 12 implies that p is a generic point
of the irreducible algebraic set S1 × S2 × . . .× Sn defined over Q(r) in R3n.

A set A ⊆ Rn is a semi-algebraic set defined over K if it can be expressed as a finite union of
sets of the form

{x ∈ Rn : Pi(x) = 0 for 1 ≤ i ≤ s and Qj(x) > 0 for 1 ≤ j ≤ t},

where Pi, Qj ∈ K[X1, . . . , Xn] for 1 ≤ i ≤ s and 1 ≤ j ≤ t. It is easy to see that the family of
semi-algebraic sets defined over K is closed under union and intersection. A deeper result is that if
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A ⊆ Rn is a semi-algebraic set defined over K and f : A→ Rm is a map in which each coordinate is
a polynomial with coefficients in K, then f(A) is a semi-algebraic set defined over K. Another result
we shall need is that a semi-algebraic set A can be partitioned into a finite number of semi-algebraic
subsets C1, C2, . . . Ct, called cells, such that, for all 1 ≤ i ≤ t, Ci is diffeomorphic to Rmi for some
integer mi ≥ 0 (where R0 is taken to be a single point). The dimension of A is the largest integer t
for which A has an open subset homeomorphic to Rt. The Zariski closure, A∗, of A is the smallest
algebraic set defined over R which contains A. It is known that A∗ is an algebraic set defined over
L, for some finite field extension L of K, and that dimA = dimA∗. We refer the reader to [2,3] for
more information on semi-algebraic sets.

We can now obtain our desired extension of Proposition 1.

Proposition 2 Let K be a field with Q ⊆ K ⊆ R, W ⊂ Ra be an irreducible algebraic set defined
over K of dimension n, and f : W → Rb be a function where each coordinate is a polynomial with
coefficients in K. Suppose that the maximum rank of the differential of f is m, and that p0 ∈ W
with td [K(p0) : K] = n. Then rank df |p0 = m. Furthermore, if q0 ∈W and f(p0) = f(q0), then there
exist open neighbourhoods Np0 of p0 and Nq0 of q0 in W and a diffeomorphism g : Nq0 → Np0 such
that g(q0) = p0 and, for all q ∈ Nq0 , f(g(q)) = f(q).

Proof We first show that rank df |p0 = m = rank df |q0 , and that there exist open neighbourhoods
Mp0 of p0 and Mq0 of q0 in W such that f(Mp0) = f(Mq0) and f(Mp0) is diffeomorphic to Rm. We
then complete the proof by applying Lemma 11.

By Lemma 12, p0 is a generic point of W . We can now use [9, Lemma 2.7 and Proposition 2.32]
to deduce that f(p0) is a regular value of f . In particular, we have rank df |p0 = m = rank df |q0 . The
Constant Rank Theorem (see, for example, [21, Theorem 9]) now implies that we can choose disjoint
open balls B(p1, ε) and B(q1, δ) in Ra such that: p0 ∈ B(p1, ε) ∩W ; q0 ∈ B(q1, δ) ∩W ; p1, q1 ∈ Qa;
ε, δ ∈ Q; both B(p1, ε) ∩W and B(q1, δ) ∩W are diffeomorphic to Rn; both f(B(p1, ε) ∩W ) and
f(B(q1, δ) ∩W ) are diffeomorphic to Rm.

Let Up0 = B(p1, ε)∩W and Uq0 = B(q1, ε)∩W . Since Up0 and Uq0 are both semi-algebraic defined
over K, f(Up0) and f(Uq0) are both semi-algebraic defined over K, and hence T = f(Up0) ∩ f(Uq0)
is semi-algebraic defined over K. The facts that f is a polynomial map, td[K(p0) : K] = n and
rank df |p0 = m ≤ n imply that td[K(f(p0)) : K] = m, see for example [13, Lemma 3.1]. Let
C1, C2, . . . , Ct be a cell decomposition of T with f(p0) ∈ C1, and let C∗1 be the Zariski closure of
C1. Then C∗1 is an algebraic set defined over some finite field extension L of K. Since f(p0) ∈ C∗1 ,
Lemma 12 gives

dimC1 = dimC∗1 ≥ td[L(f(p0)) : L] = td[K(f(p0)) : K] = m.

Since C1 ⊆ f(Up0) and f(Up0) is diffeomorphic to Rm, we must have dimC1 = m. We can now
take Mp0 = f−1(C1) ∩ Up0 and Mq0 = f−1(C1) ∩ Uq0 . Then f(Mp0) = C1 = f(Mq0) and C1 is
diffeomorphic to Rm.

The proposition now follows from Lemma 11 by choosing M1 = Mp0 , M2 = Mq0 , and fi = f |Mi

for i = 1, 2. ut

Proof of Theorem 12 Let F = FG,S , W = S1 × S2 × . . . Sn and put f = F |W . By Proposition 2
there exist open neighbourhoods Np0 of p0 and Np0 of q0 in W and a diffeomorphism g : Nq0 → Np0
such that g(q0) = p0 and, for all q ∈ Nq0 , f(g(q)) = f(q). Taking differentials at q0 we obtain
dfq0(q) = dfp0(dgq0(q)) for all q in the tangent space TWq0 . Since the Jacobian matrix of F evaluated
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at p is 2RS(G, p) and dfp(x) = dFp(x) for all p ∈ W and all x ∈ TWp, we can rewrite this equation as
RS(G, q0) q = RS(G, p0) dgq0(q). Thus (ω, λ)RS(G, q0) q = (ω, λ)RS(G, p0) dgq0(q). Since (ω, λ) is an
equilibrium stress for (G, p0) we have (ω, λ)RS(G, q0) q = (ω, λ)RS(G, p0) dgq0(q) = 0 dgq0(q) = 0
for all q ∈ TWq0 . Hence (ω, λ)RS(G, q0) ∈ TW⊥q0 , the orthogonal complement of TWq0 in R3n.

Since a vector x ∈ R3n belongs to TW⊥q0 if and only if x = δS(G, q0) for some δ ∈ Rn, we have
(ω, λ)RS(G, q0) = (0, δ)RS(G, q0). Therefore (ω, λ′) is an equilibrium stress of (G, q0) for λ′ = λ−δ.

ut


