Home > Research > Researchers > Mick Urbaniak
View graph of relations

Dr Mick Urbaniak


Mick Urbaniak


Tel: +44 1524 593104

Research overview

My laboratory uses a combination of chemical and biological approaches to understand biological systems at the molecular level. Our research is focused on tropical infectious diseases, primarily the clinically relevant parasite Trypanosoma brucei and closely related trypanosomatid species such as Leishmania. We are studying how the parasites are able to sense and respond to their host environment by using a combination of tools that include genetic, proteomic and chemical biology approaches. We aim to translate the results of this basic research into early-stage drug discovery.

Current Research

Current projects in my laboratory include:-

  • Probing dynamic phosphorylation in the post-transcriptional regulation of the Trypanosoma brucei cell cycle, funded by the BBSRC (BB/M009556/1).
  • Investigating the signalling events in Trypanosoma brucei differentiation, in collaboration with Keith Matthews, University of Edinburgh.
  • Developing chemical biology approaches to signal transduction in Trypanosoma brucei.
  • Stable isotope labelling for quantitative proteomics in the trypansomatids.

Research Interests

Work in my laboratory is focused on the clinically relevant trypanosomatid parasites, primarily the African trypanosome Trypanosoma brucei, the closely related American trypanosome Trypanosoma cruzi, and Leishmania species. These parasites are the causative agents of neglected tropical diseases that produce a substantial health and economic burden in endemic areas, and improved therapeutics are urgently needed. By examining the biology of these parasites we may uncover differences between the host and parasite biology that can be exploited to develop therapeutic treatments.

We are particularly interested in how T. brucei is able to sense and respond to its host environment, which is essential for its survival and virulence. The African trypanosome has a complex lifecycle requiring transmission by the insect vector the tsetse fly, propagation in a mammalian host, and reinfection of the tsetse fly. Trypanosomes are evolutionarily divergent eukaryotes and use exclusively post-transcriptional regulation of gene expression, making them an excellent model system to examine this process.

The laboratory uses a combination of chemical and biological approaches to answer our research questions. In addition to traditional genetic and biochemical techniques, we are applying chemical biology approaches to signal transduction. We have pioneered stable isotopic labelling (SILAC) in T. brucei to enable global quantitative proteomic analysis, and established robust methods for quantifying changes in the phosphorylation state of the cell.

Current Teaching

I am the Director of Studies for Biological Sciences degree schemes within the Department of Biomedical & Life Sciences.

Currently I teach on the following modules:-

  • BIOL115 Protein Biochemistry: Protein structure and function.
  • BIOL272 Biochemical Techniques: Protein isolation and electrophoresis, combining theory with practical labs.
  • BIOL301 Cell Signalling: Module Organiser, covering the Insulin signalling pathway.
  • BIOL313 Protein Biochemistry: Protein structure determination; identifaction of proteins and post-translational modifications by mass spectrometry.

Additional Information

I was appointed as a Lecturer in Biomedicine and Life Sciences within the faculty of Health and Medicine in September 2013. My background is in Chemistry (BSc. and PhD.), but my subsequent postdoctoral research at the University of Dundee focussed on the biology of the trypanosomatids. I have a track record of successfully translating my basic research into early stage drug discovery with the Dundee Drug Discovery Unit. I am a registered STEM ambassador, enabling me to engage in outreach activities to promote science in schools.

View all (28) »