Home > Research > Publications & Outputs > The importance of context in extreme value anal...

Electronic data


Text available via DOI:

View graph of relations

The importance of context in extreme value analysis with application to extreme temperatures in the U.S. and Greenland

Research output: Contribution to Journal/MagazineJournal articlepeer-review

<mark>Journal publication date</mark>2/09/2023
<mark>Journal</mark>Journal of the Royal Statistical Society: Series C (Applied Statistics)
Issue number4
Number of pages15
Pages (from-to)829-843
Publication StatusPublished
Early online date16/02/23
<mark>Original language</mark>English


Statistical extreme value models allow estimation of the frequency, magnitude, and spatio-temporal extent of extreme temperature events in the presence of climate change. Unfortunately, the assumptions of many standard methods are not valid for complex environmental data sets, with a realistic statistical model requiring appropriate incorporation of scientific context. We examine two case studies in which the application of routine extreme value methods result in inappropriate models and inaccurate predictions. In the first scenario, incorporating random effects reflects shifts in unobserved climatic drivers that led to record-breaking US temperatures in 2021, permitting greater accuracy in return period prediction. In scenario two, a Gaussian mixture model fit to ice surface temperatures in Greenland improves fit and predictive abilities, especially in the poorly-defined upper tail around 0∘C.