12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > A comparative study of multiple layer laser dep...
View graph of relations

« Back

A comparative study of multiple layer laser deposition using water and gas atomised 316L stainless steel powders

Research output: Contribution in Book/Report/ProceedingsPaper

Published

Publication date2002
Host publicationProceedings of the 21st International Congress on Applications of Lasers and Electro-optics (ICALEO)
PublisherLaser Institute of America
Original languageEnglish

Abstract

Practically all experimental studies of rapid prototyping using the direct laser deposition process to date have cited the superior flow characteristics of gas atomised powders as the build material and limited the process investigation to that type. Little work has been done to investigate the effect of using water atomised metal powders, despite their use in other fields and potentially advantages in powder feed laser cladding. In addition, most theoretical studies of the powder flow and laser interaction during the process have begun with the premise that the particles are spherical, an argument does not hold true when the powder has been formed by water atomisation. Using a coaxial powder feed head and a CO2 laser, this work provides an analysis of the performance of the different powder types through a like-for-like study of the laser deposition process using water and gas atomised 316L stainless steel powders. Different stages of the process, including the characteristics of the two pow ers prior to reaching the melt pool, the dimensions and geometries of the deposited tracks and the final surface finish and material microstructures are examined and compared. Optical microscopy, scanning electron microscopy (SEM), x-ray diffraction and other analysis methods are used. The work has demonstrated significant differences between the two sets of results and overall performance of the different powder types.