12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > A digital method for the discrimination of neut...
View graph of relations

« Back

A digital method for the discrimination of neutrons and γ rays with organic scintillation detectors using frequency gradient analysis.

Research output: Contribution to journalJournal article

Published

Journal publication date06/2010
JournalIEEE Transactions on Nuclear Science
Journal number3
Volume57
Pages1682 -1691
Original languageEnglish

Abstract

A digital method for the discrimination of neutron and γ-ray events from an organic scintillator has been investigated by using frequency gradient analysis (FGA) based on the Fourier transform. Since the scintillation process and the photomultiplier tube (PMT) anode signal are often very noisy, most pulse-shape discrimination methods in a scintillation detection system (e.g., the charge comparison (CC) method or pulse gradient analysis (PGA)) using time-domain features of the signal depend greatly on the associated de-noising algorithm. In this research, the performance of the new FGA method and the PGA method have been studied and compared on a theoretical basis and then verified by time-of-flight (TOF). The frequency-domain features extracted by the FGA method exhibit a strong insensitivity to the variation in pulse response of the photomultiplier tube (PMT) and can be used to discriminate neutron and γ-ray events in a mixed radiation field. It is shown that the FGA method results in an increased figure of merit (FOM) which corresponds to a reduction in the area of overlap between neutron and γ-ray events. The FGA method has the potential to be implemented in current embedded electronic systems to provide real-time discrimination in standalone instruments.

Bibliographic note

"©2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE." "This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder."