12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Brief paper: Freeway traffic estimation within ...
View graph of relations

« Back

Brief paper: Freeway traffic estimation within particle filtering framework

Research output: Contribution to journalJournal article

Published

Journal publication date2007
JournalAutomatica
Journal number2
Volume43
Number of pages11
Pages290-300
Original languageEnglish

Abstract

This paper formulates the problem of real-time estimation of traffic state in freeway networks by means of the particle filtering framework. A particle filter (PF) is developed based on a recently proposed speed-extended cell-transmission model of freeway traffic. The freeway is considered as a network of components representing different freeway stretches called segments. The evolution of the traffic in a segment is modelled as a dynamic stochastic system, influenced by states of neighbour segments. Measurements are received only at boundaries between some segments and averaged within possibly irregular time intervals. This limits the measurement update in the PF to only these time instants when a new measurement arrives, while in between measurement updates any simulation model can be used to describe the evolution of the particles. The PF performance is validated and evaluated using synthetic and real traffic data from a Belgian freeway. An unscented Kalman filter is also presented. A comparison of the PF with the unscented Kalman filter is performed with respect to accuracy and complexity.

Bibliographic note

“The final, definitive version of this article has been published in the Journal, Automatica, 43 (2), 2007, © ELSEVIER.