Home > Research > Publications & Outputs > Classification of agents using Syrian hamster e...

Links

Text available via DOI:

View graph of relations

Classification of agents using Syrian hamster embryo (SHE) cell transformation assay (CTA) with ATR-FTIR spectroscopy and multivariate analysis

Research output: Contribution to journalJournal article

Published
Close
<mark>Journal publication date</mark>09/2015
<mark>Journal</mark>Mutagenesis
Issue number5
Volume30
Number of pages10
Pages (from-to)603-612
Publication StatusPublished
Early online date28/04/15
<mark>Original language</mark>English

Abstract

The Syrian hamster embryo (SHE) cell transformation assay (pH 6.7) has a reported sensitivity of 87% and specificity of 83%, and an overall concordance of 85% with in vivo rodent bioassay data. To date, the SHE assay is the only in vitro assay that exhibits multistage carcinogenicity. The assay uses morphological transformation, the first stage towards neoplasm, as an endpoint to predict the carcinogenic potential of a test agent. However, scoring of morphologically transformed SHE cells is subjective. We treated SHE cells grown on low-E reflective slides with 2,6-diaminotoluene, N-nitroso-N-ethylnitroguanidine, N-nitroso-N-methylurea, N-nitroso-N-ethylurea, EDTA, dimethyl sulphoxide (DMSO; vehicle control), methyl methanesulfonate, benzo[e]pyrene, mitomycin C, ethyl methanesulfonate, ampicillin or five different concentrations of benzo[a]pyrene. Macroscopically visible SHE colonies were located on the slides and interrogated using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy acquiring five spectra per colony. The acquired IR data were analysed using Fisher’s linear discriminant analysis (LDA) followed by principal component analysis (PCA)-LDA cluster vectors to extract major and minor discriminating wavenumbers for each treatment class. Each test agent vs. DMSO and treatment-induced transformed cells vs. corresponding non-transformed were classified by a unique combination of major and minor discriminating wavenumbers. Alterations associated with Amide I, Amide II, lipids and nucleic acids appear to be important in segregation of classes. Our findings suggest that a biophysical approach of ATR-FTIR spectroscopy with multivariate analysis could facilitate a more objective interrogation of SHE cells towards scoring for transformation and ultimately employing the assay for risk assessment of test agents.