12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Component repair using laser direct metal depos...
View graph of relations

« Back

Component repair using laser direct metal deposition

Research output: Contribution to journalJournal article

Published

Journal publication date07/2008
JournalProceedings of the Institute of Mechanical Engineers Part B
Journal number7
Volume222
Number of pages10
Pages827-836
Original languageEnglish

Abstract

Recent studies have indicated that laser direct metal deposition can be used for repairing deep or internal cracks and defects in metallic components. In order to implement the method, it is necessary to machine a groove or slot to the depth of the defect and refill it. This work investigates advantages and potential problems with the technique and compares the results from using two different slot geometries: one rectangular and one triangular in cross-section. H13 hot-work tool steel components are used and H13 powder is deposited using a 1.5 kW diode laser and lateral nozzle. Different combinations of deposition parameters are tested and each sample is analysed in terms of mass deposition rate, deposition microstructure, evidence of porosity, size of the heat-affected zone, and microhardness. Results are evaluated using statistical techniques and the important parameters that control each variable are identified. The work provides evidence that the method can produce high-quality repairs, but porosity at the boundaries between the original part and the added material is a problem.