12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Could organic phosphorus compounds contaminate ...
View graph of relations

« Back

Could organic phosphorus compounds contaminate the analysis of phosphate oxygen isotopes in freshwater matrices?

Research output: Contribution to conferenceAbstract

Published

Publication date2014
Original languageEnglish

Conference

ConferenceEGU General Assembly 2014
CountryAustria
CityVienna
Period26/04/142/05/14

Abstract

Variation in the stable isotope composition of oxygen within dissolved phosphate (δ18Op) represents a novel and potentially powerful environmental tracer, providing insights into the sources of phosphorus and the extent to which phosphorus from different sources is metabolised. The analysis of δ18Op within freshwater matrices requires isolation of the phosphate ion from possible sources of contaminant oxygen within the bulk matrix, prior to pyrolysis (usually of a silver phosphate precipitate) and analysis of the oxygen isotope composition. The majority of published research uses co-precipitation of phosphate with brucite (Mg(OH)2) as an initial step in the isolation of the phosphate ion. However, freshwater matrices also contain a wide range of organic phosphorus compounds, including adenosine 5’-triphosphate (ATP) and phosphonates such as 2-aminoethylphosphonic acid. In this paper, we initially examine the potential for co-precipitation of organic phosphorus compounds with brucite. Our data indicate that ATP, sodium pyrophosphate and inositol hexakisphosphate are almost entirely removed from solution through co-precipitation with brucite, whilst glucose-6-phosphate and 2-aminoethylphosphonic acid are less readily co-precipitated. Subsequently, we assessed the potential for acid-hydrolysis of organic phosphorus compounds during re-dissolution of the brucite precipitate, using a range of acid systems. Our data indicate that up to 17% of ATP and up to 5% of sodium pyrophosphate can be hydrolysed by concentrated acetic acid, yielding fresh phosphate ions in solution. Our findings have potentially significant implications for analysis of δ18Op because the fresh phosphate ions produced following acid hydrolysis will be subjected to inheritance and kinetic isotope fractionations, likely altering the bulk δ18Op within a freshwater sample.

Bibliographic note

© Author(s) 2014. CC Attribution 3.0 License.