We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK


93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Distinguishing Higgs inflation and its variants
View graph of relations

« Back

Distinguishing Higgs inflation and its variants

Research output: Contribution to journalJournal article


Article number123522
Journal publication date21/06/2011
JournalPhysical Review D
Number of pages15
Original languageEnglish


We consider how Higgs Inflation can be observationally distinguished from variants based on gauge singlet scalar extensions of the Standard Model, in particular where the inflaton is a non-minimally coupled gauge singlet scalar (S-inflation). We show that radiative corrections generally cause the spectral index n to decrease relative to the classical value as the Higgs mass is increased if the Higgs boson is the inflaton, whereas n increases with increasing Higgs mass if the inflaton is a gauge singlet scalar. The accuracy to which n can be calculated in these models depends on how precisely the reheating temperature can be determined. The number of Einstein frame e-foldings N is similar in both models, with N = 58-61 for singlet inflation compared with N = 57-60 for Higgs inflation. This allows the spectral index to be calculated to an accuracy \Delta n = 0.001. Provided the Higgs mass is above ~ 135 GeV, a combination of a Higgs mass measurement and a precise determination of n will enable Higgs Inflation and S-inflation to be distinguished.

Bibliographic note

19 pages (including appendices)