We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK


93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Dynamical aspects of multipacting induced disch...
View graph of relations

« Back

Dynamical aspects of multipacting induced discharge in a rectangular waveguide.

Research output: Contribution to journalJournal article


Journal publication date11/02/2005
JournalNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Number of pages17
Original languageEnglish


Multipacting induced discharge in a rectangular waveguide is studied experimentally at a RF frequency of 500 MHz. The waveguide has a cross-section of 457 mm by 102 mm. The maximum forward RF power is 600 and 300 kW in traveling and standing wave mode, respectively. A continuous multipacting band structure is observed. Electron pick-up probes of antenna-type are used to measure the multipacting current and its longitudinal as well as horizontal distributions. The electron energy spectrum is measured with the retarding field method. The end-point energy of the spectra taken in traveling wave mode is in the range of 100-1000eV and agrees well with the impact energy calculated by the classical multipacting theory. However, a large fraction of electrons has energies lower than 100eV. Electron stimulated gas desorption is found to play a critical role in the dynamics of multipacting induced breakdown. It is concluded that the ionization discharge of desorbed gases is the immediate cause for RF breakdown. (C) 2004 Elsevier B.V. All rights reserved.