12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Effects of experimental fires on litter decompo...
View graph of relations

« Back

Effects of experimental fires on litter decomposition in a seasonally dry Amazonian forest.

Research output: Contribution to journalJournal article

Published

Journal publication date11/2009
JournalJournal of Tropical Ecology
Journal number6
Volume25
Number of pages7
Pages657-663
Original languageEnglish

Abstract

Litter decomposition is a fundamental process for nutrient cycling but we have a limited understanding of this process in disturbed tropical forests. We studied litter decomposition over a 10-mo period in a seasonally dry Amazon forest in Mato Grosso, Brazil. The study plots (50 ha each) included unburned forest (UF), once-burned (BF1) and forest burned annually for 3 y (BF3). We measured understorey density, litter depth, canopy openness, temperature and relative humidity in the plots. Decomposition experiments took place using 720 litterbags filled with approximately 10 g of natural abscised oven-dried leaves. To test the effects of fire on soil meso- and macrofauna, the litterbags had either a fine (2 mm) or coarse (with 1-cm holes in side) mesh size. Litterbags were collected and reweighed 2, 4, 6 and 8 mo after being placed on the forest floor. All forest structure variables were significantly different across plots: BF3 was hotter, less humid, had the highest degree of canopy openness, lowest understorey density and the shallowest litter depth. Litter decomposition (mass loss) was similar in the once-burned and unburned plots, but declined more slowly in BF3. In addition, decomposition was slower in fine-mesh litterbags than coarse-mesh litterbags in BF3, but there was no difference between mesh sizes in BF1 and UF. It is likely that changes in forest structure and microclimate explain the lower decomposition rates in BF3. These results show the importance of recurrent fires, but suggest that single understorey fires may not have long-term negative effects on some ecological processes in seasonally dry Amazonian forests.

Bibliographic note

http://journals.cambridge.org/action/displayJournal?jid=TRO The final, definitive version of this article has been published in the Journal, Journal of Tropical Ecology, 25 (6), pp 657-663 2009, © 2009 Cambridge University Press.