12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Evaluation of trace evidence for three-level mu...
View graph of relations

« Back

Evaluation of trace evidence for three-level multivariate data with the use of graphical models.

Research output: Contribution to journalJournal article

Published

Journal publication date1/06/2006
JournalComputational Statistics and Data Analysis
Journal number10
Volume50
Number of pages18
Pages2571-2588
Original languageEnglish

Abstract

The evaluation of measurements on characteristics of trace evidence found at a crime scene and on a suspect is an important part of forensic science. There are commonly three levels of variation in such evidence. First, there is measurement error on the individual items. Then, individual items are gathered in groups and there is variation within and between groups. There are also commonly many variables which can be measured on the items, such as elemental or chemical composition. There are usually inadequate data to enable proper estimation of a full parametric model to be made. A method is described here for evaluating the evidence by means of a likelihood ratio. The likelihood ratio compares the probability of the measurements on the evidence assuming a common source for evidence from the crime scene and evidence associated with the suspect with the probability of the measurements on the evidence assuming different sources for the crime scene and suspect evidence. It is a well-documented measure of the value of the evidence. A three-level model for multivariate normal data is described. The structure of the data is determined through consideration of the inverse of the covariance matrix from which a graphical model may be determined. This enables a considerable reduction in the parameterisation from the full model whilst retaining a credible dependence structure, not recognised in a model which assumes full independence. The model for the structure of the data thus obtained provides a novel solution to a problem in forensic science where full independence is often assumed for multivariate data. The performances of the derived models are investigated on a data set provided by a European forensic science laboratory.

Bibliographic note

RAE_import_type : Journal article RAE_uoa_type : Statistics and Operational Research