Home > Research > Publications & Outputs > Evolution of Dust-obscured Star Formation and G...

Associated organisational unit

Electronic data

  • 1702.06182v1

    Rights statement: © 2017 American Astronomical Society This is an author-created, un-copyedited version of an article accepted for publication/published in The Astrophysical Journal. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at doi:10.103847/1538-4357/aa6116

    Accepted author manuscript, 711 KB, PDF document

    Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License

Links

Text available via DOI:

View graph of relations

Evolution of Dust-obscured Star Formation and Gas to z=2.2 from HiZELS

Research output: Contribution to journalJournal article

Published
  • Alasdair Thomson
  • James Simpson
  • Ian Smail
  • Mark Swinbank
  • Philip Best
  • David Sobral
  • James Geach
  • Edo Ibar
  • Helen Johnson
Close
Article number119
<mark>Journal publication date</mark>31/03/2017
<mark>Journal</mark>The Astrophysical Journal
Issue number2
Volume838
Number of pages15
Publication statusPublished
Original languageEnglish

Abstract

We investigate the far-infrared properties of galaxies selected via deep, narrow-band imaging of the H$\alpha$ emission line in four redshift slices from $z=0.40$--$2.23$ over $\sim 1$deg$^2$ as part of the High-redshift Emission Line Survey (HiZELS). We use a stacking approach in the Herschel PACS/SPIRE bands, along with $850\,\mu$m imaging from SCUBA-2 to study the evolution of the dust properties of H$\alpha$-emitters selected above an evolving characteristic luminosity threshold, $0.2L^\star_{{\rm H}\alpha}(z)$. We investigate the relationship between the dust temperatures and the far-infrared luminosities of our stacked samples, finding that H$\alpha$-selection identifies cold, low-$L_{\rm IR}$ galaxies ($T_{\rm dust}\sim 14$k; $\log[L_{\rm IR}/{\rm L}_\odot]\sim 9.9$) at $z=0.40$, and more luminous, warmer systems ($T_{\rm dust}\sim 34$k; $\log[L_{\rm IR}/{\rm L}_\odot]\sim 11.5$) at $z=2.23$. Using a modified greybody model, we estimate "characteristic sizes" for the dust-emitting regions of HiZELS galaxies of $\sim 0.5$kpc, nearly an order of magnitude smaller than their stellar continuum sizes, which may provide indirect evidence of clumpy ISM structure. Lastly, we measure the dust masses from our far-IR SEDs along with metallicity-dependent gas-to-dust ratios ($\delta_{\rm GDR}$) to measure typical molecular gas masses of $\sim 10^{10}$M$_\odot$ for these bright H$\alpha$-emitters. The gas depletion timescales are shorter than the Hubble time at each redshift, suggesting probable replenishment of their gas reservoirs from the intergalactic medium. Based on the number density of H$\alpha$-selected galaxies, we find that typical star-forming galaxies brighter than $0.2L^{\star}_{{\rm H}\alpha}(z)$ host a significant fraction ($35\pm10$%) of the total gas content of the Universe, consistent with the predictions of the latest cosmological simulations.

Bibliographic note

© 2017 American Astronomical Society This is an author-created, un-copyedited version of an article accepted for publication/published in The Astrophysical Journal. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at doi:10.103847/1538-4357/aa6116