12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Evolution of the magnetotail energetic-electron...
View graph of relations

« Back

Evolution of the magnetotail energetic-electron population during high-speed-stream-driven storms: Evidence for the leakage of the outer electron radiation belt into the Earth's magnetotail

Research output: Contribution to journalJournal article

Published

???articleNumber???A12228
Journal publication date28/12/2011
JournalJournal of Geophysical Research
Volume116
Number of pages16
Pages-
Original languageEnglish

Abstract

For 15 high-speed-stream-driven geomagnetic activations (weak storms) in 2006-2007, the temporal behaviors of the outer electron radiation belt at geosynchronous orbit and the energetic-electron population of the magnetotail are compared via superposed-epoch averaging of data. The magnetotail measurements are obtained by using GPS-orbit measurements that magnetically map out into the magnetotail. Four temporal phases of high-speed-stream-driven storms are studied: (1) the pre-storm density decay of the electron-radiation belt, (2) the electron-radiation-belt density dropout near the time of storm onset, (3) the rapid density recovery a few hours after dropout, and (4) the heating of the electron radiation belt during the high-speed-stream-driven geomagnetic activity. In all four phases the behaviors of the outer electron radiation belt and of the energetic-electron population in the magnetotail are the same and simultaneous. The physical explanations for the behavior in phase 1 (decay), phase 2 (dropout), and phase 4 (heating) lie in the dipolar regions of the magnetosphere: hence for those three phases it is concluded that the temporal behavior of the energetic-electron population in the magnetotail mimics the behavior of the outer electron radiation belt. Behavior attributable to physical processes in the dipole is seen in the magnetotail energetic-electron population: this implies that the origin of the energetic-electron population of the magnetotail is "leakage" or "outward evaporation" from the outer electron radiation belt in the dipolar magnetosphere.

Bibliographic note

©2012. American Geophysical Union. All Rights Reserved.