12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Filtering Methods for Mixture Models .
View graph of relations

« Back

Filtering Methods for Mixture Models .

Research output: Contribution to journalJournal article

Published

Journal publication date2007
JournalJournal of Computational and Graphical Statistics
Journal number3
Volume16
Number of pages22
Pages586-607
Original languageEnglish

Abstract

We consider Bayesian inference for mixture distributions of known number of components via a set of filtering recursions. We extend a method - proposed in an earlier article - of direct simulation for discrete mixture distributions in order to analyze continuous mixture models. Furthermore, we introduce resampling steps similar to those in particle filters within the steps of the filtering recursions, which make calculations efficient and enable us to analyze larger datasets. The proposed algorithm for "resampled direct simulation" is a generalization of the particle filter which allows for merging identical/similar particles prior to resampling. We compare the proposed algorithm with this particle filter and with the Gibbs sampler using simulated data and real datasets.