12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Flux closure during a substorm observed by clus...
View graph of relations

« Back

Flux closure during a substorm observed by cluster, double star, IMAGE FUV, SuperDARN, and greenland magnetometers

Research output: Contribution to journalJournal article

Published

  • S. E. Milan
  • J. A. Wild
  • B. Hubert
  • C. M. Carr
  • E. Lucek
  • J. M. Bosqued
  • J. F. Watermann
  • J. A. Slavin
Journal publication date03/2006
JournalAnnales Geophysicae
Journal number2
Volume24
Number of pages17
Pages751-767
Original languageEnglish

Abstract

We examine magnetic flux closure during an ex- tended substorm interval on 29 August 2004 involving a two-stage onset and subsequent re-intensifications. Cluster and Double Star provide observations of magnetotail dy- namics, while the corresponding auroral evolution, convec- tion response, and substorm current wedge development are monitored by IMAGE FUV, SuperDARN, and the Greenland magnetometer chain, respectively. The first stage of onset is associated with the reconnection of closed flux in the plasma sheet; this is accompanied by a short-lived auroral intensification, a modest substorm current wedge magnetic bay, but no significant ionospheric convection enhancement. The second stage follows the progression of reconnection to the open field lines of the lobes; accompanied by prolonged auroral bulge and westward-travelling surge development, enhanced magnetic bays and convection. We find that the tail dynamics are highly influenced by ongoing dayside creation of open flux, leading to flux pile-up in the near-tail and a step-wise down-tail motion of the tail reconnection site. In all, 5 dipolarizations are observed, each associated with the closure of ∼0.1 GWb of flux. Very simple calculations indicate that the X-line should progress down-tail at a speed of 20 km s−1, or 6 RE between each dipolarization.