Home > Research > Publications & Outputs > Hormonal and Nutritional Features in Contrastin...

Links

Text available via DOI:

View graph of relations

Hormonal and Nutritional Features in Contrasting Rootstock-mediated Tomato Growth under Low-phosphorus Nutrition

Research output: Contribution to journalJournal article

Published
  • Cristina Martinez-Andujar
  • Juan M. Ruiz-Lozano
  • Ian C. Dodd
  • Alfonso Albacete
  • Francisco Perez-Alfocea
Close
Article number533
<mark>Journal publication date</mark>11/04/2017
<mark>Journal</mark>Frontiers in Plant Genetics and Genomics
Volume8
Number of pages13
Publication statusPublished
Original languageEnglish

Abstract

Grafting provides a tool aimed to increase low-P stress tolerance of crops, however, little is known about the mechanism (s) by which rootstocks can confer resistance to P deprivation. In this study, 4 contrasting groups of rootstocks from different genetic backgrounds (Solanum lycopersicum var. cerasiforme and introgression and recombinant inbred lines derived from the wild relatives S. pennellii and S. pimpinellifolium) were grafted to a commercial F1 hybrid scion and cultivated under control (1 mM, c) and P deficient (0.1 mM, p) conditions for 30 days, to analyze rootstocks-mediated traits that impart low (L, low shoot dry weight, SDW) or high (H, high SDW) vigor. Xylem sap ionic and hormonal anlyses leaf nutritional status suggested that some physiological traits can explain rootstocks impacts on shoot growth. Although xylem P concentration increased with root biomass under both growing conditions, shoot biomass under low-P was explained by neither changes in root growth nor P transport and assimilation. Indeed, decreased root P export only explained the sensitivity of the HcLp rootstocks, while leaf P status was similarly affected in all graft combinations. Interestingly, most of the nutrients analyzed in the xylem sap correlated with root biomass under standard fertilization but only Ca was consistently related to shoot biomass under both control and low-P, suggesting an important role for this nutrient in rootstock-mediated vigor. Moreover, foliar Ca, S, and Mn concentrations were (i) specifically correlated with shoot growth under low-P and (ii) positively and negatively associated to the root-to-shoot transport of the cytokinin trans-zeatin (t-Z) and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), respectively. Indeed, those hormones seem to play an antagonistic positive (t-Z) and negative (ACC) role in the rootstock-mediated regulation of shoot growth in response to P nutrition. The use of Hp-type rootstocks seems to enhance P use efficiency of a commercial scion variety, therefore could potentially be used for increasing yield and agronomic stability under low P availability.