12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Inferential framework for nonstationary dynamic...
View graph of relations

« Back

Inferential framework for nonstationary dynamics. I. Theory.

Research output: Contribution to journalJournal article

Published

Journal publication date2008
JournalPhysical Review E
Journal number6
Volume77
Number of pages8
Pages1-8
Original languageEnglish

Abstract

A general Bayesian framework is introduced for the inference of time-varying parameters in nonstationary, nonlinear, stochastic dynamical systems. Its convergence is discussed. The performance of the method is analyzed in the context of detecting signaling in a system of neurons modeled as FitzHugh-Nagumo FHN oscillators. It is assumed that only fast action potentials for each oscillator mixed by an unknown measurement matrix can be detected. It is shown that the proposed approach is able to reconstruct unmeasured hidden variables of the FHN oscillators, to determine the model parameters, to detect stepwise changes of control parameters for each oscillator, and to follow continuous evolution of the control parameters in the adiabatic limit.