Home > Research > Publications & Outputs > Inflationary Affleck-Dine scalar dynamics and i...


Text available via DOI:

View graph of relations

Inflationary Affleck-Dine scalar dynamics and isocurvature perturbations

Research output: Contribution to journalJournal article

Article number043502
<mark>Journal publication date</mark>13/07/2000
<mark>Journal</mark>Physical Review D
Issue number4
Number of pages8
<mark>Original language</mark>English


We consider the evolution of the Affleck-Dine scalar during D-term and F-term inflation and solve the combined slow-roll equations of motion. We show that for a typical case, where both the Affleck-Dine scalar and inflaton initially have large values, in D-term inflation the Affleck-Dine scalar is driven to a fixed value, with only a very slight dependence on the number of e-foldings. As a result, there is a definite prediction for the ratio of the baryonic isocurvature perturbation to the adiabatic perturbation. In minimal (d=4) Affleck-Dine baryogenesis the relative isocurvature contribution to the CMB angular power spectrum amplitude is predicted to be in the range 0.01–0.1, which can account for present large-scale structure observations and should be observable by Planck. In a very general case, scale invariance of the adiabatic perturbations from the Affleck-Dine scalar imposes a lower bound of about 0.01 for d=4. For d=6 the isocurvature perturbation may just be observable, although this is less certain. We also consider F-term inflation and show that the magnitude of the baryonic isocurvature perturbation is fixed by the value of H during inflation. For typical values of H the isocurvature perturbation could be close to present observational limits.