12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Ionospheric plasma response to HF waves operati...
View graph of relations

« Back

Ionospheric plasma response to HF waves operating at frequencies close to the third harmonic of the electron gyrofrequency

Research output: Contribution to journalJournal article

Published

Journal publication date1/11/1995
JournalJournal of Geophysical Research
Journal numberA11
Volume100
Number of pages13
Pages21489-21501
Original languageEnglish

Abstract

Experimental results concerning European incoherent scatter observations of heater-induced electron temperature enhancements, anomalous absorption of low-power HF probe waves, and the spectrum of stimulated electromagnetic emission (SEE) in the sidebands of a high-power HF electromagnetic wave are presented. For the experiments reported in this paper, an O mode pump wave was transmitted vertically into the F region above Tromsø, Norway, while the injected frequency was varied in small steps around the third harmonic of the electron gyrofrequency. Systematic variations with pump frequency were observed in the data obtained from all three diagnostics. Measurements of anomalous absorption, the downshifted maximum (DM) spectral feature, and heater-induced electron temperature enhancements all exhibited broad minima as the heater frequency approached the third harmonic of the electron gyrofrequency. In addition, the signal strength of the HF probe wave measured during heater off periods is also reduced at these and higher heater frequencies. The experimental findings suggest that at heater frequencies in the vicinity of the third gyroharmonic, small-scale field-aligned irregularities are not excited, whereas very small scale irregularities, of the order of a few electron cyclotron radii, which are responsible for the production of fast electrons, may be generated. The observed reduction in the diagnostic signal strength is then attributed to the ionized patches produced by these energetic electrons.

Bibliographic note

Copyright (1995) American Geophysical Union.