Home > Research > Publications & Outputs > Jet energy measurement with the ATLAS detector ...

Electronic data

  • art%3A10.1140%2Fepjc%2Fs10052-013-2304-2

    Rights statement: This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

    Final published version, 8.54 MB, PDF document

    Available under license: CC BY

Links

Text available via DOI:

View graph of relations

Jet energy measurement with the ATLAS detector in proton-proton collisions at s√=7 TeV

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
  • The ATLAS collaboration
Close
Article number2304
<mark>Journal publication date</mark>03/2013
<mark>Journal</mark>European Physical Journal C: Particles and Fields
Issue number3
Volume73
Number of pages118
Publication StatusPublished
<mark>Original language</mark>English

Abstract

The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of s√=7 TeV corresponding to an integrated luminosity of 38 pb−1. Jets are reconstructed with the anti-k t algorithm with distance parameters R=0.4 or R=0.6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta p T≥20 GeV and pseudorapidities |η|<4.5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2.5 % in the central calorimeter region (|η|<0.8) for jets with 60≤p T<800 GeV, and is maximally 14 % for p T<30 GeV in the most forward region 3.2≤|η|<4.5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon p T, the sum of the transverse momenta of tracks associated to the jet, or a system of low-p T jets recoiling against a high-p T jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-p T jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined.

Bibliographic note

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.