Home > Research > Publications & Outputs > Long-term P weathering and recent N deposition ...

Electronic data

  • Davies_et_al-2016-Global_Biogeochemical_Cycles

    Rights statement: ©2016. The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

    Final published version, 1 MB, PDF document

    Available under license: CC BY: Creative Commons Attribution 4.0 International License

Links

Text available via DOI:

View graph of relations

Long-term P weathering and recent N deposition control contemporary plant-soil C, N, and P

Research output: Contribution to journalJournal article

Published
Close
<mark>Journal publication date</mark>20/02/2016
<mark>Journal</mark>Global Biogeochemical Cycles
Issue number2
Volume30
Number of pages19
Pages (from-to)231-249
Publication statusPublished
Early online date6/01/16
Original languageEnglish

Abstract

Models are needed to understand how plant-soil nutrient stores and fluxes have responded to the last two centuries of widespread anthropogenic nutrient pollution and predict future change. These models need to integrate across carbon, nitrogen, and phosphorus (C, N, and P) cycles and simulate changes over suitable timescales using available driving data. It is also vital that they are constrainable against observed data to provide confidence in their outputs. To date, no models address all of these requirements. To meet this need, a new model, N14CP, is introduced, which is initially applied to Northern Hemisphere temperate and boreal ecosystems over the Holocene. N14CP is parameterized and tested using 88 northern Europe plot-scale studies, providing the most robust test of such a model to date. The model simulates long-term P weathering, based on the assumption of a starting pool of weatherable P (Pweath0, g m−2), which is gradually transformed into organic and sorbed pools. Nitrogen fixation (and consequently primary production) is made dependent on available P. In the absence of knowledge about the spatial variability of Pweath0, N14CP produces good average soil and plant variables but cannot simulate variations among sites. Allowing Pweath0 to vary between sites improves soil C, N, and P results greatly, suggesting that contemporary soil C, N, and P are sensitive to long-term P weathering. Most sites were found to be N limited. Anthropogenic N deposition since 1800 was calculated to have increased plant biomass substantially, in agreement with observations and consequently increased soil carbon pools.

Bibliographic note

©2016. The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.