We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK


97% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > MCMC, sufficient statistics and particle filters.
View graph of relations

« Back

MCMC, sufficient statistics and particle filters.

Research output: Contribution to journalJournal article


<mark>Journal publication date</mark>1/12/2002
<mark>Journal</mark>Journal of Computational and Graphical Statistics
Number of pages15
<mark>Original language</mark>English


This article considers how to implement Markov chain Monte Carlo (MCMC) moves within a particle filter. Previous, similar, attempts have required the complete history ("trajectory") of each particle to be stored. Here, it is shown how certain MCMC moves can be introduced within a particle filter when only summaries of each particles' trajectory are stored. These summaries are based on sufficient statistics. Using this idea, the storage requirement of the particle filter can be substantially reduced, and MCMC moves can be implemented more efficiently. We illustrate how this idea can be used for both the bearingsonly tracking problem and a model of stochastic volatility. We give a detailed comparison of the performance of different particle filters for the bearings-only tracking problem. MCMC, combined with a sensible initialization of the filter and stratified resampling, produces substantial gains in the efficiency of the particle filter.