Home > Research > Publications & Outputs > Midinfrared photoluminescence of InAsSb quantum...

Electronic data


Text available via DOI:

View graph of relations

Midinfrared photoluminescence of InAsSb quantum dots grown by liquid phase epitaxy. .

Research output: Contribution to journalJournal article

<mark>Journal publication date</mark>4/12/2000
<mark>Journal</mark>Applied Physics Letters
Issue number23
Number of pages3
Pages (from-to)3791-3793
<mark>Original language</mark>English


Photoluminescence in the 2–5 µm spectral region is reported from InAs1–xSbx quantum dots grown from the liquid phase at 580 °C on an InAs (100) substrate. Atomic force microscopy shows that coalesced quantum dots and then isolated quantum dots are formed with increasing Sb composition (x = 0.2–0.3) and strain. The 4 K photoluminescence of the isolated and coalesced quantum dots was observed to peak in the midinfrared at 289 and 316 meV, (4.29 and 3.92 µm), respectively. These peaks are due to type II transitions and begin to quench at temperatures above 100 K as holes become thermally activated out of the quantum dot confinement potential. ©2000 American Institute of Physics.

Bibliographic note

Copyright 2000 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Applied Physics Letters, 77 (23), 2000 and may be found at http://link.aip.org/link/?APPLAB/77/3791/1