12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Missing observations in paired comparison data
View graph of relations

« Back

Missing observations in paired comparison data

Research output: Contribution to journalJournal article

Published

  • Regina Dittrich
  • Brian Francis
  • Reinhold Hatzinger
  • Walter Katzenbeisser
Journal publication date04/2012
JournalStatistical Modelling: An International Journal
Journal number2
Volume12
Number of pages27
Pages117-143
Original languageEnglish

Abstract

This paper considers the analysis of paired comparison experiments in the presence of missing responses. Various scenarios for how missing data might arise in paired comparisons are considered, and it is suggested that the most common types of missing data mechanism would be either missing completely at random or missing not at random. A new model is then proposed based on the paired comparison set of responses augmented by a set of missing data indicators for each comparison.
Taking a sample selection approach, the proposed new method is based on the classical Bradley-Terrymodel for the response outcomes and a multinomial model for the missing indicators. Different models for the two missing data mechanisms—missing completely at random (MCAR) and missing not at random (MNAR)—are then discussed and a blockwise composite link formulation is used to construct the likelihood. Additionally, an extension to account for dependence between the paired comparison items is introduced. The methodology is illustrated by a survey paired comparison experiment on five distinct teaching qualities of teachers. We show that there is little evidence of a MNAR process in this dataset. A discussion on the sizes of problems that can be fitted using this approach concludes the paper.