12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Noncommutative differential geometry, and the m...
View graph of relations

« Back

Noncommutative differential geometry, and the matrix representations of generalised algebras

Research output: Contribution to journalJournal article

Published

Journal publication date05/1998
JournalJournal of geometry and physics
Journal number3-4
Volume25
Number of pages18
Pages227-244
Original languageEnglish

Abstract

The underlying algebra for a noncommutative geometry is taken to be a matrix algebra, and the set of derivatives the adjoint of a subset of traceless matrices. This is sufficient to calculate the dual I-forms, and show that the space of 1-forms is a free module over the algebra of matrices. The concept of a generalised algebra is defined and it is shown that this is required in order for the space of 2-forms to exist. The exterior derivative is generalised for higher-order forms and these ale also shown to be: free modules over the matrix algebra. Examples of mappings that preserve the differential structure are given. Also given are four examples of matrix generalised algebras. and the corresponding noncommutative geometries. including the cases where the generalised algebra corresponds to a representation of a Lie algebra or a q-deformed algebra.