12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Nonlinear detection of ultrasonic vibration of ...
View graph of relations

« Back

Nonlinear detection of ultrasonic vibration of AFM cantilevers in and out of contact with the sample.

Research output: Contribution to journalJournal article

Published

Journal publication date03/2001
JournalNanotechnology
Journal number1
Volume12
Number of pages7
Pages53-59
Original languageEnglish

Abstract

Ultrasonic vibration can be nonlinearly detected by means of an atomic force microscopy cantilever when the tip is in contact with a sample surface owing to the so-called (sample-induced) ultrasonic force. The procedure has been developed as a novel technique, ultrasonic force microscopy (UFM), that provides information about the nanoscale elastic and adhesive properties of surfaces. Here, we compare differences in the UFM signal when ultrasound is excited from the back of the sample (sample UFM) and from the cantilever base (waveguide UFM). UFM relies on the nonlinear ultrasound-induced cantilever displacement (due to the aforementioned ultrasonic force), and does not monitor the linear high-frequency vibration of the cantilever. In this paper, we discuss the influence of a linear high-frequency cantilever response in the UFM measurements and provide experimental evidence of the feasibility of nonlinearly detecting the free ultrasonic cantilever vibration when the tip is out of contact with the sample surface using the typical laser-beam deflection method for monitoring cantilever displacements.

Bibliographic note

A new way of delivering ultrasonic vibration via AFM cantilever was developed leading to the effective realization of the contact and non-contact detection of short time scale (microsecond to sub-nanosecond) physical phenomena in scanned probe microscopy. RAE_import_type : Journal article RAE_uoa_type : Physics