We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK


93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Non-minimal state dependent Riccati equation an...
View graph of relations

« Back

Non-minimal state dependent Riccati equation and pole assignment control of nonlinear systems.

Research output: Contribution in Book/Report/ProceedingsConference contribution


Publication date2008
Host publicationProceedings of the 19th International Conference on Systems Engineering
Original languageEnglish


This paper considers pole assignment and Riccati equation control of nonlinear dynamic systems described by State Dependent Parameter (SDP) models. The approach follows from earlier research into linear Proportional-Integral-Plus (PIP) methods but, in SDP system control, the control coefficients are updated at each sampling instant on the basis of the SDP relationships. Alternatively, algebraic solutions can be derived off-line to yield a practically useful control algorithm that is relatively straightforward to implement on a digital computer, requiring only the storage of lagged system variables, coupled with straightforward arithmetic expressions in the control software. Two examples are used to illustrate the approach. In the first instance, state space matrix analysis of a first order system shows that the expected design response is obtained for specified pole positions, including dead-beat; hence, assuming pole assignability at each sample, global stability of the nonlinear system is guaranteed at the design stage. Secondly, the paper evaluates the approach for a classical, physically-based simulation model of an inverted pendulum.