We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK


97% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > On linear systems and τ functions associated wi...
View graph of relations

« Back

On linear systems and τ functions associated with Lamé's equation and Painlevé's equation VI.

Research output: Contribution to journalJournal article


<mark>Journal publication date</mark>1/04/2011
<mark>Journal</mark>Journal of Mathematical Analysis and Applications
Number of pages23
<mark>Original language</mark>English


Painleve's transcendental differential equation PVI may be expressed as the consistency condition for a pair of linear differential equations with 2 by 2 matrix coefficients with rational entries. This linear system is assocaited with certain kernels which give trace class operatos on Hilbert space. This paper expresses such operators in terms of Hankel operators \Gamma_\phi of linear systems. For such, the Fredholm determinant \det (I-\Gamma_\phi P_(t, \infty )) gives rise to the tau function, which is shown to be the solution of a matrix Gelfand--Levitan equation. For meromorphic transfer functions that have poles on an arithmetric progression, the corresponding Hankel operator has a simple form with respect to an exponential basis in L^2(0, \infty ); so \det (I-\Gamma_\phi)can be expressed as a series of finite determinants. This applies to ellliptic functios of the second kind, such as satisfy Lame's differential equation.

Related research outputs