12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Optimal design of multi-arm multi-stage trials
View graph of relations

« Back

Optimal design of multi-arm multi-stage trials

Research output: Contribution to journalJournal article

Published

Journal publication date30/12/2012
JournalStatistics in Medicine
Journal number30
Volume31
Number of pages11
Pages4269-4279
Original languageEnglish

Abstract

In drug development, there is often uncertainty about the most promising among a set of different treatments. Multi-arm multi-stage (MAMS) trials provide large gains in efficiency over separate randomised trials of each treatment. They allow a shared control group, dropping of ineffective treatments before the end of the trial and stopping the trial early if sufficient evidence of a treatment being superior to control is found. In this paper, we discuss optimal design of MAMS trials. An optimal design has the required type I error rate and power but minimises the expected sample size at some set of treatment effects. Finding an optimal design requires searching over stopping boundaries and sample size, potentially a large number of parameters. We propose a method that combines quick evaluation of specific designs and an efficient stochastic search to find the optimal design parameters. We compare various potential designs motivated by the design of a phase II MAMS trial. We also consider allocating more patients to the control group, as has been carried out in real MAMS studies. We show that the optimal allocation to the control group, although greater than a 1:1 ratio, is smaller than previously advocated and that the gain in efficiency is generally small.