12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Pitch plane analysis of a twin-gas-chamber stru...
View graph of relations

« Back

Pitch plane analysis of a twin-gas-chamber strut suspension

Research output: Contribution to journalJournal article

Published

Associated organisational unit

Journal publication date08/2008
JournalProceedings of the institution of mechanical engineers part d-Journal of automobile engineering
Journal number8
Volume222
Number of pages23
Pages1313-1335
Original languageEnglish

Abstract

A twin-gas-chamber hydropneumatic suspension strut concept is proposed to achieve enhanced bounce and pitch ride, and pitch attitude control. The response characteristics of the twin-gas-chamber strut suspension are compared with those of a single-gas-chamber strut Suspension to demonstrate not Only Superior performance potentials but also the added design flexibility offered by the twin- gas- chamber struts. The relative responses of both strut suspensions are evaluated through analysis of a pitch plane vehicle model, subject to straight-line braking inputs and excitations arising from randomly distributed road elevations. A generalized formulation for the strut forces is presented to derive the bounce and pitch rates of the proposed strut Suspensions. The results reveal that the twin-gas-chamber strut Suspension exhibits a slightly lower pitch stiffness in the vicinity of design ride height, but progressively hardening effects with increasing pitch deflections. Moreover, the twin-gas-chamber strut suspension exhibits considerably fewer hardening-softening effects in suspension rate compared with the suspension involving the single-gas-chamber struts. The results attained from the parametric Studies are also discussed to demonstrate superior design flexibility of the twin-gas-chamber struts for timing of the suspension bounce and pitch stiffness properties. The dynamic responses of the vehicle model with different Suspensions are assessed subject to random road roughness excitations as well as braking torque inputs. The results demonstrate that the twin- gas-chamber strut Suspension offers considerable potential for enhancing bounce and pitch ride, pitch attitude control, and Suspension travel responses under braking, while the influence on the ride and road-holding responses under random road inputs is insignificant. The results also suggest that a relatively soft front Suspension design Could provide further enhancement of pitch ride and pitch deflection responses under random road roughness excitations.