12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Point process methodology for on-line spatio-te...
View graph of relations

« Back

Point process methodology for on-line spatio-temporal disease surveillance.

Research output: Contribution to journalJournal article

Published

Journal publication date08/2005
JournalEnvironmetrics
Journal number5
Volume16
Number of pages12
Pages423-434
Original languageEnglish

Abstract

We formulate the problem of on-line spatio-temporal disease surveillance in terms of predicting spatially and temporally localised excursions over a pre-specified threshold value for the spatially and temporally varying intensity of a point process in which each point represents an individual case of the disease in question. Our point process model is a non-stationary log-Gaussian Cox process in which the spatio-temporal intensity, (x,t), has a multiplicative decomposition into two deterministic components, one describing purely spatial and the other purely temporal variation in the normal disease incidence pattern, and an unobserved stochastic component representing spatially and temporally localised departures from the normal pattern. We give methods for estimating the parameters of the model, and for making probabilistic predictions of the current intensity. We describe an application to on-line spatio-temporal surveillance of non-specific gastroenteric disease in the county of Hampshire, UK. The results are presented as maps of exceedance probabilities, P{R(x,t)c|data}, where R(x,t) is the current realisation of the unobserved stochastic component of (x,t) and c is a pre-specified threshold. These maps are updated automatically in response to each day's incident data using a web-based reporting system. Copyright © 2005 John Wiley & Sons, Ltd.

Bibliographic note

RAE_import_type : Journal article RAE_uoa_type : Statistics and Operational Research